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We generalize Dirac's new equation so as to describe particles of mass m and arbitrary spin s. The
same remarkable properties are found: positive energy, non-negative density, a conserved four-vector

current, and the impossibility of minimal electromagnetic interaction. We show that the particles
described by a subset of these equations are composites of two subparticles interacting by a relativistic
action-at-a-distance interaction characterized by two harmonic oscillators. For these composite particles
we find a linear relation between the square of the mass and the spin. We emphasize that the essential

content of the generalized new Dirac equation is that it constitutes an example of a convariant solution

for two interacting particles, and provides an explicit example of a new quantal subdynamics
distinct from the (classical) front relativistic dynamics of Dirac.

I. INTRODUCTION

Dirac has given recently' a remarkable new
relativistic equation which —though it superficially
resembles the familiar Dirac equation for the
electron —describes a spinless particle of mass
m. What is surprising about this equation is that
the particle energy is positive definite, yet there
exists a conserved four-vector current, having a
positive definite charge density. Most remarkable
of all is the fact that the conserved particle cur-
rent cannot interact with the electromagnetic field
(using the minimal coupling p„-w„-=p„eA&/c)—
without destroying the consistency of the defining
structure. (For the convenience of the reader, we
summarize. in Sec. II the essentials of Dirac's
presentation of his new equation. )

We demonstrate in Sec. III how to generalize
Dirac's new equation so as to describe particles
w'hich correspond to an irreducible representation
(irrep) of the covering group of the Poincard
group with the invariant labels m (mass) and s
(spin), where s takes on the values s=0, —,', I, . . . .
These generalized equations are based on the same
internal space as used in Dirac's new equation,
and share with this latter equation the same re-
markable properties. We prove that they allow
only positive-energy solutions, and have a con-
served current with non-negative charge density.
The most remarkable property of all, the im-
possibility of any electromagnetic interaction with
minimal coupling, is proved in detail. (The meth-
ods by which these proofs are accomplished differ
from those of Dirac, and are, perhaps, of inde-

pendent interest since they generalize. ) The re-
lationship of Dirac's new equation to the Majorana'
equation is also discussed in Sec. III.

In Sec. IV we develop what is possibly the prin-
cipal result of our work. Here we demonstrate
that the particles described by the new Dirac equa-
tion and its generalization may be consistently
viewed as composites of two suhparticles inter
acting via action-at a distance for-ce-s. We show,
from Dirac's new equation, that such a possibility
necessarily requires that the description be in the
front frame.

In order to prove the consistency of such a view,
it is necessary to reexamine the various possible
methods of Hamiltonian relativistic mechanics. '
We show that, for the front frame, there exists
a qualitative distinction between quantal apped clas-
sical Hamil tonian relativistic mechanics. In con-
trast to the (classical) Dirac prescription for the
front frame, ' we develop the "method of quantal
front subdynamics. "

Fron our point of view, the importance of the
new Dirac equation derives from the fact that it
provides a completely explicit example of a solu-
tion to a relativistic two-body problem which al-
lows 5, verification of internal consistency through
direct construction. It follows from this construc-
tion that for the two interacting subparticles of the
new Dirac equation, the states of higher spin (be-
longing to the generalized equation) necessarily
obey a mass-spin relation of the Chew-Frautschi
form: m' ~ s. In a very real sense, the (gener-
alized) new Dirac equation constitutes an explicit
and precise solution to that much abused object,
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the relativistic harmonic oscillator.
A concluding section, Sec. V, contains further

discussion and open questions.

The new wave equation reads

+~,
8

+
Z P)Qg(x„, 4)=0.

9go 8g„S (4)

II. RESUME OF DIRAC'S NEW EQUATION

The new relativistic wave equation" for par-
ticles of nonzero rest mass proposed by Dirac has
a great formal similarity to the usual Dirac equa-
tion for the electron, but the physical significance
is very different.

The internal degrees of freedom involve two
harmonic oscillators. Let the dynamical variables
describing these oscillators be $„(2, v„and v»
introduce the dimensionless variables

The wave function g(x„, t', ) is a single-component
function of two commuting variables $, and $2, as
well as the four x's. With e, =1, the equation be-
comes

~~8&+ =0 .

Furthermore, if we let I'& = pn„, then we have

I'q8" —
~

=0 .

In addition to the defining wave equations, the
wave function g(x, g) satisfies two important equa-
tions:

(a) A consistency condition: If a function P exists
which is a simultaneous solution to the four opera-
tors I', ,

1
&4=

(~ g)izmv2 ~

Denote by 'Q the column vector
P

P, = a„e"+
@

then it follows that

8t'8„+, =0 . (6)

g4
lee

We then have the relations

I. & &n] - = iI s

2 =-I .

(3)

(b) We must also have the quadratic equation
[(6.9) in Ref. 1] (Pauli-Lubanski spin equation)
holding

So 8 P

These two equations then describe a particle with
nonzero mass and zero spin.

