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It is shown that the multiparticle generating functional and the multiplicity generating func-
tion (or partition function) are experimental observables and can be measured directly for
finite ranges of their parameters. Their derivatives can also be measured directly. Since
these functions are observables, they are subject to statistical fluctuations due to the nec-
essarily finite number of measurable events used in their evaluation. The expected rms
fluctuations of the partition function are shown to be simply expressed in terms of the total
number of events and the partition function itself. Examples are given to clarify these results
and their physical interpretation.

I. INTRODUCTION

The large number of secondary particles pro-
duced in high-energy collisions, and the surfeit of
possible experimental variables, has led to an in-
clusive approach to the description of such events.
Consequently, a set of multiparticle correlation
functions are introduced which allow a succinct
characterization of the data. The inclusive differ-
ential cross sections are conveniently related to
the exclusive cross sections by means of a formal
generating functional. ' ' Particular exclusive and
inclusive cross sections can be found by taking
functional derivatives with respect to its paramet-
ric function. The generating function of the multi-
plicity distribution, which was originally intro-
duced by Mueller, ' is achieved when the paramet-
ric function is replaced by a constant fugacity.

The analogy between the distribution of produced
secondaries and the ensemble distribution of a gas
or liquid system in statistical mechanics has been
rather thoroughly discussed. " The multiplicity
generating function (partition function) has been
used to conveniently derive properties of certain
models of the production processes. ' The intro-
duction of long- range correlations into the multi-
peripheral model has been achieved using this ap-
proach, "and the possibility of "phase transitions"
has been discussed. ' "

In the above works, the generating functional
and the multiplicity generating function are intro-
duced as purely formal devices to simplify the
mathematical discussion. In this paper, we wish
to point out that the generating functional and the
partition function are observables and can be di-
rectly measured by experiment, at least for a fi-
nite range of their variables (i.e. , fugacity less
than one).

The fugacity of a particular type of particle

turns out to be the probability that such a parti-
cle, once produced, will not be detected. The par-
tition function is then found to be the difference
between the true total cross section, which can
be measured by an absorption experiment, for
example, and the one calculated by summing over
detected events. The derivatives of the partition
function can also be measured by varying the de-
tector efficiency. Even the functional derivatives
of the generating functional can be measured by
the same technique. "

Since the partition function Q(z) is an observable,
it is subject to statistical Quctuations due to the fi-
nite number of observed events used to compute it.
Thj, s rather unusual aspect of Q(z) will be dis-
cussed and a simple formula for the expected fluc-
tuations will be derived. This result is clarified
by an explicit calculation of the fluctuations for
two different multiplicity distributions. Let us
turn now to a brief review of the generating func-
tional approach.

II. PHYSICAL GENERATING FUNCTIONALS

In order to develop our formalism and interpreta-
tions in a convenient and simple form, it will be
assumed that only one particle type is involved in
the collision processes. The generalization to sev-
eral particle species is straightforward. Follow-
ing the formulation and notation of Brown, Ref. 1,
the exclusive differential cross section for the pro-
duction of n particles in the momentum interval
(d'q, ) ~ ~ ~ (d'q„) is written as (~ o 2)

where Pt' is the initial total four-momentum and

T„ is the transition amplitude (including an inci-
dent-flux factor). This is a symmetric function of
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the n momenta q„.. . , q„. The exclusive generat-
ing functional E[p] is now introduced in the form

«I«] =Z —f «« «I«'", ') "«(«.).

The exclusive cross sections can be extracted
from E[g] by taking the appropriate number of
functional derivatives with respect to P(q) and set-
ting p =0. The total cross section can be written

or in other words,

E[1-d] =I [-d]
=o...—Z...[d].

c=l

o...=E[y =1]

The inclusive cross sections are defined as
(n+m & 2)

and the corresponding inclusive generating func-

tional I[/] is found to be related to the exclusive

generating functional by

This relation allows one to directly measure the
functional dependence of E[P] for arbitrary values
of P such that 0& P(q) & 1. The physical interpreta-
tion of this equation is clear. The difference be-
tween the true total cross section and the experi-
mental total cross section is E(1 —d), which sim-
ply measures the total number of events in which
no particles at all are detected.

The experimental multiplicity is a quantity of
considerable interest and it is given by

I et us now turn our attention to a superficially
quite different problem, namely, the effect of an
imperfect experimental detection efficiency on the
measured cross sections. " The experimental de-
tection probability of a particle of momentum q is
denoted by d(q) and will be assumed to be known.
The raw experimental exclusive cross section
dZ'„"', which is deduced directly from the data with-
out correcting for the detection efficiency, depends
on the probability of detecting n particles and on
the probability of missing the rest (n+m ~ 2):

««:"'= ] —.'«It))Z, f]~ «'I)-«(, ]

n+ m

x " Z «. - )') I &...I

'
(«)

c=l

The experimental exclusive cross section is there-
fore a type of inclusive cross section. Note that
there is a finite probability that only one particle
will be detected in the final state, hence dZ',"is
not zero. The measured elastic scattering cross
section is dZ,'"'.

