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An exactly soluble model of the renormalization group for two-dimensional quantum electrodynamics is

presented. The theory has a nontrivial eigenvalue at which it is scale-invariant and some operators acquire
anomalous dimensions. The anomalous constant associated with the axial-vector current is independent of the
coupling constant away from the eigenvalue, but vanishes at the eigenvalue,

I. INTRODUCTION

where e, is the bare coupling constant. The exact
unrenormalized photon propagator has the simple
structure

2

e,'Dz„„(q)= —,"',', +gauge terms.0 Epv ~2 + 2~~+
(1.3)

Since e, carries the dimension of mass, the theory
is superrenormalizable. The only divergent graph,
which occurs in the second-order correction to the
vacuum polarization, becomes finite when gauge
invariance is imposed. In the conventional ap-
proach to a superrenormalizable field theory, the

Now that we have experienced difficulty' ' in
dealing with axial-vector currents for four-dimen-
sional field theories in the Gell-Mann-Low limit, 4

it becomes worthwhile to check what happens in
soluble or almost soluble models. Inevitably,
theories of this type are two-dimensional in space-
time; their simplicity can be directly attributed to
properties peculiar to two-dimensional geometry.
An important feature of these models is that, once
an ordinary current J„has been found, there is a
well-defined gauge-invariant axial-vector current
J5p given by'

(1.1)

In contrast with the situation" for four-dimen-
sional quantum electrodynamics, the scaling prop-
erties of J„and J,„are necessarily identical.

This payer contains an exactly soluble quantum
field-theoretic model for the renormalization
group, and analyzes the behavior of the anomaly
associated with the corresponding current J5p.
Our example is based on quantum electrodynamics
(QED) for massless fermions in two dimensions,
for which explicit solutions were first given by
Schwinger. ' In Schwinger's model, a vector po-
tential A.„couples to the conserved current of a
fermion field g according to the interaction

bare coupling constant e, is held fixed at a finite
value, so that Eq. (1.3) implies the existence of a
massive vector particle with mass squared given
by

p,
' =e,'/w . (1.4)

No coupling-constant renormalization is required.
The short-distance proyerties of operator prod-
ucts are also trivial —they are those of a free-
field theory.

However, Wilson' has proposed a renormaliza-
tion scheme in which a superrenormalizable field
theory is converted into a nontrivial renormaliz-
able one by letting the bare coupling constant tend
to infinity. Wilson has shown that the theory is ex-
actly scale-invariant in this limit, and that it is
possible to define a dimensionless renormalized
coupling constant which satisfies a nontrivial Gell-
Mann-Low eigenvalue condition. We shall apply
Wilson's scheme to the Schwinger model. This re-
sults in renormalization-group equations which
resemble those of four-dimensional quantum elec-
trodynamics.

Section II contains an account of the renormaliza-
tion-group program and the Gell-Mann-Low eigen-
value condition for two-dimensional electrody-
namics. In Sec. III, the anomaly"" of the corre-
sponding axial-vector current is found to be inde-
pendent of the coupling constant for all values of
e, except at the eigenvalue (e,' =~) where it van-
ishes. In Sec. IV we observe that p and the com-
posite operator g( possess anomalous dimensions
at the eigenvalue, while the electromagnetic cur-
rent retains its canonical dimension 1. Also, we
test the assumption that the introduction of a scale-
invariance-breaking mass term does not contribute
significant corrections to the short-distance be-
havior of the theory. In other words, the e,'-
limit of the model can be regarded as the skeleton
theory of a system of interacting massive parti-
cles. In particular, the analysis indicates that the
correction to (0~ J„J,„~O) is too soft to produce an
anomaly. In Sec. P there is a brief comparison of
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our model with four-dimensional quantum electro-
dynamics .

II. RENORMALIZATION GROUP AND
EIGENVALUE CONDITION

y(e 2) x.

