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The classical electromagnetic interaction for a charged particle with a long, constant-current solenoid is
investigated in the context of classical electromagnetism. The conservation laws connected with energy,
linear momentum, and angular momentum are first verified. Then the changes in the electromagnetic
field quantities are evaluated explicitly, and the values are seen to have interesting connections with the
solenoid vector potential. The calculations are of interest in connection with the Aharonov-Bohm effect
involving the passage of electrons past a solenoid, and the classical expressions for energy and
momentum are reminiscent of terms in the quantum-mechanical calculations.

I. INTRODUCTION

It is a well-known result of classical electro-
magnetism that the magnetic induction field B
outside a uniform solenoid may be made negligi-
ble by making a solenoid sufficiently long. How-
ever, working from the point of view of quantum
mechanics, Ehrenberg and Siday, ' and Aharonov
and Bohm' predict an effect upon electrons pass-
ing outside a long solenoid in a region presum-
ably free of classical electromagnetic fields; and
this Aharanov-Bohm effect has been verified in
experiments by Chambers' and by Mollenstedt
and Bayh. 4 It is this contrast between the classi-
cal and quantum electromagentic points of view
which prompted the present detailed analysis of
the classical electromagnetic interaction between
a solenoid and a passing charged particle.

Precise calculations in classical electromag-
netism can be obtained only in very special cir-
cumstances which usually do not represent any
actual physical arrangement in detail, but only
in approximation. The present paper reflects
this situation by performing exact calculations
for a charged particle moving with constant veloc-
ity past an infinitely long solenoid carrying con-
stant surface currents. This cannot represent
the precise conditions of the experiment of
Mollenstedt and Bayh, and it may or may not be
a valid approximation to these experimental con-
ditions. However, the classical analysis here
seems of interest in any case because it corre-
sponds to the conditions usually assumed in the
quantum theoretical calculations following
Aharonov and Bohm. In this paper we will treat a
whole range of questions which are often raised in
connection with the Aharonov-Bohm effect when
considered in terms of the classical electromag-
netic interaction of a charged particle with a con-
stant-current solenoid.

The analysis begins with preliminaries regard-
ing the field and flux of a solenoid and treats with
care the question involved in the limits of physical
quantities as the length of the solenoid becomes
infinite. The paper then turns to the detailed
verification of the general conservation theorems
in electromagnetism when applied to the case of
a charged particle passing a long solenoid with
constant currents. The currents are maintained
constant by external forces on the individual par-
ticles of the solenoid. The analysis is similar to
the explicit verification of these same theorems,
carried out despite singularities, for charged
particles moving with constant velocities. ' This
mundane checking may seem superfluous to the
reader until he finds that some of the published
secondary literature' on the Aharonov-Bohm ef-
fect casts into question the conservation laws in
classical electromagnetism. The explicit ex-
pressions obtained for the energy and momentum
contained in the electromagnetic field bear strik-
ing resemblances to terms in the quantum analysis
of the Aharonov-Bohm effect. The vector poten-
tial appears, however, not in a gauge-independent
role, but rather restricted to the Coulomb gauge.
The troublesome question of a connection with the
quantum calculation will be treated in a subsequent
publication.

II. PRELIMINARIES

A. The Fields of a Solenoid

We are interested in the electromagnetic inter-
actions involving a long solenoid, and accordingly
as a first step we will review the expressions for
the fields and flux of a finite solenoid, noting the
limits of these quantities as the solenoid length
becomes infinite.

We think of a solenoid as a parallelopiped with
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uniform surface currents circulating perpendicu-
lar to its axis. The right-circular solenoid used
in our calculations is indicated in Fig. 1 for a
solenoid of length L, radius A, carrying a sur-
face current i per unit length. The solenoid
produces magnetic induction fields 8 which may
be obtained by integrating the Biot-Savart law
over the surface currents. Thus the field at the
center of the solenoid is

top t+

i dZ(k xn) xrB0=— 3
C

47/i
~

9c

where r=xi +yj +ok is the radius vector from a
current element to the center and 8 is the out-
ward pointing normal associated with the surface
element dZ. Here k &n=o is in the direction of
the surface current, and the integral is over the
surface g of the solenoid. The approximate ex-
pression for B, holds when the radius R of the
solenoid is much smaller than the length L. In
the actual calculation, ' it is convenient to break
the surface up into cylindrical rings of differen-
tial height. The same field B, will hold' across
the median cross section of the solenoid in the
same approximation that R «L.

The fields outside the solenoid may again be
obtained from the Biot-Savart law, or alterna-
tively' be regarding the solenoid as composed of
two circular ends of magnetic charge of opposite
sign at the top f, and bottom b of the solenoid i.n

Fig. 1. For a point in the equitorial plane of the
solenoid and outside it a distance d from the cen-
ter, the magnetic field B, of the solenoid follows
an electrostatic calculation as

dxdg rc, [(x-d)'+y'+z']'"

FIG. 1. A right-circular solenoid of length L, radius
A, and surface current i per unit length.

