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The twin paradox in a flat space-time which is spatially closed on itself is considered. In such a
universe, twin 8 can move with constant velocity away from twin A and yet return younger than A.
This paradox cannot be resolved in the usual way since neither twin is accelerated or locally subject to
other than flat Minkowski geometry, Thus there are no obvious kinematic, dynamic, or geometric
distinctions between the two and yet one experimental1y verifies that moving clocks are slowed while the
other does not. A global analysis leads to the conclusion that the description of the topology of this
universe has imposed a preferred state of rest so that the principle of special relativity, although locally
valid, is not globally applicable.

lNTRODUCTION

The twin or clock paradox arising from the
relativity of time-interval mep, surements in
Einstein's special theory of relativity has had a
long and controversial career. Einstein himself
raised the issue in its basic form in his original
1905 paper, but without extensive comment. The
conventional interpretation of the problem as pre-
sented in most textbooks' is satisfactory for the
majority of workers in the field. In its simplest
form the paradox can be stated as follows. One
twin, or observer with a clock, A, is at rest in
a certain inertial reference frame. A second,
identical, twin, B, starts from A's position reg-
istering the same time as A, but travels along a
different world line and returns younger than A.
The standard explanation is based on the assump-
tion of special relativity that any standard clock
will record the proper-time lengths of its world
line as determined by the Minkowski metric,

d72= ch2- dx2

where we use units in which g= l. Since A and B
have different world lines, it is understandable
that they can be of different lengths, i.e., elapsed
proper times. Further, in the geometry of an
indefinite metric such as (i), a straight timelike
world line is the longest distance between its end
points.

After mechanics is introduced, a further, dy-
namical, asymmetry arises. If the reference
frame of A is inertial, then it seems clear that B
must accelerate with respect to this frame during
part of his journey in order to return to A. Thus,
B is distinguished from A by not being force-free
throughout his path so that his comoving reference
frame is not inertial. The development of general
relativity permits other versions of the problem
to be discussed in which J3 also travels a geodesic,
and is thus always in free fall. However, it is
necessary here for J3 to travel through regions of
space-time having different metric properties
from those in A's neighborhood, thus providing
for a geometric distinction between the two.
While these interpretations seem to be generally
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satisfactory to most physicists, there have been
objections voiced by some others. '

The purpose of this paper is to consider the twin
paradox in special relativity in a closed, but still
flat, space-time. For simplicity, we will restrict
most of the discussion to one space dimension. In
such a universe, twin J3 can travel zoithout accel-
eration ox experiencing any metric dissimilarities
relative to A. and yet return younger than A. . In
this case the dynamical or geometric distincti6hs
cannot be made. Both A and B are inertial observ-
ers and see a flat space-time, yet the statement
"The moving twin ages more slowly than the one at
rest" is true for one but not the other. The source
of this distinction will have to be found in the rela-
tionship of the kinematics to the topology. in fact,
we will find that such a universe possesses an
absolute rest reference frame so that the usual
principle of special relativity is not applicable.

CLOSED SPACE

The model for the spatially closed space-time
we will be using is the following. Consider a ref-
erence frame which assigns pairs of numbers,
(x, t), to point events using standard procedures,
including the Einstein synchronization of clocks.
Now, however, we add the assumption that the
space is closed by topologically identifying x =0
with x =1, for any fixed time, t. Thus, each
spatial section t = constant has the topology of the
circle and the full space-time, which we will de-
note by C', that of the cylinder (Fig. I). In gener-

al, the pairs (x, t) are not unique representations
of events, since (x, t) and (x+n, t) represent the
same event for any positive or negative integer n.
It is also possible to use a complex representation
which is unique, defining ~ = e'" . In this notation
the family of pairs (z, t), ~z ~'=I, provides a one-to-
one representation of the events in such a space-
time.

The standard model for space-time is a mani-
fold, which is covered by one or more coordinate
patches. These are open sets, whose union covers
the space-time and each of which provides a unique
real numerical representation of the events within
it. Further, the coordinate transformations in the
intersection of two such patches must be regular
functions in some sense. ' It is clear then that the
assignment of numbers (x, t) as described above
for C' does not constitute a coordinate patch. In
fact, C' requires at least two coordinate patches
to cover it, as indicated, for example, in Fig. 2.

The generalization to a full three space dimen-
sions is obvious, if not so easy to visualize. Num-
bers (x,y, z, t) are assigned to events in such a way
that

Event(x, y, z, t ) = Event(x+ I, y + m.z+n, t ),

for any three integers l, m, n. In this case, the
space-time structure is that of the topological
product of a three-dimensional torus with the
straight line. In this paper the discussion will be
limited to the case of one space dimension although
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FIG. 1. The cylindrical model of our closed, flat
space-time as seen by A . The unit-length stationary
ruler has markings x = 0, x = 0.1, . . . , x = 1, with the
last point coinciding with the first. It should be noted
that the ruler is straight, not curved, as might be
suggested by this three-dimensional visualization.