Dirac gives the general solution to his equation
(rewritten in terms of dimensional variables) to be

p(umc '~', mc(p(u/+)(t', '+ ],')+i I', (g(o/&)($, ' —t', ') —2i I', (p(u/+)(, ],

III. GENERALIZATION OF DIRAC'S NEW EQUATION

The generalization of Dirac's new equation is
based upon the fact that the 4x4 matrices I'& and
the four-dimensional Q are simply related to the
smallest totally symmetric irrep of Sp(4) that has
a nonvanishing four-vector. The desired general-
ization then consists of replacing I'& and Q by a
general Sp(4) irrep (p, 0) having (~3+') dimensions. '

The group Sp(2, 2) —=SO(3, 2) (where = denotes
equivalence) is generated by the ten (Hermitian

with respect to a, ~
0) =0 metric) operators

(i]' Z, =a a, ,

J =a2agy

1/J3 p(a,a, —a~a2p,'

{KQ: K, = —'(a, ~ —a '),
1(—2 2)

+3 = —2' (a,a, + a,a, )

(12)
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{A: V = ——,'i(a, '+a, '),
v =-,'i(a, '+a, '),
V3 = —,'i(a, a, —a,a~)

(V j: V = —'(a,a, +a,a, ) . (14)

The operators J, K, V, and V, generate onthe
basis fa,'a, '~0)} two distinct (integer J, half-
integer J) discrete unitary irreps of the Sp(2, 2)
group; J' and K generate the Lorentz subgroup;
under the action of O', K the operators V, V, form
a four-vector. (This is all very familiar from the
Majorana equation, as will be discussed in a mo-
ment. }

The associated finite-dimensional irreps of Sp(4)
are generated by the same J, E, and V operators;
let us denote these bases generically by q. Then
we have

(ao)

(21)e-=[~„„,(p v-m)q].
Using the mapping [V„,q]= V„q, we may re-

place p Vq by

p vq=p [v, q]

=[p v, qJ,
since [p",q] =0.

Hence the commutator 8 becomes

e=[~„„,[p v, q]]- m[~„„,q]. (22)

Mp„—I ~„+8~
where $1.„„)denotes the space-time Lorentz gen-
erators (acting on x„and p„), and {S„„jdenotes
the Sp(2, 2) generators, J and K. (The notation is
S)~ = eq~q jqi SD)=K( )

Consider then the commutator:

four-dimensional irrep: q =(a„a„a,, -a,), Using now the Jacobi identity, we find that

l~„„,[p v, q]]=lp v, [~„„,q]J (23)

ten-dimensional irrep:
2 2

aI
102 ~ ~ Ql 2~2(~1+1 %%Jr 2 l1

since the remaining term in the identity vanishes
because [M„„,p. V] = 0.

But we can evaluate the action of M„,on the basis

[~...q]=ls. ..qj
2 2

aq a2
, -a,a, ~ i

—(a,a, +a aJ) . =Sq„q.
Thus the commutator 8 becomes

(24)

The action of the generators on the basis q gen-
erates N xN-dimensional matrices. For the four-
dimensional case one finds

e=[p v, [~„„,q]]-m[m„„,q]

=[P V, s~„q]- ms'„q
=s„„([p v, q]- mq) (25)

[J,q] =(-.")q,
[K, q] =(-.' p.o)q,
[&,q] =(--.'i p,c )q,

(17)

(since S„„arenumerical and hence may be com-
muted through the operators p V).

Using the mapping once again, we find

[V., q] =(-.' p.)q. e=s„„(p v —m)q. (26)

[e, q]=oq. (18)

Now let us construct Dirac's new equation in
this language. To do so, we use the N-dimension-
al Sp(4) irrep, with basis q, and the ¹&N-dimen-
sional matrices V„. Dirac's new equation then is

(p V —m)qy=O.

Let us demonstrate now that this equation is
Lorentz-covariant. Consider the Lorentz genera-
tors M„„(Ref. 1):

Note that Eq. (17) defines a mapping: generator- N&&N matrix, which preserves the commutation
relations of the gerierators' but not the Hermiticity
character of the operators.

For the general case we define the NxN ma-
trices by the rule

Thus the operator in Dirac's new equation is not
an invariant but transforms covariantly such that
if the equation is valid in one frame it is valid in
all frames.

Ne must now' examine what types of solutions ex-
ist for this equation. We know from the displace-
ment invariance of the equation that p may be taken
sharp. Assume that p„ is spacelike: p„=(0, 0,p„o).
Then we find

(p V —m)qg =0 . (27)

But V, is not Hermitian [e.g. , see Eq. (17)].
Therefore we have a contradiction and conclude
that spacelike momenta are not allowed. (Similar-
ly lightlike momenta are excluded. }

Take p„ to be timelike: (po, 0). Then we find

(poVo- m)qp=o . (28)
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Using the explicit diagonal (real) matrix for V, we
find that

[m„„(V,(p V/m)q]=S„, 6', (p V/m)q (33)

PO

a,. /=0 .
(29)

Thus we find that timelike momenta are permit-
ted only for p, =m &0. (If p, =-m, one finds that
a; p =0, which is not possible with the vacuum
state a,. ~0) =0.)