4mik
0

The fields outside the solenoid correspond to those
of two discs of finite amounts of magnetic charge
+i Q/c which recede to spatial infinity. Hence the
B field outside an infinitely long solenoid vanishes.

B. Flux Calculations

Although the field at any point outside an in-
finitely long solenoid vanishes, it is not clear and
indeed not true that all integrals of the fields out-
side the solenoid also vanish. A specific example
of the need for care regarding the limits involved
for an infinite solenoid is provided by consider-
ations of the magnetic flux passing through the
equatorial plane of the solenoid.

The lines of magnetic induction B may be re-
garded as continuous because of the apparent ab-
sence of magnetic monopoles,

8 d cr=0,

dxdp r
[ (x d)2 +y2 ~ 2] 8/2 &I

where again r =xi +yj +zk is the radius vector
from the source point to the field point. For
R «d and R «L, this reduces to

-iQL
s

&[ d 2 + (L/2)2] 3/2

(2) where the integration is over any closed surface.
Consider a circular disc in the equatorial plane
of a finite solenoid, and complete a closed sur-
face with a hemispherical cap as in Fig. 2(a). The
flux through this closed surface vanishes. For
a large radius ~ for the hemisphere, the solenoid
appears as a dipole of moment M=i 8,L/c. Thus
the contribution to the magnetic flux over the
hemispherical portion goes as

where 9 =mR' is the cross-sectional area of the
solenoid. The equal contributions from the two
terms add to cancel the 2 in the denominator
z =+I./2.

In the limit that the length of the solenoid be-
comes infinite, the magnetic field inside the sole-
noid becomes the constant value

iQL 2 14 2m"' &x — 0 as x-~.
hemisphere (6)

Thus we conclude that the flux through the equa-
torial plane of the solenoid is also zero. The
lines of B run upwards through the plane inside
the solenoid, and then downwards through the
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—2wiQL —4@i
[g2 (L/2)2] 1/2 0 (8)

while the flux inside is =+B,Q,. Indeed the flux
outside is opposite in sign to that inside the sole-
noid. Thus we have verified that although the
magnetic field B outside a long solenoid vanishes
as L-~, the flux through the median plane out-
side the solenoid becomes a nonvanishing con-
stant.

The order of taking the limits is crucial for
understanding the behavior of a long solenoid.
Above we took the limit of a large hemispherical
cap r-~ before the limit of a long solenoid L-~.
If we had reversed the order of the limits, then
our diagram becomes that of Fig. 2(b). Now there
is a nonvanishing contribution to the flux from
the hemispherical surface. The flux through the
equatorial plane outside the solenoid vanishes for
this case, and the contribution from inside the
solenoid is balanced by the contribution of oppo-
site sign from the hemispherical cap.

plane outside the solenoid.
The calculation may be performed explicitly.

Choosing an upwards pointing normal for the plane,
the flux inside is =—BDQ and that outside is

r
-ieL

c[y2 + (L/2)~] ~~2

7
—2giQL

=c[~"(L/2) ] ~

The expressions for. the fields are accurate only
for a long solenoid L»R, in which case the flux
outside becomes

C. Lorentz Force on a Passing Particle

The question which this paper has in mind is
just what does happen to a charged particle which
passes a long solenoid. Having seen that the flux
outside an infinitely long solenoid is nonvanishing
although the fields vanish, one must enquire as to
whether a passing charged particle is not de-
Qected by the magnetic field of a long solenoid
with constant currents. This question arises be-
cause here again a double limit occurs, the limit
that the particle starting point is at spatial infinity,
and the limit that the solenoid has infinite length.

If the limit that the solenoid is infinite is taken
first and the solenoid currents are held constant,
then clearly the magnetic field outside the sole-
noid vanishes, and a passing particle is unde-
flected by any Lorentz force. The other limit in-
volves a particle starting from spatial infinity and
passing a solenoid of finite length L. We are as-
suming that the solenoid currents are constant
and that the external particle passes with con-
stant velocity in the equatorial plane of the sole-
noid. The impulse due to the magnetic field of
the solenoid acting on the passing particle of
charge e is

oo 00 oo

V8= Fdt = e—xBdg =— drxB.
c C ~~8O

OO ~ oo

Taking B in (3), valid for the approximation that
R«L, R «d, and using the coordinate system of
Fig. 3, this becomes an elementary integral

(- ieL)
c ~ c[(x-d)'+y'+ (L/2)']'"

—2eiQI
c'[d'+ (I./2)']

(10)

But then for large L,

—8eiQ ~-P as L- ~.
2L

FIG. 2. Solenoid and closed surfaces for flux calcula-
tions.

FIG. 3. Coordinate system for a particle passing in
the median plane of the solenoid.
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Thus for a long solenoid, this impulse is negligi-
ble.