FIG. 2. This figure illustrates the domains U and V
of two coordinate patches at rest with respect to A.
The clocks associated with the two systems can agree
with each other in each of the two overlap regions 8&

and W2. This is possible because of the global syn-
chronization transitivity in A's state of rest.
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the three-dimensional one displays additional
kinematic characteristics.

To fill out space-time with a Minkowski geome-
try, we assume that the (x,f) reference frame is
inertial. Thus the metric is given by

ds'= dh'- dt'

d72 = dt' —dx'.
(3)

It should be noted that the nonuniqueness of the
(x, t) representation does not affect the equations
(3) since they involve only the interval dx, which
is unique.

THE UNACCELERATED ROUND TRIP

It is therefore apparent that something is wrong
with Einstein's principle of special relativity in
such a universe, but precisely where does it break
down? Let us return to the two coordinate patch
picture of the universe, Fig. 2. It is clear that
in each such region of space-time the physics of
special relativity should be valid and Lorentz

Now consider the twin paradox in a space such
as O'. Let A be the twin who remains at rest at
the (x, t) spatial origin while B moves in the posi-
tive xdirectionwith speed v. Thus, the world
line of A is the set of points (O, t) while that of B
is (vt, t). These are sketched in Fig. 3. Because
of the closed nature of space, B returns to A after
time intervals of f„=1/u as measured by A's clock.
On the other hand, if the analysis of special rela-
tivity is valid locally throughout B's trip, then his
clocks are constantly registering intervals dt~
= (1-v')"'dt. Hence, upon his first return B's
clock will read ts=(1 —v')'"t~= (1 —v')"'/v. In
other words, B returns to A younger than A by
the factor (1-v')"' even though Bhas been in
constant, uniform motion relative to A throughout
the entire period. Since this is so, an attempt to
apply Einstein's principle of special relativity
leads to the following dilemma. Since A is inertial
and 8 is unaccelerated relative to him, B also
should be an inertial observer. Thus, all the laws
of physics should be valid in the same form for
both. However, A observes: "A clock moving
with respect to me runs slower than my clocks and
returns to me showing less elapsed time than
mine. " However, if we look at the same round
trip from 8's viewpoint, he has remained at rest
and A has circled the universe and returned. Thus
B sees A's clock as moving but nevertheless re-
turning showing more elapsed time than B's. As
a consequence, B, who apparently should also be
an inertial observer, disagrees with A about the
"law" that moving clocks run slow.

ANALYSIS OF THE PROBLEM

x'=y(x- vt),

f'=y(t- ~x),

where y = (1 —u')"'. Now the identification (2)
must be translated into (x', f') system to give

Event(x', f') = Event(x'+ y n, f' —yv n)

(4)

(5)

for arbitrary integer, n. It becomes clear very
soon however that the identification (5) leads to
insurmountable obstacles to considering (x', t')
in any physically acceptable sense. Even though
it is not unique, the (x, t) reference frame of A
could be visualized in terms a ruler spanning the
universe with the markings x=0, x=1 overlapping
and with Einstein synchronous clocks attached.
Why, now, can the (x', f') not be thought of as just
such a ruler set in motion along with B? The first
objection is that the line t' =0 is not closed under
the identification (5). This means that a global
family of clocks moving with B cannot be synchro-
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FIG. 3. The paths of the 5vo twins A and B are
shown here. In order to show both of their meetings
within a diagram of reasonable size, the slope of B's
line has been lowered. Note again that both A's path
and that of B are straight lines in flat geometry, with
the apparent curvature of B's path arising only from our
attempt to visualize C2 as imbedded in a flat three
dimensional space. These drawings are tracings from
photographs of straight lines drawn on flat transparent
plastic which was then wrapped around a cylinder.

transformations could be made to link the local
rest system of A to one associated with B. How-
ever, a global extension of this to the entire uni-
verse uncovers some basic problems.

First, let us try to define a global reference
frame attached to 8 similar to (x, t) for A. Such
a system would assign coordinates (x', t') to events,
with the world line of B being (O, t'). The corre-
sponding Lorentz transformation is
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nized by the Einstein process which is basic to the
definition of physical reference frames. ' This
process involves the stationing of an observer
midway between pairs of clocks. If this observer
sees light signals from each clock arriving simul-
taneously to him indicating that each clock is reg-
istering the same time, then the two clocks are
synchronous. In the definition of the (x, t) refer-
ence frame we have assumed that the clocks used
to measure t for different x's have been synchro-
nized by such a procedure. However, in C' we
must look at two aspects of this synchronization
procedure that are taken for granted when it is
applied in the usual, topologically Euclidean,
space-time. The first concerns the question of
whether there is a unique midpoint between two
clocks in space and the second is whether or not
this procedure is transitive, i.e., if clock 1 is
synchronous with 2 and 2 with 3, will 1 necessarily
be synchronous with 3? In C', there are obviously
two midpoints between two given spatial points, so
we must check to see whether or not different
results are obtained when the observer is placed
at one and then the other. Further, as the syn-
chronization process is continued for clocks at x
and x+ dx from x=0 around to the original clock
at x=1, the question of transitivity is critical. For
the system (x, t) at rest with A, these questions are
easily resolved: Synchronization with light going
one way around the universe yields the same re-
sult as for light going the other way, and the pro-
cess is transitive. In fact, a brief analysis of the
intersection of light rays, x=+ I;, with A's rest
clocks, having paths x= constant, subject to the
identification (2) verifies these statements. The
global transitivity of synchronization becomes
equivalent to the fact that for A's rest observers
light circles the universe with the same elapsed
time in both directions.