The experimental total cross section Z„, is
found by integrating the above over the n-particle
phase space and summing from n = 1 to n =™.The
result is

Z —„f ].I .'«'(2 «, -&)I «, I'«I«, )

do'g d qg

MqdZ', "'dq . (10)

By choosing M(q) to be zero except for a narrow
range of values of q, the exclusive cross section

which is the average value of d(q) over the true in-
clusive cross section.

The mathematical functional E[P] is introduced
purely formally in order to reproduce the exclu-
sive cross sections by taking functional derivatives
with respect to )t) and then setting P to zero. How-
ever, these purely formal manipulations can ac-
tually be carried out and have a definite operation-
al meaning. Consider two experiments, one run at
a. detection efficiency of d(q) and the other at a
slightly different value of d(q) +6d(q), where 5d(q)
is an arbitrary change in the detection efficiency
d(q). The difference of the experimental total
cross sections is

rz... =z...[d+M] —z...[d]

aE[1 —d]
a[1 —d]
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in this range is determined by this difference in
the measured total cross sections. Higher-order
differences determine the higher exclusive cross
sections. For example, the double difference
yields

measures the derivative of the partition function
directly at one.

The experimental partition function Q, ( z) is cal-
culated by taking the measured values of Z'„"' and
forming the sum

5'Z... =Z...[d +5d] —2Z...[d]+Z...[d —M] Q„(z) = Q z"Z'„"' .
n=1

(14)

~ 5'E[1 —d]
5(1-d)' For the case of a general d(q), the experimental

partition function can be shown to be

5d q1 5d 2dZ, d 1d q» q„(z) =Z[1 —(1 -z)d] -Z[1 -d], (15)

where dZ',"' is the experimental elastic cross sec-
tion. Clearly this is not a very practical way to
extract information from the data, but it does il-
lustrate that the functional derivatives of the gen-
erating functional are experimentally realizable.

which at z = 1 is equivalent to (8).
If d has the constant value D, then note that the

experimental exclusive cross sections are

n+m~t(n+m). „„)„.„,
n+m'

m=0

III. PARTITION FUNCTIONS

The partition function can be introduced as a
special case of the generating functionals. Setting
the function Q(q) =z, the partition function Q(z) is
defined as

q(z)=E[z]

n+exc
n

n=2

Using this definition, the relation between the ex-
perimental and the true total cross sections is [see
Eq. (8)]

Q(1 -D) =&).t —~g.t, (12)

Thus a differential measurement of the total cross
section at very poor detection efficiency (D -0)

where D is the (constant) detection probability.
Therefore, one sees that the partition function is
an experimental observable, at least for values of
its argument between zero and one, since Zt, t is
measured directly by counting events (and depends
on D), and v„, can be measured independently (for
example, by an absorption experiment). Since D
can be varied experimentally, the derivatives of
Q are also directly measurable. Following the dis-
cussion in Sec. II, the derivative of Q is related to
the difference in two measurements of Zt 1 at
slightly different detection efficiencies:

5~ t.t [D] =~ t.t [D+»] —~ t.t [D]

=5Dq'(I -D) .
The multiplicity is therefore given by

dZ toto„,(n) =
a=0

In this case, it is a simple matter to define 1 -g
= (1 x)/D a.n—d expand both sides of Eq. (15) to
yield the inverse relation

nt&exc ~ '
(D 1)n- lD-n gexc~ I!(n —I)! (I 5')

which expresses a truly exclusive quantity in
terms of inclusive ones. The fact that the left-
hand side vanishes for l =0 and 1 allows one to
express Z;"' and Z',"' [=Q(1 —D)] in terms of Z„
for n& 2.

One can introduce an experimental exclusive
generating function in analogy to Eq. (2) with
dZ„'"' in place of do,'"'. Proceeding as above, and
assuming that d(q) does not vanish, one finds the
more general inverse relation

nl

„,I!(n —I)!

X dZ d q —1 Bt d Q~, 16
a=1 b= 1

=Z,.t —E[1-(1-z)d]d
dg z =1

which agrees with Eq. (9). Thus Q, (z) is the prop-
er partition function for characterizing experi-
mental quantities since it takes into account the
detection efficiency. To extend the above discus-
sion to several species of produced particles, one

which reduces to Eq. (15') above when d is con-
stant. This is a generalized statement of the well-
known relation expressing the exclusive. cross sec-
tions in terms of the inclusive ones.