The deflection angle 8 of the passing particle
from the forward direction may be approximated
as

(12)

where Ep is the transverse momentum acquired
due to the impulse 8. Here we find the impulse
and hence the deflection angle is finite for passage
of the particle past a finite solenoid, but the
deflection decreases to zero as the solenoid
length becomes infinite. This effect will be omit-
ted from our further investigations.

III. ENERGY, LINEAR MOMENTUM, AND ANGULAR
MOMENTUM FOR A POINT PARTICLE AND
A SOLENOID WITH CONSTANT CURRENTS

A. Conservation Theorems: General Theorems
vs Specific Examples

Classical electromagnetism is a mixture of
Newtonian mechanics and classical field theory.
The point charges in the theory experience forces
due to the electromagnetic fields and move ac-
cording to Newton's second law. The electromag-
netic fields carry linear momentum yet are not
viewed in terms of Newtonian forces, but rather
are calculated in terms of their sources at the
charged particles. Virtually every advanced text
book" on classical electromagnetism gives a gen-
eral proof that the energy, linear momentum, and
angular momentum of a system are all correctly
supplied by the external forces on the particles of
the system provided the system energy and mo-
mentum includes contributions from both the par-
ticles and the electromagnetic fields. However,
it is in general difficult to give exact calculations
for the energy and momentum of the fields, and
hence illustrations of the general theorem are
rare in the literature. Perhaps it is this lack of
examples which has led some researchers con-
sidering the Aharonov-Bohm effect to suggest
rather surprising mechanisms for conservation, "
or to conclude erroneously that the general theo-
rems are not valid after all. '

The general conservation theorems have been
illustrated exactly recently with some striking
examples involving charged particles moving with
constant velocities. ' The external forces needed
to balance the interparticle Lorentz forces are
found to account exactly for the changes in the
energy and momentum of the fields. In the pres-
ent paper, we present an analogous series of cal-

FIG. 4. Classical electron theory model for a solenoid.
Charges of one sign move in circles about the surface of
the solenoid. Charges of the opposite sign and of equal
surface density hold fixed surface positions giving
vanishing surface charge density for the solenoid.

culations for the case of a charged particle moving
with constant velocity passing a solenoid having
constant currents. %e will verify the conserva-
tion laws for the specific electromagnetic system,
and also calculate explicitly the changes in the
system energy, linear momentum, and angular
momentum.

B. Model for a Solenoid in Classical Electron Theory

A solenoid involves currents leading to mag-
netic fields. However, in the mathematical cal-
culations, there is no mention of a physical mech=
anism for the currents. The model of classical
electron theory describes the currents as due to
point charges which move around the surface of
the solenoid as in Fig. 4. The electrostatic charge
of these moving particles is balanced by a set of
stationary charges of equal density and opposite
charge also on the surface of the solenoid.

This classical electron theory model accounts
for the currents and neutrality of the solenoid. It
is a crucial observation that the point charges
moving in a circle do not radiate, " and hence
once started, the currents will continue to flow
at a constant rate for all time. This absence of
radiation for a continuous progression of charges,
whereas a single point charge moving in a circle
does indeed radiate energy, is due to the coherent
interference of the fields of the many point
charges.

C. Energy in the Electromagnetic Fields

The energy 5 in the electromagnetic fields ac-
cording to classical theory is

h =—d'r(E'+P}.
8m-
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If several different sources contribute to the
fields, then the total fields are E, +E, +E3+ ~ ~ ~

and B,+B,+B,+ ~ ~ ~, where E,. and B, are the
contributions from the i th system. The expres-
sions E and B become

2 2 2E =E +E + +2E E+1 2 1

B2=B, +B + +2B B +2 1 2

The contributions E,.' and B,.' also hold when the
ith system is isolated from other systems, and
hence, if the sources in the i th system are held
constant, these energies act as system self-en-
ergies. The interaction energies for constant
sources appear in the terms 2E, E, + ~ ~ ~ and
2B oB + ~ ~ ~

D. Energy in the Particle-Solenoid System

In the present case, we consider a solenoid with
constant currents interacting with a passing
charged particle moving with constant velocity.
Since the particles of the solenoid move with con-
stant speed and the external particle moves with
constant velocity, there is no change in the me-
chanical kinetic energy of the system. Thus all
changes in system energy occur in the energy of
the electromagnetic fields. Moreover, since the
sources are constant, all energy changes appear
in the form

b. g =— (2E ~ E' +2B B')d'r
8w s s

V

where the subscript s refers to the solenoid, the
prime refers to the passing particle and the inte-
gration volume V is all space. The electric field
E, of the solenoid vanishes everywhere and hence
the expression reduces to

1 "", 3~$=— B, B'd'r.
4w

We remark that the field B' of the passing par-
ticle depends specifically on the velocity v

B' =- xE'
C

and vanishes when the particle is not moving. If
the velocity of the external particle is zero, then
there is no electromagnetic energy of interaction
with a solenoid of constant currents.

