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Since Slattery's analysis of the Serpukhov and National Accelerator I aboratory {NAL)
multiplicity data shows Koba-Nielsen-Olesen {KNO) scaling behavior to remarkable accuracy,
it is of interest to examine KNO scaling at finite energies. We discuss the fact that KNO's
argument in favor of asymptotic scaling fails at any finite energy, and the corrections exceed
the experimental 1.imits at NAL energies. We show that energy conservation forbids exact
moment scaling in any finite energy range, and we establish a sufficient condition for a dis-
tribution to obey scaling within the observed accuracy. We further point out that only the
first two moments calculated by Slattery are independent. Finally, we produce a simple
model. showing how unitarity can generate the long-range correlations in the rapidity variable
that KNO scaling implies.

Recently, Slattery' has analyzed the charged
multiplicity data obtained in proton-proton colli-
sions in the energy range 50 ~ E i,„~300 GeV, and
has pointed out that, to a remarkable degree of
accuracy, they satisfy a scaling law first proposed
by Koba, Nielsen, and Olesen. '

Let 0 be the total inelastic cross section at a
given energy; let a„be the partial cross section
for proton+ proton- n charged particles. (For n
=2 we exclude the elastic contribution. ) Define

fails in this energy range, for the following rea-
son: They begin with the identity

A, -=(n(n- 1)~ ~ ~ (n- q+1))

where f '~ is the q-particle inclusive cross section
normalized to the total cross section. They as-
sume Feynman scaling for f~'~ so that

(n') =P n'~, q=1, 2, . . .
A, =b,(lns)'+O((lns)' ') .

They then write that

(5)

Then the Koba-Nielsen-Olesen (KNO) scaling law
can be stated in either of two ways:

or

(n') =C, (n)' (2)

(3)

Here the C, 's are independent of energy, and the
function g depends on energy only through the
variable n j(n), as indicated. KNO show that (2)
and (3) are equivalent, provided that one is allowed
to approximate the sum in (1) by an integral. (This
will be permissible if (n) is large and the function

g is reasonably smooth. In the range of Slattery's
analysis, 5.4 &(n) &8 9and the. empirically obtained
scaling function is indeed quite smooth ).

The problem with this nice agreement between
theory and experiment is, as Slattery pointed out,
that KNO's result was based on arguments that are
expected to hold only asymptotically, whereas the
data obey Eqs. (2) and (3) in the energy range 50
to 300 GeV. In fact, KNO's argument explicitly

A, =(n') + O((lns)'-').

One thus has Eq. (2) with C, =b,/b;, up to correc-
tions of order (lns)' '. However, inspection of (4)
shows us that

A =(»')-kq(q-1)(n' '&+ "
so that the corrections to (6) become comparable
to the first term whenever q )(n)'~'. In the range
50 to 300 GeV this means whenever q )2 or 3," and
yet as Slattery and Weisberg' have pointed out, the
data in this range obey Eq. (2) up to q =9 or 10.

Clearly then, some other explanation than an
early onset of Feynman scaling must be sought for
the data, and several such explanations have ap-
peared in the literature in the last few months.
These models fall into two categories: (i) those
in which scaling begins at, roughly, 50 GeV and
persists to all energies'; and (ii) those in which
scaling in the 50-300-GeV range is an "accident"
due to the competing effects of two separate mech-
anisms, and is violated at higher energies. ' We
feel that there is at present insufficient experi-
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mental evidence to distinguish between these two
categories, and a fortiori among the various mod-
els in each of the categories. Rather, we present
three model-independent remarks, which, although
they have less physical content than a specific
model, must necessarily apply to any successful
explanation of the data:

(A) I)Io energy-conserving model can obey Eq.
(2) exactly over a finite range of energy. Proof:
Introduce the generating function