The Pauli-Lubanski operator for this equation
has the form

~„=Pn~8) &a Byt-
In the rest frame we have the form

(30)

(31)

S

(p (p V/m)= g [p V/m —(2k+I)]. (32)

Then the generalized new Dirac equation becomes

(V (p V/m)qq=o. (33)

To prove the Lorentz covariance, we proceed
as before, commuting the operator 6', q with 3I„„.
It is sufficient to consider only the generic term
(p v)" q:

(n(n ) [~ (p, V)n q]

Using the mapping, we easily find that

(p v)" q=[p v, q](„~,
where

(34)

(35)

[A, a](„,'=" [a, [X, . . .[a, II]. . .], (36)

where there are nnestedcommutators on the right-
hand side (that is, the nth multiple commutator).

Consider now the commutator of M„„with this
multiple commutator. Since M„„commute s with

p V we find that

[~...[p V, q](.&]=[p V, [~...q]](.&
= [p'v, ~„q](.)
=S„.[p V, q](„~ . (»)

(These steps use the same relations as in the ear-
lier example. )

It follows that under commutation with M„„one
obtains

Hence for the solution a, g =0, we find that s =0.
All solutions of Eq. (19), whatever the dimension-
ality of the matrices (except N= 1), have spin zero.

It is not difficult to overcome this difficulty and
achieve general solutions. We simply replace
(p V —m) by a polynomial operator in (p V)/m,
choosing the particular operator

Exactly as for Dirac's case, we conclude that the
general new Dirac equation is valid in all frames
if it is valid in any one frame.

It is now straightforward to verify that only time-
like solutions with positive energy are allowed.
In the rest frame one obtains

(a) p. =m,

(b) (a,)'(a,)"' "(jt=0, for k =0, 1, . . . , s+1 .
(39)

(This latter result uses the explicit NxN matrix
V, and the particular form given for 6', .) Using
the Pauli-Lubanski operator, one sees that the
rest-frame solutions P correspond to spin s, and

all lower spins. If we wish to have only spin s, then
we must specify that (in the rest frame) g contains
precisely s quanta, and that the NxN matrices
have N =(' ).

It will not have escaped the reader that these re-
sults are all very closely related" to Majorana's
equation':

(p V-m)y=o. (40)

In a sense, the new Dirac equation is but a spin-
projection of Majorana's equation. ' While techni-
cally correct, this view is nonetheless quite mis-
leading, since the real point of Dirac's new equa-
tion is the ingenious way in which the spacelike
and lightlike Majorana solutions are eliminated.
To appreciate this point, note that the operators
V& are all Hermitian; hence we can obtain, for
example, a spacelike solution to the equation
(p, v, —m)y=o.

It is precisely as a consequence of the properties
of the mapping: V„- V„, (given by [ V„, q] = V q)—
which pr eserve s commutator s, but not Hermiticity-
that Dirac's construction eliminates these unwanted
solutions for all spins and masses. [Majorana's
equation relates m and s by m = m, /(s+ —,').]

We have yet to discuss the remarkable property
of the new Dirac equation that electromagnetic
interactions, introduced by the minimal coupling
prescription, are forbidden. "

Dirac' stated this result without explicit proof.
Hence it is useful to begin with the example of the
spin-0 equation, over 4x4 matrices. Let p- II
= p -- eA/c. Then we wish to prove that the equa-
tion

(I" 11- m)qy=o

has no solutions for which-E„, =—B„A„-B„A.„does
not vanish.

We have restricted our attention to the 4&&4 case
in which the matrices I' are of the Dirac type.
That is,
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Eq~"„'lSq, /=0, (43)

where I' &"„" is the dual electromagnetic field vec-
tor, and S„, is the bilinear operator (not the nu-
merical matrix) defined in Eq. (14).

Similarly using the 4~4 matrices p, and p30,
instead of -i p„we can in the same way derive the
four relations:

Fdual V y 0 (44)

From Eqs. (43) and (44) it follows that the vector
g is invariant to all transformations of the group
Sp(2, 2). (This results from the fact that the given
equations suffice to generate the group itself. )

The only such invariant-vector is the constant
vector g(x); that is, there is no a„a, dependence.
But this result implies that Dirac's new equation
does not exist. From this contradiction we deduce
that F„„itself vanishes. This completes the proof
that Eq. (41) has no solution if E„„wo.

It is natural now to ask if the more general N xN
equation for (41) is also impossible with E„„wo.
This result is correct; but it is simplest to proceed
indirectly.

Let us instead note that the generalized equation

5' (V p/m)qy=O (45}

admits an alternative, but redundant, form'.

2s+ 1

II [(v p- m)q], „,y=o. (46)

[The equivalence of Eqs. (45) and (46) is most eas-
ily shown in the rest frame. The form (46) is re-
dundant in that the outer product of (2s+ 1) identi-
cal structures reduces to the. irrep (2s+ 1, 0) dis-
played explicitly in Eq. (45).]