E. The Interaction Energy Outside
an Infinite Solenoid Vanishes

For the ease of calculating the interaction en-
ergy, we wish to go to the limit of a solenoid of
infinite length. However, it is conceivable that

even though the magnetic fields outside a long
solenoid vanish in the limit of an infinite length,
the interaction energy between a solenoid and a
passing charged particle might not vanish. We
will verify that indeed this interaction energy out-
side a long solenoid vanishes.

We first remark that the interaction energy be-
tween a finite solenoid and a charged particle is
finite. The fields are finite except at the position
of the passing particle which makes a contribu-
tion to the interaction energy of the form

1Lg- const —,4nr'dr&~.r'
At large distances, the fields of the solenoid are
those of a dipole so that the energy at spatial in-
finity is

1 1hg- const ——4mr 2dr & ~.r 3 r 2

The fields outside the solenoid may be obtained
from two discs of magnetic charge +i+/c at the
top and bottom of the solenoid. Thus for a very
long solenoid, the dependence of the magnetic
interaction energy outside the solenoid has the
spatial dependence of the interaction energy of
three widely separated electric point charges.
This energy vanishes as the solenoid length be-
comes infinite. Thus for a point charge and a
long solenoid, we may ignore the interaction en-
ergy outside the solenoid.

F. Verification of Energy Conservation for the System

When a charged particle moving with constant
velocity passes outside a long solenoid, the elec-
tric and magnetic fields of the passing particle
exert forces on the particles of the solenoid.
Since the solenoid currents are assumed constant,
there must be external forces on the particles of
the solenoid which keep them moving with uniform
speed in circles. These external forces do work
which will appear as energy in the electromagnetic
fields of the system.

It is only the components of the external forces
on the solenoid particles in the direction of motion
which do work on the particles. The forces of
constraint which maintain the motion in a circle
are perpendicular to the direction of motion and
so do no work. In particular, no work is done by
the external forces required to balance the forces
q,. (v, /c) &8'. due to the external particle magnetic
field B. Here q,. and v,. are the charge and instan-
taneous velocity of the ith solenoid particle. Thus
the only external forces doing work are those
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balancing the tangential components of forces on
the solenoid particles due to the electric field E'
of the passing particle,

work done on

system per unit time = Q F,. ~ v. —~& =nRde dz

=g (- q,. E
'
) v,.

where

j.E'd r,
s+,

j ( r) = P q,. v. 5'( r —r,. ) (18)

represents the currents of the solenoid and r,.
gives the position of the ith solenoid particle. No-
tice that it is only the circulating particles and
not the stationary particles of the solenoid which
are involved in the work calculation.

Although the passing particle exerts forces on
the solenoid, it is not true that the solenoid exerts
a force on the passing particle. We have assumed
that the currents in the solenoid are constant and
that the solenoid is infinitely long, and hence it
follows that there is no magnetic field B outside
the solenoid. " We may say that the passing par-
ticle causes confusion behind the scenes but the
external forces counteract the confusion so that
the passing particle is uninfluenced.

Despite this lack of symmetry in the forces, all
the conservation laws hold. Here we will show
that the change in energy of the system is given by
work in (1'7) done by the external forces. The
change in system energy is entirely due to that of
the electromagnetic fields. This change in energy
A8 is just the interaction energy of Sec. III D.

2B B'd'x
S

FIG. 5. Surface and volume elements of the solenoid
used in the conservation theorems. V, is the interior
volume of the solenoid, R the solenoid radius. The curve
c surrounds the cross-sectional area s, and curve C
surrounds the area S. The surface of the solenoid is
labelled S. The surface elements indicated are do.
=k dxdy, and d Z = nR dods. The line element dr is in the
same direction as the surface current i.

d B' do
dt

is the rate of change of flux through the open sur-
face s bounded by the walls of the solenoid as in
Fig. 5. By Maxwell's equations,

B 'do = —c E 'dldt,
where c is the circle enclosing the open surface s.
We also know that B,=4vi/c where i is the sur-
face current per unit length. Thus combining (20),
(21), and (4),

f
B B' dxdydz

4m v,

0

dt 4m

&0
dz B ' do'q

4m
dz i E'dr

ding

BD d
dz — B'do .dt 4n „dt ~,

However,

(20)

where B,=B,$ is the magnetic field inside the
solenoid and do =dxdyk. The first integral is over
the volume V of all space, the second is over the
volume V, inside the solenoid, and the third in-
volves the circular cross-sectional area s in Fig.
5. The time rate of change of the energy is

where

j E'd r,
v

(22)

j =is(r-a)g
is the volume current density of the solenoid as
in (18). The final expression in (22) is in agree-
ment with the power calculation in (17).

The one further step required in this work is
the check that all the integrals are indeed finite
so that the manipulations make sense. This is
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easily verified. The interaction energy in (19) is
bounded above for large z by

1
const —dz & ~ .z2

This completes the explicity demonstration that
the rate of change of system energy is indeed giv-
en by the power expended by external forces act-
ing on the particles of the solenoid.