The experimental value of the average multiplic-
ity is given by
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simply notes that each type has its own detection
probability and hence its own fugacity, and pro-
ceeds accordingly by expanding in multinomial
series.

IV. STATISTICAL ERRORS OF Q„(z)

(N„N &
—(N„& (N ) = b„(N„&, (17)

where the angular bracket stands for an ensemble
aver age.

The partition function, normalized to the total
number of events atz=l, is

Q„(e) =P e"N„.

The expected fluctuation in this quantity follows

from the expected fluctuation in the N„:

&Q
'( )&-(Q ( ))'=&Q ( '))

=&Q (~')&(Q (1))/N (18)

Therefore the expected statistical fluctuations
in the conventionally normalized partition function

are expected to be of the order

Let us now cons ider the effect of statistical er-
rors on the partition function by examining a sim-
plified but not unrealistic experiment. It will be
assumed that in a particular experiment a total of

N events are detected with N„being the number of

events with measured multiplicity n, where

N= QN„.
n-I

Our fundamental statistical a,ssumption will be
that the expected fluctuation in counts satisfies the

familiar relation

(Q„(~))
=1+N-'" exp'(s- I)'&~- »]. (20)

This becomes a Poisson distribution in the limit
of zero 6, but is otherwise quite different for
large values of n. For this distribution the parti-
tion function is

(Q„(z)& =(Q„'(0)) Q s""(c+bn)"/n!
0

= (Q„(0))y (1 —by ) 'e &' (21)

where y =y(e) is given bye=ye ~'. The sum con-
verges if !abc~& 1 (0&~y~&b '). Defining y, =y(@=1),
the total cross section is given by

Z... =(Q„'(O)&(1 -by, )-'e"~.

Many other interesting distributions of this type
can be generated by differentiating with respect to
the parameters of this distribution.

The average multiplicity (n& is easily found by
differentiating with respect to z and then setting
e = 1, and by using the fact that da/dy is known.

The result is

The fractional error is a minimum at g=1 since
the maximum amount of experimental information
is used. This is true for any distribution function

(N„). For small values of z, only the lowest mul-

tiplicities matter, and since they involve only a
small fraction of the total number of particles, the

statistical errors are larger. A similar argument
holds for the more interesting region of large z,
which is sensitive to the decreasing number of
events with multiplicities much above the average.

As a second example, consider the generalized
distribution which has been discussed by Hoang, "

(c+bn)"
n+Z g!

This is a convenient form for estimating the er-
rors of Q„since it involves only a knowledge of Q„
itself and the total number of events.

In order to clarify this result and its imp1. ica-
tions, it is instructive to consider and example.
Let us assume that the experimental values of N„
happen to have a Poisson distribution and, as is
customary, we will set (N„) equal to the experi-
mental distribution and estimate the expected

fluct-

uationss. Since we have ((N,) =0)
Cn

(N„„&=N
,
e—

(n —1) =y, (1 —by, ) '[c(1 —by, )+b].
It is also easily computed that

((n —1)(n —2)) —(n —1)'

=by, '(1 —by, ) [c(1 —by, )(2 —by, )+b(3 -by, )],

which vanishes for a Poisson distribution (b =0).
The expected statistical errors are easily com-

puted from Eq. (21). If terms of order b' are
dropped, one finds that the fractional statistical
error is

the associated partition function is

(Q ( )& $N e(g-1)(n-t))

= 1 ~ N-'" exp[2 (~ - 1)2(n -1)A],
(Q, (~)&

where
where (n —1) =c (note that this multiplicity is shift-
ed compared to the ordinary one). The expected
fractional fluctuation in Q„(g) is then and

A =1+b[(1 + z)' -2]+0 (b')
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(n —1) = c(1 +2b)+b+O(b') . increases only as the square root of the logarithm
of the total number of events.

Thus we see that this distribution leads to roughly
the same type of statistical error as the Poisson,
at least for values of 5 small compared to 1. For
both examples, one sees that for a given fraction-
al error in Q, the value of z that can be reached
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It is shown that various moments of inclusive cross sections, such as the average trans-
verse momentum, must satisfy rigorous inequality constraints involving the slope of the
diffraction peak.

Considerable progress has been made recently
in deriving rigorous unitarity constraints on in-
clusive cross sections. ' ' Most of the results
obtained so far have taken the form of fixed-angle
bounds in terms of elastic-scattering quantities.
The purpose of this paper is to show that one can

also derive, from unitarity alone, a class of re-
lations between moments of inclusive cross sec-
tions and the diffraction slope parameter,

dB'(s) = —lnA(s, t )
d~ — ~ =o