The advantage of the form given in Eq. (46) is

—agpgo'y p, =ly 2y 3

4)(~ 2 P3~

For the 4x4 case these I"s satisfy both commu-
tation and anticommutation relations. Accordingly,
we multiply Eq. (41) on the left-hand side by
(I' ~ ll+ m)«, and obtain

[(n n- m')+S„„F„,]qy=O. (42)

It is a remarkable property of the present
realization that there exist ng bilinear operator
realizations for the unitary group generators that
do not belong to the symplectic subgroup. ' Special-
izing to the case at hand (n=2), we may state that
bilinear operators in (a, , a,j corresponding to the
six Dirac matrices 1, p3cr, p» and p, do not exist.
We may exploit this fact by multiplying Eq. (42) on
the left first by the 4x4 matrix- i p„and then by
the adjoint vector q—= (a„a„-a„a,). One ob-
tains the result:

that we may go over to the minimal interaction
p- II, and then repeat the previous proof. In de-
tail, one multiplies Eq. (46) on the left by
(V ~ II —m )«, and then multiplies by q(-i p, ) on the
left. One thus obtains

2g

z„'". s„„c-=(z„'","s„„)II [(v 11- )q],„,y

=0 (4V)

and we once again conclude that if E„,w0, then
C =0. But this establishes a recursion loop,
whereby the existence of electromagnetic interac-
tions for spin s requires the existence for spin
s ——,'. Since the case s = 0 has been shown to be
impossible, this establishes that minimal electro-
magnetic interactions are impossible for all of the
generalized new Dirac equations.

Now let us return to Eq. (41). The proof that
minimal quantum electrodynamics (QED) is im-
possible has been established only for the 4x4
case. Conceivably the N &N case might escape
this restriction. This, however, can be seen to be
impossible by observing that if Eq. (41) is correct
for NxN (N &4), then (by suitably multiplying the
appropriate operator in from the left) we obtain
the equation

(NxN) 4', (V n/m)qy=O, (48)

=6' -. qg-. (5o)

Since the factors on the right-hand side of (32)
commute, g; satisfies

[ie V/m —(2q+1)] y; =O, (51)

and also

y'-. V"[-ia V/m-(2q+1)]=O. (52)

Hence, a conserved current can be given for every
j by

A.4.0,'- v"v"0; (53)

which is equivalent to p-II in Eq. (42). This latter
has been shown to be impossible; hence Eq. (41)
has no solutions, for any (NxN) case, with E„„
g0.

In the interest of completeness, let us now dem-
onstrate that all of the generalized equations pos-
sess a conserved current with nonnegative density.
In order to construct the conserved currents, we
introduce

i-& s
6'„"(p V/m) = II II [p V/m —(2k+ I)]

k= -s k=q+ x

(49)

and define
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It is clear from Eq. (53) that the charge density
is non-negative in each ease. (It is of interest to
note that one might just as well use linear com-
binations, with positive coefficients, of the dif-
ferent J"-. . This freedom might possibly allow one
to construct a current which has no contributions
from lower-spin solutions. )

IV. AN INTERPRETATION IN TERMS
GF SUBSTRUCTURE

%e seek in this section to develop an interpreta-
tion of Dirac's ne~ equation in terms of a sub-
structure, namely, ~t the set of generalized
equations describes covariantly two interacting
subparticles with a fixed mass-spin relationship,
m'~ s. In order to accomplish this analysis, we

must first discuss the ancillary problem as to how

quantal relativistic dynamics, for other than free
particles, can be treated at all. This is a non-
trivial problem in itself.

The problem of constructing a quantal relativis-
tic dynamics is the problem of constructing a
realization of the ten generators of the Poincard
group: P„and M„„=(S,K ) (the total four-momen-
tum and total angular momentum-boost operators,
respectively). In a basic paper several years ago,
Dirac' developed three possible approaches to
Hamiltonian relativistic dynamics based on three
subgroups of the Poincard group 6':

(a) Instant dynamics Subgr. oup E(3) generated by
by (P, J$;

(b) Point dynamics. Subgroup 2 generated by

(c) Ff ont dynamics. Subgroup generated by

LP;, P, J =J,IC, , )if ).
In each of these dynamics, the ten generators of

6' are divided into two classes: (a) the generators
of the subgroup, and (b) the remaining generators
(designated collectively as Hamiltonians). A solu-
tion to relativistic dynamics —according to Dirac—
consists first of all of a solution to the subgroup
generators by postulating a direct-product struc-
ture, followed by postulating interactions in the
remaining generators (Hamiltonians) whose solu-
tions are then the real problem to be solved.

Expressed differently, Dirac takes the subgroup
generators to be simple, such that a given sub-
group generator, say P„ is merely the direct
sum of the P, operators of each of the n particles
in the substructure. That is,

def g P( f)

Expressed group-theoretically, this is equivalent

to postulating a direct-product structure for the
subgroup as a whole.

Dirac's procedure is by no means the only one
possible, but it corresponds directly to physical
intuition. This is particularly clear for the instant
and point forms; in these two cases the subgroups,
E(3) and 2, respectively, have the physical sig-
nificance of kinematical symmetries. In the in-
stant form especially, the subgroup E(3) appears
also as a basic symmetry of nonrelativistic (quan-
tal or Newtonian} mechanics; the kinematic nature
of this symmetry is apparent in the standard pro-
cedures wherein these momenta are, by definition,
the sum of the individual momenta of the constit-
uents. Kinematical independence implies com-
muting operators and a direct product group struc-
ture,

At this point we come to a fundamental distinc-
tion between classical and quantal dynamics, a
distinction which is basic to the existence of our
proposed interpretation.

