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The suan rule for the on-shell pion-nucleon scattering amplitude at the Cheng-Dashen {CD)
point r = vB ——0 has been recalculated. Instead of the value 1.7 p as obtained by CD, we find
T{0,0}= 1.1p"~ and 1.3p, ~, when the new and old I,ovelace phase shifts are used, respectively.

The relevance of the o term to broken hadron
symmetries is wel1 recognized. ' A noncontrover-
sial determination of the magnitude of this term,
however, is yet to be achieved. '

In this comment we report a recalculation made
Qn a bx'oRd-Rx*eR subtx'Rctlon sum x'ule performed
by Cheng and Dashen (CD)' some time ago. While
we intend not to offer a genuine value for the o
term ourselves, we are sure that the value of CD
must be lowered, not by using other arguments, '
but rather by calculating the same sum rule used
by CD.

For the process w(q)+Iq(p)- n(q') +N(p'), the
on-shell scattering amplitude is given by u(p')
x[-4+i —,'y (q+q')BIu(P). ' Allowing one or both
pions to be off the mass shell, we have at the so-
called Adler point (v=0, v8 =0, q ———p, , q' —0
or v = 0, v8 = 0, q' = 0, q" = -)j.'), and at the Wein-
berg point' " (v=o, vs=0, q'=0, q" =0), the re-
sult

A'(0, 0, p, ', 0) =A'(0, 0, 0, p. "")

=K„„,(O) g."/m,

A'(0, 0, 0, 0) =K„„.'(0) g'/m -~(0),

v= (p+p') -(q+q')/4m

= (s -u)/4m,

vs=q q /2m

= (t +q' +q")/4m,

and Z(0) (Ref. 11) is the o term at t =0. Since the
Born term in vB' is of the form K»„(q')K», (q")
x (g'/m) v'/(vs' —v'), CD made the linear combina-
tion

T(v, v„q', q") =A'(v, vs, q', q")

+vB (v1 v81q 1q ),
from which it follows that T(0, 0,0, 0) = -Z(0) and

T(0, 0, p, ', 0) = T(0, 0, 0, p. ') =0, if by v = vs =0 we
mean first pB =0 and then p=0. Whether
T(0, 0, u', g') =-T(0, 0) (Ref. 12) is in reality clnite
close to +g (0) or not, it is the amplitude T(0, 0)
which has been calculated by CD, and is revisited
here.

The broad-area subtraction sum rule' ' for the
on-shell T(v, v8) reads as
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where v, = p +t/4m, v, &v, &v2&~, and 0 & p ~ I. Following CD, we put vs=0 (or t=2p, ), p=0 (or s=u),
and choose v, = 1.52', , p, =2.84'." The input data for (6) include (1) the new" and old" phase shifts of
Lovelace between p, =l.06p and v =14.9p. and (2) the Regge amplitude of Barger and Phillips" beyond
Vmax

The detailed calculation goes as follows. The. phase shifts are reconstructed in equal intervals with the
aid of the Lagrange interpolation formula (in intervals of 0.02', between p, =1.06g and 3.50', and in inter-
vals of 0.1p between 3.5p, and v,„=14.9p). A Simpson rule is employed for the numerical integration
everywhere between v, and v, exeePt in the intervals between 1.50', and 1.54', , and between 2.82p, and
2.86p, in which a linear approximation to ImT(v, 0) and ReT(v, 0) is used, and an analytic integration is
required. The Regge amplitude of Barger and Phillips, which joins smoothly with the phase-shift ampli-
tude at v,„, is extrapolated to the positive-] region, and is employed for the numerical integration beyond

v,„. The result is shown in Table I.
A few remarks concerning the calculation technique are in order. We have included both the points P

=1.0 and P=0.O, at which (6) becomes singly subtracted at v, and p„respectively. The way the integra-
tion is handled is the same for all values of p, if the logarithmic singularities at both sides of the singular
points v, and v, are precluded when P= 1 and P=O. Certainly we no longer have a broad-area subtraction
at these two values of P, but we disagree with the statement that the integration would be easier if they
are excluded.

Due to the "singular" factors (v" —v, ') 8, (v, ' —v")' 8, etc. in the denominators when p' = v, and p' = p„
it is natural to suspect that the integral is enhanced at these two points. This depends on the value of P.
One thing is certain, however: that the integration depends heavily on the numerical values of ReT(p„0)
and ReT(v„0). For it can easily be shown that

P2 1 1
s2 P (

12 2)8( 2 12)1-8 2 (
2 P)8( 2 P)1-8

for v' & v,' & v,
' and 0 & P c 1, so the term involving the real part of T(v', 0) in (6) can be written as

—(
' —v')8(, ' —v')' si P d ' ' ", , , " +R T( „0)+R T( „0).

7r
V1 V V —V V —V1 2

(8)

(At the either end of P one of the two subtraction
constraints is redundant. ) The ordinary broad-
area subtraction' (i.e. , P =0.5) is trying to smear
out the dependence of T(0, 0) on any particular
ReT(v', 0). Thus, with the row P=0.5 in Table I,
we estimated T(0, 0) =1.1p, ' or 1.3p, ', depending
on whether the new" or the old" phase-shift analy-
sis of Lovelace is used, in contrast to the value
of T(0, 0) =1.7p, ' obtained by CD. '

Knowing that

tude, even though now t takes on a (small) positive
value 2p2. The high-energy tail f dv'f(v') turns

14 ~ S Jl
out to be of the magnitude of 0.1p-3.

There are other dispersion calculations on the
nN g term. Hohler, Jakob, and Strauss" used a
forward and a forward-derivative dispersion rela-
tion. The reconstruction of the forward-derivative
amplitude from the partial-wave series is less

TABLE I. Results.

dv' ImT(v', 0)
(

t2 p 2)8( g2 2)l —8
max 1 2

dv'l(v')

is convergent at v' = ~, we can change the variable
of integration into (1/v'), obtaining

1/ "max

On plotting (1/v') 'I(1/v') against (1/v'), this high-
energy integral can be roughly estimated in a
model-independent way, because we are sure that
one end of the plot must be located at the origin.
In practice, since the Regge fit of Barger and
Phillips" has done a pretty job in the physical
region t «0, we have simply adopted their ampli-
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New Lovelace phase shifts, Ref. 14.
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convergent, however. Jakob" later repeated the
same kind of calculation, using

C' (v, t) =A' (v, t) + v(1 —t/4m') '8' (v, t)

—C'(v, t)
8$

at &=0. In addition, he calculated (6) at v= vs =0
with P=1.0 (or 0.0) and for v, (or v, ) running in the
whole interval (v„v ). Since ReC'(v, 2p') at
higher v is not guaranteed to be really reliable
when reconstructed from a phase-shift analysis
(because t is unphysical), his result is not neces-
sarily a more reliable one. Finally, a calculation
by Shih and Shepard" used the amplitude A'(v=0,

vs =0) only. Since the o term happened to be the
difference of two big but nearly equal numbers, the
result has been subjected to large errors.

There are also several theoretical papers' ""
on the wN g term, as well as numerical and theo-
retical work on other systems. " All arguments
point to the fact that T(0, 0) is much smaller than
the value of CD. Although we offer no true solu-
tion to a genuine value of the o term, we have low-
ered the value of CD by carrying out, independent-
ly, the same calculation, in a direction obtained
and welcomed by many people.

One of us (Y.-C.L.) would like to thank H.
Schlaile and R. Strauss for supplying the comput-
ing routine of the Lagrange interpolation method.
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