=-e~'(1 -e„'/m) .
The nontrivial zero of 4 (e~') at

(2.11)

Simple modifications of the original discussion
of Gell-Mann and Low4 lead to equations for the
renormalization group in two dimensions. We in-
troduce a function d(q', e,') which is invariant un-
der renormalization:

e,'D~„„=g„,d (q', e,~) + gauge terms. (2.1)

Notice that the four-dimensional version of this
definition contains an extra factor 1/q'. The dif-
ference arises because we want d to be dimension-
less. From Eq. (1.3), we obtain

(2.12)

is the eigenvalue for the renormalized coupling
constant. Referring back to Eq. (2.5), we see that
(2.12) corresponds to the limit e,'- ~, as pre-
dicted by Wilson. ' The scale invariance of the the-
ory at the eigenvalue can be verified by consulting
Schwinger's solutions for n-point functions. A few
exa,mples will be given in Sec. IV.

III. AXIAL-VECTOR CURRENT ANOMALY

2

d(q', e()') =-, (2 2) In two dimensions, the low-energy definition of
the axial-vector current anomaly S can be written

e ~' = d (A, ', e,') . (2.3)

The renormalized and unrenormalized coupling
constants are related by

We also introduce a spacelike reference momen-
tum X, and a corresponding dimensionless renor-
malized coupling constant

S=—', i Jr
d'xe "x~T(0~8"J,„(x)J (0)(0) . (3.1)

Shei" has checked the short-distance methods of
Wilson" and Crewther" for this case. The result
is that S is also given by R, the c-number part of
the short-distance expansion

e'
2 0

-X'+e,'/v ' (2.4) T(J,„(x)J„(0))-~ e„~(5,&'-& s„)

~02 2

1 -e~'/w (2.5)

so that the functiond can be expressed in terms
of e),' as follows:

d(q', A.', e~') =d(q'/X', e ')

xln(-x2+ig) + ~ ~ (3.2)

S=R =-m (3.3)

Shei verified his result by explicit calculation,
and observed that, in the Schwinger model, radia-
tive corrections do not modify the lowest-order
value for S:

=d(q', e ') (2.6)

which, when combined with Eq. (2.6), yields the
functional equation

d (q'/X, ', e), ) = d(q'/X~2, d (A.,'/A, ') ez ')). (2.9)

The integrated version of (2.9) is the familiar ex-
pression

ln (q'/A. ') =
if (q2/X, 2,e y2)

%(x) ' (2.10)

where 4 (x), the Gell-Mann-Low function for our
two-dimensional theory, is given by

e ~' = d (X', X', e ') .

e) 2

d (q /() e)( )
(1 g/ ) g/ 2 2/ (2 V)

Since d (q'/I, ', e ~') does not depend on the reference
point A,, we have the formula

(2.8)

According to the point of view presented in Sec.
II, there is an additional possibility, e~ =m,
which remains to be investigated. The value of S
at this point can be dedu ed from the exact ex-
pression

T(0~j„(x)J'„(0)~0)= —(g„„& —s„s„)a (e '/w, x)

(x ~0), (3.4)

where a~ (p.', x) is the propagator function in two
dimensions:

& (~', ~) = (&~) 'f d'( ~"'*(p*-~'+(~) '. (3 (')

For finite values of e0, the leading singularity of
n.~(e,'/w, x) at short distance is

(e '/n x)-—ln(-x'+is)+ ~ ~ ~

4~

(x-0, e,'&~) . (3.6)
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lim e,'A~(e, '/m, x) =-m5(x),
~OO0

(3.7)

which vanishes for x 0. This means that the
Green's function

T(olj' „(x)j„(0)lo)=0

(xylo)

(3.8)

vanishes away from the origin, and therefore, the
anomalous constant S vanishes at the eigenvalue:

According to Eq. (1.1), we obtain T(olJ2~(x) J„(0)lo)
by multiplying (3.4) by e ~~, and so Eq. (3.6) leads
directly to the standard result (3.3). However, at
the eigenvalue e~'=71. where eo tends to infinity,
Eq. (3.6) is no longer valid; instead, we obtain the
expression

discontinuity can occur in four dimensions. There,
one deals with a renormalizable theory which,
when summed, yields a finite coupling-constant
renormalization factor g, if there is an eigenvalue.
Qur two-dimensional model also exhibits a change
in renormalizability. The difference is that our
model is superrenormalizable in finite orders of
perturbation theory; as a result, the short-distance
behavior of the theory is e,'-independent for finite
values of e,'. The short-distance behavior changes
at the eigenvalue because the theory suddenly be-
comes renormalizable.