Let us first reconsider classical dynamics in
the instant form. The subspace defined by the
given instant (i =0) is a three-dimensional surface
which intersects the world line of every particle
once and only once. A Hamiltonian dynamics con-
sists then of determining in the next instant the
next intersection point on each world line. The
question as to whether there is a "dynamics" with-
in the (three-dimensional) subspace is clearly
absurd: one deals with three-dimensional events
in this subspace, not particles —there is no vestige
of "world lines" within the subspace and hence no
dynamics. Quantum mechanically, this situation
still obtains, since the three momenta conjugate
to the position (x, y, z) have unbounded spectra,
-~ to +~, and there ezista a well-defined (Newton-
Wigner} position operator" localizing the particles.
Thus in both the classical and quantum-mechanical
approaches, the subspace defined at an instant has
a kinematic (and not a dynamic) character; this
leads directly to Dirac's prescription. " "

The situation for the point form of dynamics is
qualitatively similar.

The situation for the front form is very different,
but only for the quantal case. Classically, the
three-dimensional subspace, tangent to the light
cone, once again intersects every particle world
line in a single point. Once again, any question as
to a dynamics of these three-dimensional events
within the subspace is absurd —the points of inter-
section simply exist kinematically, and that ends
the description.

Quantum mechanically (for a massive particle
P' = m'), the situation changes, for now the mo-
menta P, and P have spectra confined to the
(open) half-line: 0 &P, & ~. In consequence, the
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conjugate variables x, are timelike in character,
and cannot be localized. One variable, say x,
defines the front: x =0. The other variable x, is
the time within the front subspace, and as a time
variable defines a world line for a particle within
the front subspace. The two position variables,
x, and x, have momenta P„P, with unbounded
spectra: there exists a well-defined (Newton-
Wigner) position operator to localize these coordi-
nates.

We conclude from this discussion that a kine-
matical description of points within the front sub-
space is not possible quantum mechanically, and
that the correct description within the front actual-
ly requires considerations of a dynamical nature.
This implies that the operator P must be ad-
joined to the seven generators of Dirac's classical
front dynamics.

It is quite remarkable that the Poincard subgroup
generated by this set of eight operators has an im-
mediate and clear physical significance: nonrel-
ativistic (2+ 1 Galilean) quantum mechanics for
the subsystem. The possibility of a relativistic
form of dynamics based upon regarding this sub-
group, not as kinematical, but as an interactive,
dynamical subsystem in its own right is indeed
both suggestive and natural. "

In order to make this clear, let us consider this
subgroup in detail. To do so we change the metric
so as to adapt it to the front form. First introduce
the indices + and —and then denote

x„=(x,~x,) (where x, =ct) . (54)

The metric, using the indices 1, 2, +, —becomes

g, =5„(i,j=1,2), (55)

1
2

(56)

[JS,P;]=i@3;;P~,

[J„K,.]=je„,z, ,

[Z„P ]=0,

[P, , P,]=0,
[P, , P ]=O.

[x „Ic,.]=0,

[K, , P~] =i5), P+, .

[E;~,P ]=2iP, ,
(5Va)

The subgroup algebra 5 for the front form is then
generated by the eight operators (i = 1, 2)

5'=(P P~~ Jim= J~~ -&i™osi

which obey the commutation rules:
(a) (2+1) Galilei group generators: 9, where

(5) Mass generator: P„where

[P„e]=0.

(c) Scaling generator: Mo„where

[M„,~,]=0,
[M„,Z, ]=iZ „
[M„,P,.]=0,

[M„,P, ] =*iP, .

(5vb)

(5Vc)

These commutation rules can be recognized as
the commutation relations of the Galilei group 8
(in 2+ 1 dimensions} together with a dilation (scal-
ing} operator D =- M„. For this interpretation one
must identify the operator —,'P as the Galilei-
group Hamiltonian Hz and the operator P+ as the
mass M& for the Galilei group.

We will show that the explicit solutions to
Dirac's new equation are consistent with this pro-
posed interpretation (and in fact suggested it).

We are therefore led to postulate a quantal sub-
dynamics of interacting point particles and ac-
cordingly identify the generator —,'P with the
Hamiltonian:

2P H~ =H„. +H~, . (56)

(Pg —Ag)'
111t 2~

(59)

where A, and V are arbitrary functions of the co-
ordinates of the coordinates of the Galilei space.

This limitation, combined with the scale invari-
ance (dilation operator D), severely restricts the
possible interactions. For the explicit realization
of scale invariance implied by Dirac's new equa-
tion, we are essentially limited —as will be
shown —to harmonic oscillator interactions alone.