G(r) = g f(n)I",
n=l

where f(n) =—o„/o. By definition G(1) =1. Since the

f(n) are all positive, G(h) is an analytic function of
A inside the unit circle. In fact at any finite ener-
gy f(n) vanishes for n sufficiently large, so G(h)
is really a polynomial in h. %e observe that

range 50-300 GeV, the data seem to indicate that
it holds to about I%%up, i.e., that the corrections are
of order (1/{n))' and not 1/(n). We show that this
can be achieved by a distribution of the form

0' 1=- y(an),
cr b

where all the energy dependence is contained in the
factors a and f), provided P(0) =0. We assume that
a is a small parameter, and that )) is a differen-
tiable function of its argument. Then

b = g g(an)

so
~b—= any'(an) .a

We now use the relation between the derivative
and the finite difference:

y'(an) =—[ln(1+ a)] y(an),
1

{12)

so

G(I) =P {n )(I~)'/qi.
q=0

(8)

(9)

where LP(an) = P(a(n+ 1))-g(an) and keep enough
terms on the right-hand side of (12) to give us the
desired accuracy. For example, if we write

q'( na) =—(A- ,' A)y(a—n),
1
a

Now energy conservation required that f(n) vanish
for n&n, where n,„ is the largest number of
particles that can be produced at center-of-mass
energy s'~'; n „=constxs'~' As a. result, {n')
~ (n .,)', and the series in Eq. (9) converges for
all values of lnh. If we now assume that the {n')
are given by Eq. (1) we find that

we obtain

=---2 y(a),
~b b I

and therefore'

f) '=[a(I+~a)J+O(a'),

G(I) = -'-[(n) Inh]
qf

(10)
where g=-,'y(0) .

Similarly, we have

Thus G(h) is a function of h'"', which means that
G(h) has a branch point at h = 0 except when (n) is
an integer and possibly at some other isolated
values of (n) (Recall .that the C, are independent
of energy and therefore of {n).) Since G(h) must
be analytic within the unit circle, we have a con-
tradiction, which shows that there must be devia-
tions from Eq. (2) even at very high energies.

We note that the continuous variability of (n) is
necessary for our result. Thus it is not strictly
true that KNO moment scaling must break down
for large enough q by energy conservation alone.
For example, the distribution

where N is the maximum number of particles that
can be produced at a given energy yields exact
KNO moment scaling.

(B) Although Eq. (2) cannot hold exactly in the

00 ]
G(h, a) =Q k" —~p(an)

b

g,(x) arbitrary,
1 2

gy(x) = (K —x)gp —2x gp —Ic )

g, (x) = —,
' ~x- p+ (p —h:x+ x')g,

{i4)

with p =)).'+~»g'(0). We can now calculate

C

( n') = (a —G(a, a)
Bh

= C, (1/a)'(1+ ~a+ pa')

——,
' 5„ca+O((1/a)' ').

Evaluating SG/Sa in the same way we calculated
Sb/&a, we obtain the equations, with x=(h —1)/a:
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Here

C, = —
go x

Thus if v = 0 [i.e., $(0) =0], we have

(n)= C,/a, C, = C, /(C, ),

TABLE I. The C are as calculated by Slattery from
the data (except C~ = f(:~ =1 by definition), and as reported
by Weisberg, Ref. 3. The f(: are calculated using Eq.
(17).

C =(n )/(nP

( ') =C, ( )'+o(( )' ').

It is interesting to observe that the data are con-
sistent with g =O. Note also that this result does
not rely on approximating the discrete sum (1) by
an integral.

(C) In view of the various models attempting to
fit the data, and in particular the values of C, ,
q = 2, . . . , 10 which have been extracted from the
data, one may ask how significant it is to fit all
ten moments once the first two or three have been
fitted. A partial answer to this may be obtained by
looking at the cumulants of the distribution rather
than at the moments themselves. The cumulants

I(, are given by equating coefficients of like powers
of t in the equation

t' " t'
exp g~, —=I++ C, —qt, , 'ql

The g, have had the effects of the lower moments
subtracted out in much the same way that, for ex-
ample, one defines q-particle correlation functions
by subtracting out the q-body and lower inclusive
cross sections. The experimental values of the