G. Calculation of the Energy Changes

The verification of energy conservation above
was performed without ever actually evaluating
the integrals for the changes of energy. It is of
interest to carry out this evaluation and to notice
that the energy change can be related approxi-
mately to a particular choice for the vector poten-
tial for the solenoid.

The fields E' and B' for a particle moving with
constant velocity v = vj may be written" as

ye(xi+yg+ek)
[x2 +( y)2+&2]3i2 s

(23)
xE

c

with

r=(l —n /c )

noid currents.
The result for AS in (26) is exact. However, if

we go to the nonrelativistic approximation for Q,
then the integral may be easily evaluated in closed
form. In the nonrelativistic approximation P«1,
the electrostatic potential is

(27)

and the integral

1 -. p, 1 jj —df'=—,d t'
c e c r —r' (28)

AS =—e—A(r').
c (29)

Although it is perfectly feasible to carry out
the integrals in (26) or in (28) by direct evalua-
tion, once the integral is recognized as the vector
potential A of the solenoid, we may take advan-
tage of the properties of A. The integral in (28)
has the cylindrical symmetry of the solenoid.
Thus integrating in a circular path C around the
solenoid as in Fig. 5,

may be recognized as just the magnetic vector
potential A(r') (in the Coulomb gauge, "V A=0),
back at the position of the passing particle. We
remark that there is no room for any gauge trans-
formation on A when we relate the energy to the
vector potential

E' = —VQ+P tI VQ,

B' = —jf xVQ,

where

(24) A d r =A2mx

VXA 'do
S

(25)

P= v/c and r' is the particle position. Inserting
the expression (24) into the particle-solenoid in-
teraction energy (19), and using the same manip-
ulations as in the Sec. IIIF,

Ag =— Bo (- pxVQ)d'~
4m

dz && V do
S

Bo'd

= Bp8,

where S is the surface enclosed by C, and s is
again the solenoid cross-sectional area. Then
since V A=O

+p8A= 0
2lTy'

or in the Cartesian coordinates of Fig. 3,

{xj
2w (x'+ y')

(3o)

(31)

(32)

detI Vyxdg
c S

Thus the interaction energy of the particle-sole-
noid system is

dz$ I ddrc C
evBpQ, x

2wc(x'+ y') (33)

(26)
V jld 'r
C

where again j stands for the density of the sole-

when the passing particle is outside the solenoid.
When the particle passes through the solenoid,
then the integration in (30) gives
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and

Bpl A

0
2

(34)
& 0, PASSAGE ON

RIGHT

Ag -= evBox
2c

v
~t'

X =-d& O, PASSAGE ON

Figure 6(a) graphs the interaction energy (29) of
the particle-solenoid system as a function of the
particle's position along its trajectory. The case
treated is that of a positive charge passing out-
side the solenoid on the right-hand side as in Fig.
3. Figure 6(b) indicates the interaction energy at
the point y =0 of closest approach of the particle
to the center of the solenoid.

LEFT SIDE

0

R

R I G HT SIDE

LEFT

H. Verification of Linear Momentum Conservation

Having verified the conservation of energy the-
orem for the particle-solenoid interactions, we
next turn to conservation of linear momentum. We
wish to show that the external forces on the par-
ticles of the solenoid correctly account for the
changes in the system linear momentum. Again
since the solenoid currents are constant and the
external particle moves with constant velocity,
any change of system momentum involves the
momentum of the electromagnetic fields.

The momentum in the electromagnetic fields is
given by

1(P-
4mc

Ex Bd'x, (36)

6= E, +E' x B, +B'd'y,
V

where the volume V is all space. The momentum
is separated into contributions independent of the
relative displacement of the solenoid and the par-
ticle, and those depending on the relative positions.
Thus

SOLE NOI D

I N TERI 0 R

FIG. 6. Particle-solenoid interaction energy (33)
following the coordinate system of Fig. 3.

are forces present upon the particles of the sole-
noid which confine the particles to the surface of
the solenoid. However, these forces sum to zero
around any circular curve c around the solenoid,
and hence do not lead to a change in system linear
momentum. The external forces which will lead
to a change in momentum are those which balance
the Lorentz forces on the solenoid particles due
to the fields of the passing particle. These ex-
ternal forces are required to maintain the con-
stancy of the mechanical momentum of the sole-
noid particles. The impulse delivered to the sys-
tem by the external forces satisfies

impulse on
solenoid per unit time =Q ~, ,„„,„~

vg=Q —q. —X Q'
ct

and the position-dependent part is
1

j x B'd3&,
c y

(40)

E, xB'+E'xB, d'y. (38)

1
~6 = E'xB, de

4nc

4wc
E x Bod (39)

Before the arrival of the passing particle, there

Since the electric field E, due to the solenoid van-
ishes and the solenoid magnetic field is confined
to its interior, this reduces to

where the symbols referring to the solenoid par-
ticles and current densities are just as in Sec.
III F. The reader may wonder about the contribu-
tions from the external forces balancing the forces
du to the electric fields of the passing particle.
These forces are independent of the velocity of
the solenoid particles and cancel between the
circulating solenoid. charges and the stationary
charges of opposite sign. The velocity-dependent
forces do not so cancel and so appear in Eq. (40).