To proceed further let us consider once again
the explicit operators that enter into Dirac's new
equation. It is clear that the oscillator variables
are linked to the Minkowski variables through the
operators M„„=I."„'„""'"'"'+S„„achoice of a sub-
group of (P fixes a set of operators 8&,. But for

We will arbitrarily impose the requirement that
both the center-of-mass Hamiltonian H, and the
"internal" Hamiltonian II. , are separately
Galilean-invariant, and scale-covariant, under the
seven generators of the front form. (This require-
ment will turn out to be consistent with our pro-
posed interpretation of Dirac's new equation, but
for more general dynamical situations, only Bq
itself need obey this symmetry. )

It is a remarkable property of the Galilei group
that the possible forms of (Galilean-invariant) in-
teractions are limited exclusively to the gauge-in-
variant form":
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any given set of the S„„the specific realization
requires also a specification of the oscillator vari-
ables to be taken diagonally; for example, one
might take a, and a, as the sharp variables; or
one might take g, and 4 as the variables. Each
choice of two oscillator variables fixes a certain
subspace; the operators leaving this subspaee-
invariant determine a set of S„,which may, or
may not, agree with chosen subgroup of O'. The
two choices (sharp oscillator variables and d' sub-
group) must therefore be compatible.

In order to interpret the internal space as the
(two-dimensional) relative coordinates between
two (2+ 1, Galilean) point particles, we are forced
to identify g, and 4 as position variables within
the front. This choice implies that the proper set
of operator s be Sy» S03 S y, and S,. This set of
operators is compatible only with the front form. "
Hence, from a very different consideration, we
are once again led to conclude that if an interpre-
tation in terms of subparticles for Dirac's equation
exists, then we are forced to consider the (quantal)
front form of the dynamics.

The most critical part of the interpretation con-
cerns the scaling behavior. Let us now consider
this explicitly.

The scaling is produced by the action of the op-
erator Mo, and obeys the commutation rules given
in Eq. (57). Since M,3=La, +S„, we may separate
the scaling into two parts, calling S03 the internal
scaling operator.

Under the operator I.03 we see that P+ and H&

,'P bo—th scale, but in opposite senses (to keep
P+P invariant). The momenta P, and the x,.. as
well are scale-invariant.

By contrast the momenta m, and the coordinates
g, scale under the operator SO3 (in opposite senses,
so that [w, $]=invariant).

We interpret P, now as the total mass of the
Galilean system, this implies that P+ = m, + nz»
where m,. are the masses of our Galilean subpar-
ticles. Accordingly, we are forced to conclude that

+total +c.m. + +int s (eo)

Pi'+P. '
2(m, +m, ) ' (61)

with

"
(P,4-P, t.,),mc

(es)

(64)

Here ~ and ns are fixed numerical constants, so
that we may vary both the frequency of the har-
monic-oscillator interaction and the "vector po-
tential" A,. independently. [Note that we have used
the full fre'edom allowed by Galilean symmetry;
cf. Eq. (59).]

The eigenenergies of these Hamiltonians are im-
mediate:

P~ +P2
2(m, + m, ) '

H;„, (N+ l)S +.

(65)

(66)

The corresponding wave functions are equally
easy. For the ground state (N=O) we have

m, scale under I.„,and that the reduced mass p,
= m, m, /(m, + m, ) must also scale under LO3. It
follows that &o must scale (under L03) oppositely to
p, , in order that the dimensionless variables
(per/8)'~' $, scale properly under M„.

The most economical procedure now is to pre-
sent our proposed subdynamics and demonstrate
that it leads uniquely to Dirac's equation.

We assume that we deal with two particles: mass
m, and position R, and (m„R,), defined in a (2+ 1)
Galilean wopld. Introducing center-of-mass and
relative (internal) coordinates, we take the Hamil-
tonians to be

l/2

Sgg+ lP12

&exp 'E' Pj y g 2P» 2 e ' "+exp -i (67)

Now let us consider the scaling properties of these solutions. Under the internal scaling operator S„,
we see &hat the energy eigenvalue is invariant as it should be, but that the explicit solution is not scale-
invariant in form.

Let us now exploit this freedom of internal scale to choose a particular scale:
x/s

1 2
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~ +~ ~~2
1 2

7T) ~ 7Tf Wf ~

sgc

The particular merit of this choice is that under the combined scaling M03 =L»+S03, the new choices are
invariant, and now are analogous to the variables P, , x,. which are invariant under M».

The (normalized) new ground-state wave function then assumes the form
X/2

k P7$ g+ PQ2) P2 (Sg g + 82 2)

x
2@(m, + m, ) 2(Ptg&+ Pl2)

(vo)

Under the combined scaling &03 this wave function
is now scale-invariant.

To be consistent, however, with the requirement
that Po'=P'+ m, or in the front form P,P =P,'
+P,'+ m', we see that we must require that

Pi'+P.'
~P -Hs =

( )
+ha)

m'c' = 2(m, + m, ) (??+ I)h'(u, (v5)

or

For higher states of excitation of the system,
we remark that we have, in Eq. (70), actually im-
posed a mass-spin restriction. Since the spin is
given by?? A, we see that Eq. (73) becomes

(from two-particle solution), (Vl)
2(m, + m, )8(u,

)m
c (v6)

This is consistent if we take

rn'c' = 2(m, +m, )h (u,

since

P, =(rn, + m, )c

is already required. (It is gratifying to note that
in this last expression m' is scale-invariant. )

It remains only to remark that the scaled wave
function given by (VO)—together with Eq. (V3) for
nz2 —is precisely the wave function for the new
Dirac equation. Let us note that in making this
comparison, the momentum eigenstate is expressed
in front form":

e =exp i. P, x, +P2x2 . P x+exp -i

The mass-spin relation is of the form &2~ J,
that is, of the Chew-Frautschi form, experimen-
tally indicated for hadrons.