IV. ANOMALOUS DIMENSIONS AND
SCALE-INVARIANCE BREAKING

8(e ' =w) =0. (3.9)

L~(e,'/m, p') = (p' —e,'/m) '. (3.10)

The mechanism which causes this discontinuity
in S is best appreciated in momentum space. The
value of S is regulated by the high-momentum be-
havior of the propagator

Let us now give simple examples to show that
the theory is scale-invariant and exhibits anoma-
lous dimensions at the eigenvalue. The two- and
four-point Green's functions of the fermion field
g will be discussed. Consider the Lorentz gauge,
for which the photon propagator is

Let us rewrite Eq. (3.10) in terms of the renor-
malized coupling constant e ~':

&,',„(e)= -(g„.-e„v./e')(e' -e.2/~) '.
We introduce the symbols

(4.1)

2 .p2)
(1 -e '/m)p'+Z'e '/w (3.11) H(x)=a (O, x)-s (e,'/m, x) (4.2)

Clearly, the p'- ~ behavior of b, ~ depends on
whether the eigenvalue condition is satisfied or not:

and

G'(x) = —(2ii) 'y x/(x2-ie), (4.3)

E~(e~2;p')-1/p' (e~'xx),

(7i;p') =0. (3.12)

This trivial mechanism permits nonrenormaliza-
tion of S together with its vanishing at the eigen-
value.

It remains an open question whether an analogous

where G is the Green's function for a free mass-
less fermion. In this notation, Schwinger's explic-
it solutions ' for the two- and four-point amplitudes
are

G(x, y) = -iT(olq(x)q(y)lO)

= G2(x -y) e x[p-i 2(Hx -y)], '

G(x, x', y, y') =-T&olq( )y(x')y(y)y(y)lo)

=G'(x —x')G'(y -y') exp{in[-H(x —x')+II(x -y) -H(x'-y)+H(x'-y') -H(y -y')-H(x-y')]
-im(1 —n*n')[H(x -y) -H(x'-y) -H(x-y') +H(x' y')g -fx-y}.—

(4.5)

The superscripts x, y on the symmetric matrix becomes singular:

H(x-y) = D~(x-y) =—1 [-n(x-y) i'+]

(4.7)
indicate that o" is to be multiplied with Go(x -x'),
and n' with G'(y -y'). The Green's functions
(4.4), (4.5) have been arbitrarily normalized by
scaling out some infinite constants.

When e,' is finite, the function H(x-y) is not
singular as x tends to y, and so the short-distance
behavior of the complete Green's functions is that
of a free-field theory. At the eigenvalue, H(x -y)

As a result, the corresponding Green's functions
scale with anomalous dimensions. For example,
we obtain

G (x -y) =G"(x -y) exp(-,' in[-g -y)2+is]]
= [-(x -y)'+is]'"G'(x -y) (4.8)

for the two-point function. This means that the
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fermion field g scales with dimension

dg =g (4.9)

instead of the canonical value &. However, it
should be remembered that d& is gauge-dependent,
and therefore, it possesses no physical signifi-
cance. Equation (4.9) is valid for the Lorentz
gauge.

Similarly, G (x, x', y, y') can be evaluated at the
eigenvalue by combining Eqs. (4.5) and (4.7). The
result is consistent with the scaling property (4.9).
Now consider composite operators obtained by
letting x and y

' approach a common point z:

dimension

d~ =I. (4.17)

To conclude this section, we consider the pos-
sibility that the introduction of a scale-invariance-
br caking perturbation

(4.18)

generates a new massive theory with the same
short-distance behavior as in our model. Wil-
son"' ~ has given a general analysis of this situa-
tion: Given operators A. , B,o„with dimensions d„,
dz, d„, the coefficient functions C„(x,«) in