The impulse due to the external forces should
lead to a change in the linear momentum of the
system. Thus we compute
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dE(P 1
dt 4mc

BE'—xBd y0
vs

ik
V &B'd'r

v,

v to give a change in momentum and an accom-
panying change in energy (for differential changes).
Actually the changes in energy and momentum re-
fer not to the passing particle but to the electro-
magnetic fields.

ik—x (ii x B')dg
C

B' x (k x A)d Z
C g

dg B' &&d r
C

1 --, 3j xB'd ~.
C

In the manipulations, we have used Maxwell's
equation

1 BE'VxB' =—
Bt

(41)

(42)

I. Calculation of the System Linear Momentum

The change in system momentum due to the in-
teraction of the particle and solenoid may be eval-
uated directly by integrating over the momentum
density (39) using the expression (23) for E'.
However, as in the case of the energy, it is con-
venient to consider a nonrelativistic approxima-
tion in which the system momentum can be re-
lated to the value of the magnetic vector potential
of the solenoid at the position of the passing par-
ticle.

Substituting (24) for the electric field E' of the
passing particle,

for a source-free region, and have indicated by
RdZ=Rdz R dg an element of the solenoid surface
with outward pointing normal 8 as in Fig. 5. In
the expression of the integrand

B'x(kxn) =k(B' n) —n(B'k),

we may omit the term k(B' n) because the con-
tributions to the integral at equal distances above
and below the median plane cancel each other.
The conversion from —5 x(AxB') to B' x(kxA)
then follows since

(43}

A(B' $) =kx(nxB'}.

6g=— 2B, B' d'g
8m

~ B d3

1 "." 3vo E'xB, de
4wc v

=v h6'. (45}

This expression looks appropriate for an external
force acting on the external particle with velocity

Comparing Eqs. (40) and (41), we indeed conclude
that the external forces on the particles of the
solenoid (which balance the Lorentz forces) exactly
supply the change of field momentum.

Inasmuch as we have seen that the changes in
system energy and momentum are provided by
external forces on the particles of the solenoid,
it is of interest to see that the energy-momentum
relations can be written in a somewhat misleading
form. Using the relation between E' and B' in
(23), the interaction energy can be rewritten

E' xBod'r
4wc v,

1
4wc

( —VQ+p p vg)xB,d'r

4 oo

dz (- V/+ P P VQ) xd o. (46)

In the nonrelativistic approximation, we may drop
the term PP VQ, and take Q(r, r') as in (27}. The
linear momentum becomes

pe Oo

dz'
c -,

f
r-r'[

e
2.c

= —A(r'),c

where A( r') is the vector potential (in the Cou-
lomb gauge) of the solenoid at the position of the
passing particle, given in Eq. (32) for r' outside
the solenoid. Figure 7 shows the x and y compo-
nents of the system linear momentum as a function
of the passing particle's position on its trajectory.

In the case that the particle passes through the
solenoid, the change in system linear momentum
is again as in (47) with the expression for A(r')
as in (34). However, when the particle is in the
solenoid interior, there is a Lorentz force on the
particle due to the magnetic field B„and a fur-
ther external force must act on the particle in
order to keep it moving with constant velocity.
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This further external force does no work, but it
contributes in the calculations for the rate of
change of system linear momentum. In particular,
Eq. (41) is no longer correct because the Maxwell
equation (42) no longer involves a source-free
region but rather has a contribution from the cur-
rent of the particle through the integration volume

V~. The conservation theorem can be completed
easily for this case by inserting the particle cur-
rent

4m . 4w—j =—eve'(r —r')
C C

in Eq. (42)

h, p„"
X = CI & 0, PASSAGE ON RIGHT

AND

X = —d & 0, PASSAGE ON LEFT

0, PASSAGE ON RI GHT

v
/

/
X =-d ~ 0, PASSAGE ON LEFT

J. System Angular Momentum

FIG. 7. The momentum (47) in the electromagnetic
fields of the particle-solenoid system.

r x (1 x B')d 'r
c

[ j(r ~ 8')-B'(r ~ l)]d'r .
C&

(48)

Now the term r B' is odd in z and hence j(r ~ B')
receives cancelling contributions from volumes
equal distances above and below the equitorial
plane of the solenoid. The term B'(r ~ ] ) vanishes
because the currents ] are always perpendicular
to the radius vector r from the center of the sole-
noid. Hence the net torque about the center of the
solenoid vanishes for the particle-solenoid system,
q.o= 0.

If conservation of angular momentum is to hold,
then it requires that there should be no changes

Having considered the system energy and linear
momentum, we turn to the angular momentum.
For the situation involving constant solenoid cur-
rents, the changes in angular momentum are par-
ticularly simple being related directly to the
changes in linear momentum.