Before concluding this section it may be useful
to answer a question that must surely have arisen:
Granted, say, everything we have claimed about
the suI~dynamics is true why do we feel that this
hypothetical Galilean subsystem has anything to do
with two genuine (Poincard) particles'? To put the
question differently, how can two (Poincard) par-
ticles each with four (Minkowski) coordinates ever
be related to the (Dirac) system having but six
(x„,$„g,) coordinates?

To answer these questions, let us consider our
Galilean subdynamics in the limit that the inter-
action vanishes. The two-particle Galilean system I

then takes on the structure of two free particles,
since

H, - (P,'+ P,')/2m,

and

x exp -i (v4) a,„,- (m, '+ v, ')/2m, .

We conclude that the scale-invariant Galilean
subdynamics of two point particles interacting via
action-at-a-distance forces ~ven by Rq. (70),
leads to a wave function that agrees exactly with
the Dirac solution.

Since we already have in this Galilean subdynam-
ics the eight generators J, we may simply adjoin
the remaining two generators [using Eq. (57)] and
conclude that the system properly extends to a
Poincard world, satisfying Dirac's new equation.

We may go from the internal and c.m. coordinates
back to the original coordinates. The key point is
that we may now follow the world line of either
particle separately into the Poincard world, and
each of the two world lines would appear as a free
particle. It is in this precise limiting sense that
we assert that we have, in the absence of any
Galilean interaction, two independent particles.

(Let us note explicitly, however, that such a
limiting procedure is not allowed within the frame-
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work of the new Dirac equation, since the limit is
singular in the Dirac system. To see this, note
that in the harmonic oscillator the kinetic and po-
tential energies are, on the average, equal. Thus
for vanishing interaction the interparticle separa-
tion becomes arbitrarily large. But the Dirac
equation is predicated on the fact that P, &0 vs P,
&0 is distinguished precisely by the behavior at
infinity; this distinction is lost in the limit and the
Dirac equation acquires, discontinuously, solutions
with P, &0. Hence the limit is singular and for-
bidden. )

The fact that, in the front frame, the particles
share two time coordinates (x, ) is a kinematically
correct Galilean statement, as we have previously
discussed. This situation sharply contrasts with the
instant and point forms, where there exists but one
time coordinate.

The fact that the interaction seems to reduce the
number of independent coordinates (when integrat-
ing from the Galilean subdynamics to the Poincard
world) is surprising, but not without precedent,
since the concept of "frozen out" degrees of free-
dom is a familiar physical example of such an ef-
fect.

Let us now make one further remark on scaling.
We saw that the internal Hamiltonian must scale
as (m, + m, ) ' under the Mos generator, but that
H t was scale- invariant under 803 ~ This is a
severe requirement and, for power-law potentials,
limits the interaction to the harmonic oscillator
alone (with the freedom of adding a vector poten-
tial). At first glance this is surprising, since the
free Hamiltonian (no interaction) must surely be
allowed. The point here is that we have also re-
quired that the momenta v, and coordinates g,
scale under S03. It is consistent to drop this re-
quirement, and then one finds H , = v '/2 p, is al-.

lowed. This scales properly under L03 but then
803 no longer exi st s . The scaling requirement s
under S„were chosen to agree with the desired
result (the new Dirac equation) and this choice
(plus Galilean invariance) forces a unique answer.
[The peculiar vector potential that was found is
necessary to implement the required symmetry,
so that in the final answer (extended to the Poincard
world by adjoining the remaining generators} the
final system does not distinguish any particular
front, tangent to the light cone, but displays full
Poincard symmetry ].

The crucial importance of scaling may be seen
from a very different aspect. One knows that the
Galilean group possesses a continuum of super-
selection subspaces, distinguished by the mass.
How can such a structure be compatible with an
embedding in the Poincard group, which possesses
only two superselection spaces' The answer,

clearly, is that the embedding implies the exis-
tence of a scaling operator, &03, which ties to-
gether the mass superselection subspaces, leaving
only the integer vs half-integer splitting common
to both groups.

V. FURTHER DISCUSSION

Viewed as a possible model for hadron dynamics,
the new Dirac equation (and its generalization) has
severe disadvantages, the most striking being the
inability to introduce consistently conventional
@ED. However suggestive the deduction of the
hadronic Regge trajectory rule, m'~ J, may be,
it is clear that drastic modifications in the equation
are necessary. It is premature to speculate on
such modifications here, although it is very likely
that CPT can be put in "by hand" and thus rescued.

To concentrate on this aspect of the new Dirac
equation would, we feel, be to miss the main point.
In our view the (generalized) new Dirac equation
should be viewed as the first relativistic (covari-
ant} solution of a two-body problem in which one
may obtain two distinct answers: (a) for no inter-
action, two free (Poincard) particles, and (b) with
interaction, a complete set of Poincard (m, s) solu-
tions in which m' = (constant)(2s+ 1). From this
point of view the generalized new Dirac equation is
no more and no less than the solution for a rela-
tivistic harmonic oscillator; the separate equa-
tions may be viewed as covariant statements that
the oscillator possesses N (or fewer) quanta.