However when an attempt is made to build a
global rest system for B these problems become
crucial. In the first place, the single clock at rest
with B reads different times for the paths of light
rays going around the universe in different direc-
tions. To see this, express B's path and that of
the two light rays in A's system as

origin, x'=0, I"=0, at the separated events whose
(x, t ) coordinates are (v'ny', v ny') for integer n, .
This result follows immediately from (4) and (5).
Other difficulties also become apparent in looking
at the (x ', t') lines induced by (4) as sketched in
Fig. 4.

Because of these problems, it is clear that no
physically acceptable system with globally syn-
chronized clocks can be set up moving along with
B. This provides the basis for the distinction be-
tween A and B. The topological structure of C'
contains within it the choice of an absolute rest
system. That is, for A the lines of constant time
are closed, but this is not true for B or any other
moving observer. Hence, the principle of special
relativity is not valid in such a system. Clocks
moving with respect to A are slowed, but the re-
verse statement is not true, because of A's distin-
guished state of rest in C'.

Of course, the principle of relativity can be $0-
cally valid in C'. That is, C can be covered by
two coordinate patches corresponding to reference
frames at rest with respect to B (Fig. 5). Just as
the coordinates used in the patches U and V can
differ from (x, t) by only constants in their respec-
tive domains the same is true of the "candy strip-
ing" patches, U' and V', in which the coordinates
differ from (x', l') of (4) by only constants. In this
case, however, goth the x'and the t' variables
must disagree in at least one overlap, For exam-
ple, let B be at rest in the U' region with x' given
by (4), but with x' restricted to the interval (0, —,')

x= vtq

x=+t.

Using the identification, (2), these paths intersect
regularly with elapsed intervals i, = 1/(1- v) and
t, =1/(1+v) or, as read by B's clock, t» ——y/(1- v)
and t~, =y/(1+ v). Thus B must say that the uni-
verse has a longer circumference in one direction
Qanin the opposite on. Another anomaly would
be the periodic reoccurrence of B's space-time

FIG. 4. Two of the coordinate lines of the (x', t')
system as defined by (4) are indicated. Note that the
origin, x'=0, t'=0, occurs periodically at separated
space-time events. Further, the line t'=0 is not
closed, indicating the impossibility of global synchroni-
zation of moving clocks.
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and t' always increasing. This can be done by
proper choice of integer n and replacing x by x+n.
The same thing can be done in V' which will over-
lap U' in two regions, S", and W,', near x'=0
and x'= —,', respectively. The coordinates can even
be made to agree in one of the overlap regions say
W,'. lf so, they cannot agree in the other, W,'.

The physical interpretation of these coordinate
patches could then be as follows. B has a mea-
suring rod, with attached clocks, moving with
him, but covering only half of the universe. This
is U'. Another rod and attached clocks, at rest
with respect to the first, covers the other half of
the universe. Within each patch, U' or V'„ the
clocks are synchronized in a self-consistent„ tran-
sitive way as long as the light rays remain entirely
swithin that patch. At one of the meetings, say 9",
the markings on the rods and clocks agree. How-

ever, at their other meeting, W,', not only will
the spatial coordinates differ, but so mill the
clocks. As long as an observer such as B per-
forms experiments entirely within one patch, the
principle of relativity will hold and he will in no

way be able to detect any effects of his motion
relative to A. However, when he probes the other
coordinate patch, he discovers that„although it is
at rest with respect to him and some of its clocks
are synchronous with his, not all of them are.
Hence when he sends light rays travelling around
the universe in different directions he is aware
they will enter another system. As they do, they
pass this system's clocks which run successively
faster, or slower, with respect to B's depending
on the direction of motion of the particular light
ray. Since the light still has unit velocity in this
other system, B will have to expect that rays
traveling in different directions will have different
round-trip times as measured by him.

None of these problems arise for A, who can
have two coordinate patches at rest with respect
to him, but with totally synchronized clocks. It
is this global synchronization that A can perform,

FIG. 5. Coordinate patches, U' and V', at rest with
respect to B are shown. This is the analog for B of
Fig. 2 for A, However, if the clocks of U' and V' agree
in W& they will not agree in 8'2.

but moving observers cannot, that distinguishes
A from them and provides the preferred state of
rest.

The implications of these ideas for the more
realistic closed universes of general relativity are
minimal for several reasons. In the first place,
general relativity points out that special relativity
need not be even approximately valid more than
locally. Secondly, the cosmologies in general rel-
ativity make use of the matter in the universe to
pick out a preferred state of rest. Hence, the fact
that a global extension, even approximately, of a
principle of special relativity breaks down is not
surprising.
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