As pointed out repeatedly, it is the external
forces on the solenoid particles which keep the
moving particles circulating with constant speed
and keep the stationary particles stationary de-
spite the forces exerted by the fields of the passing
particle. Before the arrival of the passing par-
ticle, the external forces exert no torques and
there is no change in the solenoid angular momen-
tum about its center. Further, the external forces
required to balance the forces due to the electric
field of the passing particle cancel between the
circulating and stationary solenoid particles which
have opposite charges, and hence do not give any
net torque on the system. The torques about the
center of the solenoid required to balance those
due to the forces from the magnetic field of the
passing particle are of the form

in the system angular momentum. Since the sole-
noid currents and the passing particle velocity
are constant, there is no change in the mechanical
angular momentum of the system, and all changes
must come from the electromagnetic fields.

In order to obtain the changes as contrasted
with the total field angular momentum, we sub-
tract off the system angular momentum at spatial
infinity and consider

gg, = — r x (E'x B,)d'r
4mc

r x (E' x B,)d 'r,
4mc ~~

S

(49)

-aE'„B,r„' sin8d8dp drk +aEsBorssin8d8 dQ drk,

(50)

where r and r are distances from the origin of
the polar coordinate system to the volume ele-
ments. The electric field of the passing particle
is radially outward from the instantaneous posi-
tion of the particle and has magnitude"

where the angular momentum is computed about
the center of the solenoid. From symmetry of the
system under reflection through the solenoid equa-
torial plane, it follows that only a z-component of
angular momentum is possible. In evaluating the
integral in (49), we choose spherical polar co-
ordinates with origin at the instantaneous posi-
tion of the passing particle. For each differential
solid angle as shown in Fig. 8, we wish to consider
two differential volume elements equal distances
from the midpoint of the part of the solid angle
cone lying inside the solenoid. The angular mo-
mentum contributions about the center of the sole-
noid cancel for these two volume elements. This
follows since the contributions are
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e 1-P'gf
r2 (1 Pmsine)3~2 (51)

where e is the angle between the radius vector
from the particle and the velocity of the charge.
Thus the factors of x ' and r ' from the field E'
cancel the r ~' and ra' from the volume elements,
leaving contributions of equal magnitude and op-
posite sign. Pairing all contributions to the inte-
gral in this fashion, we see that the total system
angular momentum about the center of the sole-
noid vanishes.

If some point other than the center of the sole-
noid is chosen for computations of the angular mo-
mentum, then the conservation theorem reduces
to the linear momentum theorem confirmed above
in Sec. IIIH. Thus

E

SIDE V I EW

c D

~
g

4~c E x Bo

TOP V IEW

D

(r -r) x (j x B')d 'r

r x (j x B')d 'r + ro x— j x B'd 'r
c dv C

7prQF (52)

FIG. 8. Coordinate system for evaluating electromag-
netic angular momentum about the center of the solenoid.

magnitude but never position. " From (47), the
nonrelativistic approximation for the angular mo-
mentum about Q is

zCz= Jt (r -r~) x(E'xB,)d'r
4mc

Ag-— r x—A(r'),c (5j)

r x(E'xB,)d'r
4mc ~~

1 f E~xB d4' ~

=«p-r x~, (53)

where ro is the fixed displacement vector from Q
to the center of the solenoid re= -r&, and X(r') is
the magnetic vector potential (in the Coulomb
gauge) of the solenoid at the position of the passing
particle.

where rz is the radius vector from the center of
the solenoid to the point Q. Above we showed that

IV. INTERACTION OF A SOLENOID WITH A BEAM OF
PARTICLES AND THE LIMIT OF A STEADY

CURRENT

dAgp
p dt

and from Sec. IIIH, we have that

dM

(54)

(55)

Thus

(56)

and the conservation theorem for angular momen-
tum is confirmed. The expression (52) for the
torque about Q corresponds to the force Feateenal

always acting at the center of the solenoid; the
expression (53) for the system angular momentum
about Q corresponds to a momentum which is al-
ways at the center of the solenoid, changing in

As an extension of the ideas presented above in-
volving a solenoid and a point charge, it is natural
to consider the classical electromagnetic inter-
actions of a solenoid with a beam of point particles
and, in the limiting case, with a line charge and
steady current.

The linearity of the equations of classical elec-
tromagnetism makes it easy to evaluate these
more complicated situations from the results al-
ready obtained for a point charge. The motion of
each charge in our system is maintained quite in-
dependently of the presence of any other charges,
and hence the fields due to the charges are in-
dependent. Since the changes of energy, linear
momentum, and angular momentum when passing
the solenoid all involve the product of the solenoid
magnetic field B with the fields of the point charge,
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these quantities may be evaluated simply as sums
over the single point-charge contribution hg~,
4(P&, Ag& from each charge,

his„=Q 46'q (58)