More importantly, our interpretation of the new
Dirac equation suggests a very different attitude
toward quantal re1ativistic dynamics in which one
uses the front form to define an interacting sub-
dynamics which is then extended into the Poincard
world. "'" Such a procedure is—as we discussed
in Sec. IV—not possible for classical physics. To
distinguish this procedure from Dirac's (classical)
front form of dynamics, we might call it the
"method of quantal Galilean subdynamics. "

From the point of view of group theory such a
method is most natural. One defines representa-
tions of a subgroup (9+6 here) and extends these
representations to the full group (d') by the
Mackey-Wigner- Frobenius technique of induced
representations. " Group theoretically, the pri-
mary problem was very different. Given an irrep
of the subgroup, when is the induced representation
irreducible' This is solved by the familiar Wigner
little group (stability group) construction. For dy-
namical problems the situation is different; one
expects that the solution will be a set of Poincard
irreps with the mass, spin, and multiplicities
characterizing the interaction. It is quite fortunate
that the Galilean subdynamics is not only the
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largest subgroup, but also the subgroup for which
one has a full grasp of the quantal subdynamics. "

Considered pragmatically, one might view prog-
ress in the last few years in understanding hadron
physics as ingenious usage of nonrelativistic quan-
tum mechanics far outside its proper domain; the
success of the nonrelativistic quark model is the
most obvious example. To take a speculative, but
clearcut example, we found that for interacting
(Schwinger) dyons, "to avoid an enormous nucleon-
ic electric dipole moment, one had to postulate
nonrelativistic dynamics as absolute (not approxi-
mate).

Similarly the recent emphasis on the "infinite-
momentum frame" (IMF) as, for example, in
Feynman's parton model, '4 may be viewed as an
approach to nonrelativistic dynamics (eliminating
backward going diagrams}. We would like to em-
phasize that the IMF approach, though very sim-
ilar in actual results, is in fact quite distinct logi-
cally from front subdynamics. The IMF in mathe-
matical discussions" is viewed as a contraction
limit (and not a subgroup) to the Poincard group
[just as the limit c- ~ is a contraction limit yield-
ing (3+ 1) Galilean mechanicsj . As discussed by
Feynman, one considers an active transformation"
in which a massive physical system takes on large,
but nonetheless finite, momentum. By contrast,
the front subdynamics is a passive redescription, '
valid without restriction to large physical mo-
menta, and applicable, in principle, to any physi-
cal system. Feynman's (parton) discussion" is,
from this view, a brilliant intuitive justification
for the way in which instant dynamics takes on the
character of front subdynamics for systems col-
liding with very large relative momenta.

Let us point out that the Regge trajectory rela-
tion rn' ~Jhas also been obtained recently" by
using Gell-Mann's SL(3,R) symmetry as applicable
to hadrons. " This result was obtained by an ex-
plicit realization of the SL(3,R} symmetry on a
two-boson structure. Since the new Dirac equation
similarly is a realization on two bosons, the
question immediately occurs: Can these two mod-

els be united into a single (covariant) model P

More precisely, is there a larger group containing
both SL(3,R) and the SO(3, 2) group used in the
Dirac construction'? Both SL(3,R) and SO(3, 2) do
indeed fit into noncompact versions of the A, alge-
bra, but (unfortunately) the two subgroup realiza-
tions are not simultaneously compatible. "

Let us conclude by discussing a possible signifi-
cance to the fact that Dirac's new equation does not
allow a @ED coupling. Let us assume, notwith-
standing, that such a coupling does exist; we will
indicate a "Gedankenexperimental" contradiction.
From our interpretation, we must assume that one
or both of the two subparticles will bear electric
charge. Now let us assume that, somehow, the
interaction is turned off, and we get two free par-
ticles. By means of electromagnetic interactions
we would thus have the possibility of experimen-
tally observing a system having half-integer spin
become a system having only integer spin. This
contradicts the Wick-Wightman-Wigner super-
selection rule. " Ne conclude that one or more of
our assumptions (of this paragraph) is wrong The.

new Dirac equation chooses to deny the possibility
of an electromagnetic (minimal} coupling, so that
it is the experimental observability which is de-
nied. One might also conclude that the system
does not permit the interaction to be removed (and
hence the spin of the constituents to be deter-
mined). Precisely these two properties (lack of
externa1 electromagnetic coupling to the constit-
uents, and finite separation distance), underlay
our kinematic model for quarks leading to the con-
cept of finite-size spinors. " The two models dif-
fer, hpwever; in particular, the new Dirac equa-
tion has yet to be generalized to incorporate SU(3).
Hopefully this is possible; it constitutes a chal-
lenge.

Note added in proof. The material in Sec. IV
has been revised in order to eliminate the confu-
sion between P, and P that existed in our original
version. We wish to acknowledge the aid of, and
thank, Professor L. P. Horwitz for helpful dis'-
cussions.
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