C, , q=1, . . . , 9, and the corresponding Ij.", are
shown in Table I. Since the equation relating the

C, and g, are of the form

1,2438 + 0,0056

1,813 + 0.020

2.973 + 0.057

5.36 ~ 0.15

10.43 + 0,39

21.6 + 1.1
47.0 + 2.8

107.4 + 7.8

0.2438

0.081

0,0064

-0.013

-0.042

-0.034

-0.064

1.24

d'ae-"' "[C(Y,a)]"/ni, (20)

where

different in spirit from the multiperipheral model.
Following the notations of Ref. 8 we write the am-
plitude for the exchange of a single chain in the
form'

lY( Y fl. y fl) sAe B /2B e bl2r-

Here Y=ln(s/m') is the rapidity difference of the
protons and B their relative impact parameter;
y and b are the rapidity and impact parameter of
the secondary. A, 8, and r are constants. The
cross section for the production of n secondaries
ls

(18)
C(Y, a) =~Ye-"'n' (21)

it is clear from the errors quoted in Table I that
all the z, , q &3, are statistically consistent with
zero. Thus one might expect that a one or two
parameter fit to the data is indicated. Also, since
Ic, =0, q&2 for a Gaussian distribution, it is not
surprising that one of the best empirical fits to
g(n/(n)) is of the form of a power times a Gaus-
sian. '

In conclusion we wish to present a simple model
which displays KNO scaling to leading order in
(n) '. As was pointed out by KNO such models
must have significant long-range correlations in
the rapidity variables. The model we present
shows how unitarity can generate such long-range
correlations. A particularly simple example can
be obtained by assuming that the protons interact
via the exchange of an arbitrary number of chains
with each chain being allowed to emit or absorb
only one secondary particle. ' This model is very

and A. is a constant. It should be noted that the n
in Eq. (8) is not the n in the KNO scaling formula,
since the latter is larger by two because of the
protons. One easily finds that

l„(ZY)" '
(22)

q 1

(n') =, q '(n)' [ 1+0(q/(n))], (28)

so Eq. (2) breaks down for q ~(n). This should be
contrasted with the case of a Poisson distribution
where Eq. (2) breaks down for q ~(n)' '.

with ( n) = A. YnA '/o. Thus Eq. (8) is approximately
satisfied at high energies. " On the other hand,
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The above model is obviously unrealistic. It
merely illustrates the fact that it is possible to
construct simple models with approximate KNO

scaling. The challenging problem is to construct
a realistic model which explains Weisberg' s re-
markable fit to the data. "
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The effects of the neutral weak current on the spectra of charged leptons in the process

v+ (Z) v+ p, + p + (Z) are discussed. We show that theeffects of the neutral current can be
expressed in terms of various distributions based on the purely V—A interaction.

Following an interesting remark by Gell-Mann
et aE.' on the diagonal coupling of weak lepton cur-
rents, the neutrino production of the muon pair in
a nuclear Coulomb field (see Fig. 1)

2 4„r (1 r, )4.„0„r"-(1 r,4„-G

2 g„r„(1 r, )g„4,„r"(-1 r, )4.„. -G—
(2)

v~+(Z) v~+p, +p, +(Z)

has attracted much attention. Among those au-
thors who studied the process (1) in the past, ~'4

Czyz, Sheppy, and Walecka4 were the first to per-
form a detailed numerical analysis of the total
cross section. With the advent of experimental
feasibility of the process at NAL, ' detailed numer-
ical studies of various distributions in the process
(1) have been performed. ' ~ All of these calcula-
tions are based on the "conventional" V-A effec-
tive coupling

The effective Lagrangian (2) predicts se-; era&

characteristic features of V- A coupling. A
marked asymmetry between p, and p is one of
these characteristics. ' 9

The coupling in (2), however, is not the only
possible coupling among leptons. The recent
study of unified models of leptonic interactions
based on the spontaneously broken gauge symmetry
(Higgs mechanism) indicates various other cou-
pling schemes. " Those models of lepton interac-
tions are particularly attractive because they are