An understanding of the changes may be obtained
simply from Figs. 6 and 7. The graph for the sit-
uation of a beam of particles separated by dis-
tances 5„ is obtained by superimposing the graphs
for the contributions from the individual particles,
making a translation for the graph of the jth par-
ticle relative to the j -1st particle. Thus the en-
ergy change kg~„ for a beam of particles inter-
acting with a solenoid follows from superimposing
copies of Fig. 6, and will have a positive value
with a ripple corresponding to the passage of each
particle. In the limit of a steady line of charge
passing, the interaction energy due to the pres-
ence of the solenoid is a constant unchanged in
time. Analogous comments follow from super-
imposing many relatively-translated copies of
Fig. 7. Thus 6(P„&„will have a ripple in time
about a zero value and will vanish for a steady
current, corresponding to the absence of a com-
ponent E„ for a line charge along the y axis. The
component ~6', ~ behaves like the energy, going
to a constant value for a line charge. This corre-
sponds to the presence of the radial electric field
which gives a component E„which combines with

Bo Bpk to give a y component of mom entum in the
electromagnetic field.

CONCLUSION

Although a constant-current solenoid exerts no
forces upon a charged particle passing outside the
solenoid, the fields of the passing particle exert
forces upon the particles which carry the solenoid
currents. %e have verified in detail the laws of
conservation of energy, linear momentum, and
angular momentum for this situation, and have
evaluated the contributions to these quantities con-
tained in the electromagnetic fields. In the non-
relativistic approximation the expressions for the
field energy and momentum take simple forms in-
volving the vector potential due to the solenoid at
the position of the passing particle. Specifically
the change in energy in the electromagnetic field
is

ah —= e—A(r'),
C

the change in momentum in the electromagnetic
field is

and the change in angular momentum in the elec-
tromagnetic field is

Ago-——r~x —A(r') .
C

Here the particle of charge e is moving with ve-
locity v'. The vector potential due to the solenoid
must be given in the Coulomb gauge and is evalu-
ated at the instantaneous location r' of the passing
charge. The change in field angular momentum
AZ~ is computed about the point Q where r~ is the
displacement of the center of the solenoid relative
to Q. Computed about the center of the solenoid,
4Zz vanishes.
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Classical electromagnetic lag effects can give rise to quantum interference pattern shifts such as that
observed experimentally in the Aharonov-Bohm effect involving electrons passing a solenoid. This paper
presents an extensive comparison between interference pattern shifts based upon classical electromagnetic

fields, and based upon classical electromagnetic potentials as suggested by Aharonov and Bohm. Stress
is placed upon the difference between two types of interference pattern shifts: those involving deflection
of the entire interference pattern and those involving a deflection of only the double-slit pattern while

leaving the single-slit envelope undisplaced. The first type of shift is produced by a classical deflecting

force. The second type of shift can be produced by classical electromagnetic lag effects, and is also the

type of shift associated with the Aharonov-Bohm effect. The two types are confused in the literature. A
new experiment is proposed which shows the relationship between a classical lag effect, due to
electrostatic fields on electrons passing along different paths, and the associated quantum interference
pattern shifts. The experiment is analyzed in detail using the WKB approximation in the Schrodinger
equation and also semiclassical ideas. The classical limit for the situation illustrates the Bohr
correspondence principle, showing the relative lag between the electron wave packets becoming a
measurable classical lag with a disappearance of the interference pattern as the lag becomes large
compared to the wave-packet dimensions. For small shifts, the phase change predicted for the new

experiment is identical with the scalar potential effect proposed by Aharonov and Bohm for a slightly

different, time-varying experimental arrangement. The theoretical and experimental differences for large
phase shifts are noted. The possibility is raised that a new classical electromagnetic lag effect may
occur for electrons passing a small solenoid. Using a particular model for energy conservation, the
predicted lag effect can be calculated and is associated with a quantum interference pattern shift of the
same magnitude as predicted by Aharonov and Bohm based upon the electromagnetic vector potential.
Thus the possibility exists that the experiments of Chambers and of Mollenstedt and Bayh may not
confirm the ideas of Aharonov and Bohm on the vector potential in quantum theory. Several

experiments are suggested which allow confirmation that the Aharonov-Bohm efFect indeed involves

local efFects of the classical electromagnetic potential, rather than local electromagnetic fields leading to
a new classical lag efFect and hence to the observed quantum interference pattern shift.

I. INTRODUCTION

A. The Need for an Analysis of
Interference Pattern Shifts

The diffraction patterns produced by electrons
passing through slits have formed a phenomenon'
familiar to physicists for forty years. However,
the shifts in these patterns due to electromagnetic
effects have formed a subject of interest' within
the last decade because they seem to present evi-
dence for a new break between classical and quan-
tum electrodynamics with regard to the role of the

electromagnetic potentials. In the present paper,
we will provide some new ideas and an extensive
commentary on interference pattern shifts caused
by classical electromagnetic fields, or, following
the ideas of Aharonov and Bohm, by classical
electromagnetic potentials.

It seems no surprise to physicists that classical
electromagnetic fields lead to shifts in electron
interference patterns. This influence of the clas-
sical upon the quantum aspects should be expected
because of the close ties between classical and
quantum electrodynamics. What seems unantici-