As usual, we include an extra factor '"
(4.10) A(x)B(0)- Q C„(x,«)0„(0)

possess ~ expansions of the form

(4.19)

K(x -y') =exp +ie, dg"A„(t) (4.11)

and average over orientations of the vector (x-y')
in order to ensure that the results are gauge-in-
variant. The mass operator u is given by the q-
number contribution to the short-distance expan-
sion

Trg (x)g (y')K] - (OITr1$ (x)tt'(y ')K]'
1 0&

+c[(x—y')'] '"u(z) + ~ ~ ~,

(4.12)
where c is a constant. The corresponding vertex
function is

T(0lg(x)u (z)g(y)l0)

G'(x, z)G'(z, y)[(x -z)'(y -z)']"'
[ (x y)2]1/4

if an appropriate normalization convention for u is
adopted. A matrix multiplication is understood
for the product G'(x, z)G'(z, y). It is immediately
obvious from Eq. (4.18) that u (z) has a dimension

d„=0, (4.14)

which differs from the canonical value l.
We can also consider Tr($(y„K], and hence de-

rive the vertex function of the electromagnetic
current:

r(0 ltd/(x)y (y) z„(z)l0)

=&(g„,+&„.V )S'[D~(z -x) -D1 (z -y)]G(x-y).

(4.15)

This expression satisfies the usual Ward identity

„„T«ls(x)s(y)~„(z)Io)

=-&[&(x-z) —&(y -z)]G(x -y) . (4.16)

From Eq. (4.15) we conclude that J„has canonical

V. COMPARISON WITH FOUR-DIMENSIONAL QED

We conclude with some additional remarks about
differences between the two- and four-dimensional
theories.

Let us return to the GeQ-Mann-Low equation
(2.10):

Q (Z2p$ 2~ +~2)

Although this formula holds for both two- and four-
dimensional QED, the presence of a zero in 4 (x)
leads to different conclusions. Consider the region
q'/X'« I for the two-dimensional case:

In(q'/~') - -~ (q'/&'«1) . (5 1)

From thb explicit formula (2.7), it is easy to see
that the Gell-Mann-Low integral tends to -~ in
this limit because of the zero of 4(x) at x =w:

@(w) =0,

d (q'/A. ', e~')- (wq'/A. '«1) .
(5.2)

In other words, the nontrivial eigenvalue controls
the lorn)-momentum behavior of the photon propa-

C„(x, )«- 'x~ '& 's c, +pc, (x)( «x' 'N)', (4.20)
0=1

where d is the dimension of space-time, and the
dependence of the c~ on x is not stronger than loga-
rithmic. In our model, d„=0 is less than d = 2;
therefore, the ~-dependent terms are softer at
short distances, which is consistent with the pre-
sumed existence of a massive theory. For exam-
ple, the leading correction to (OlJ„(x)g„(0)l0) is of
order «(g„„s'—s„s„)x', which is too soft at short
distances to produce an anomaly. We conclude
that the anomaly continues to vanish in the massive
theory.
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gator, "in complete contrast with the situation for
the four-dimensional theory discussed by Qell-
Mann and Low. 4

In our model, the eigenvalue x =m is a simple
zero of 0 (x). This is related to the vanishing of
radiative corrections to the basic one-loop contri-
bution to the proper part of (O~g (x)g~(0)~0) in
Schwinger's model. " Our analysis has no bearing
on the possible presence of infinite-order zeros in
Adler's version" of QED or in similar theories,
despite the fact that Adler's argument is based on
equations

&o )z„(x,) ~ ~ q„(x„)~ o),.„„=o

(fermion mass =0), (5.3)

which are also valid at the eigenvalue of our mod-
el." In contrast with Adler's theory, the one-

fermion loop contribution -e,'/mq' to the proper
self-energy of the photon diverges at the eigen-
value.

Our main interest in this model is that it is the
first example of an exactly soluble theory of the
renormalization group in which the anomaly of the
axial-vector current can be studied. " We have not
tried to draw strong analogies with the four-dimen-
sional case, because the absence of difficulties in
our model is probably connected with properties
peculiar to two-dimensional space-time.
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