⁷T. T. Chou and Chen Ning Yang, Phys. Rev. Lett. 25, 1072 (1970).

⁸C. Quigg, Jiunn-Ming Wang, and Chen Ning Yang, Phys. Rev. Lett. 28, 1290 (1972).

⁹T. T. Chou and Chen Ning Yang, Phys. Rev. D 7, 1425

PHYSICAL REVIEW D

(1973).

¹⁰G. Charlton et al., Phys. Rev. Lett. 29, 515 (1972); F. T. Dao et al., Phys. Rev. Lett. 29, 1627 (1972); D. B. Smith, Berkeley Report No. UCRL-20632 (unpublished).

VOLUME 8, NUMBER 5 Comment on the $\pi N \sigma$ Term **1 SEPTEMBER 1973**

Yu-Chien Liu and J. A. M. Vermaseren

Institute for Theoretical Physics, University of Nijmegen, Nijmegen, The Netherlands (Received 29 January 1973)

The sum rule for the on-shell pion-nucleon scattering amplitude at the Cheng-Dashen (CD) point $\nu = \nu_B = 0$ has been recalculated. Instead of the value 1.7 μ^{-1} as obtained by CD, we find $T(0, 0) \simeq 1.1 \mu^{-1}$ and $1.3 \mu^{-1}$, when the new and old Lovelace phase shifts are used, respectively.

The relevance of the σ term to broken hadron symmetries is well recognized.¹ A noncontroversial determination of the magnitude of this term, however, is yet to be achieved.²

In this comment we report a recalculation made on a broad-area subtraction sum rule³ performed by Cheng and Dashen $(CD)^4$ some time ago. While we intend not to offer a genuine value for the σ term ourselves, we are sure that the value of CD must be lowered, not by using other arguments,⁵ but rather by calculating the same sum rule used by CD.

For the process $\pi(q) + N(p) - \pi(q') + N(p')$, the on-shell scattering amplitude is given by $\overline{u}(p')$ $\times [-A + i\frac{1}{2}\gamma \cdot (q + q')B]u(p).^{6}$ Allowing one or both pions to be off the mass shell, we have at the socalled Adler point⁷ ($\nu = 0$, $\nu_B = 0$, $q^2 = -\mu^2$, $q'^2 = 0$ or $\nu = 0$, $\nu_B = 0$, $q^2 = 0$, $q'^2 = -\mu^2$), and at the Weinberg point⁸⁻¹⁰ ($\nu = 0$, $\nu_B = 0$, $q^2 = 0$, $q'^2 = 0$), the result

$$A^{+}(0, 0, \mu^{2}, 0) = A^{+}(0, 0, 0, \mu^{2})$$
$$= K_{NN\pi}(0) g^{2}/m, \qquad (1)$$

and

$$A^{+}(0,0,0,0) = K_{NN\pi^{2}}(0) g^{2}/m - \Sigma(0), \qquad (2)$$

where

$$\nu = -(p + p') \cdot (q + q')/4m$$

$$= (s - u)/4m, \qquad (3)$$

$$\nu_B = q \cdot q'/2m$$

$$= (t + a^2 + a'^2)/4m, \qquad (4)$$

and $\Sigma(0)$ (Ref. 11) is the σ term at t=0. Since the Born term in νB^+ is of the form $K_{NN\pi}(q^2)K_{NN\pi}(q'^2)$ $\times (g^2/m)\nu^2/(\nu_B^2 - \nu^2)$, CD made the linear combination

$$T(\nu, \nu_B, q^2, q'^2) = A^+(\nu, \nu_B, q^2, q'^2) + \nu B^+(\nu, \nu_B, q^2, q'^2), \qquad (5)$$

from which it follows that $T(0,0,0,0) = -\Sigma(0)$ and $T(0, 0, \mu^2, 0) = T(0, 0, 0, \mu^2) = 0$, if by $\nu = \nu_B = 0$ we mean first $v_B = 0$ and then v = 0. Whether $T(0, 0, \mu^2, \mu^2) \equiv T(0, 0)$ (Ref. 12) is in reality quite close to $+\Sigma(0)$ or not, it is the amplitude T(0,0)which has been calculated by CD, and is revisited here.

The broad-area subtraction sum rule^{3,4} for the on-shell $T(\nu, \nu_B)$ reads as

$$T(\nu, \nu_{B}) = \frac{g^{2}}{m} \frac{\nu_{B}^{2}}{\nu_{B}^{2} - \nu^{2}} \frac{(\nu_{1}^{2} - \nu_{2}^{2})^{\beta}(\nu_{2}^{2} - \nu_{B}^{2})^{1-\beta}}{(\nu_{1}^{2} - \nu_{B}^{2})^{\beta}(\nu_{2}^{2} - \nu_{B}^{2})^{1-\beta}} + \frac{2}{\pi}(\nu_{1}^{2} - \nu^{2})^{\beta}(\nu_{2}^{2} - \nu^{2})^{1-\beta}} \\ \times \left[\int_{\nu_{0}}^{\nu_{1}} d\nu' \frac{\nu'}{\nu'^{2} - \nu^{2}} \frac{\operatorname{Im} T(\nu', \nu_{B})}{(\nu_{1}^{2} - \nu'^{2})^{\beta}(\nu_{2}^{2} - \nu'^{2})^{1-\beta}} + \cos\pi\beta \int_{\nu_{1}}^{\nu_{2}} d\nu' \frac{\nu'}{\nu'^{2} - \nu^{2}} \frac{\operatorname{Im} T(\nu', \nu_{B})}{(\nu'^{2} - \nu'^{2})^{\beta}(\nu_{2}^{2} - \nu'^{2})^{1-\beta}} \right] \\ + \sin\pi\beta \int_{\nu_{1}}^{\nu_{2}} d\nu' \frac{\nu'}{\nu'^{2} - \nu^{2}} \frac{\operatorname{Re} T(\nu', \nu_{B})}{(\nu'^{2} - \nu_{1}^{2})^{\beta}(\nu_{2}^{2} - \nu'^{2})^{1-\beta}} - \int_{\nu_{2}}^{\infty} d\nu' \frac{\nu'}{\nu'^{2} - \nu^{2}} \frac{\operatorname{Im} T(\nu', \nu_{B})}{(\nu'^{2} - \nu_{1}^{2})^{\beta}(\nu'^{2} - \nu_{2}^{2})^{1-\beta}} \right], \quad (6)$$

where $\nu_0 = \mu + t/4m$, $\nu_0 < \nu_1 < \nu_2 < \infty$, and $0 < \beta < 1$. Following CD, we put $\nu_B = 0$ (or $t = 2\mu^2$), $\nu = 0$ (or s = u), and choose $\nu_1 = 1.52\mu$, $\nu_2 = 2.84\mu$.¹³ The input data for (6) include (1) the new¹⁴ and old¹⁵ phase shifts of Lovelace between $\nu_0 = 1.06\mu$ and $\nu_{max} = 14.9\mu$ and (2) the Regge amplitude of Barger and Phillips¹⁶ beyond ν_{max} .

The detailed calculation goes as follows. The phase shifts are reconstructed in equal intervals with the aid of the Lagrange interpolation formula (in intervals of 0.02μ between $\nu_0 = 1.06\mu$ and 3.50μ , and in intervals of 0.1μ between 3.5μ and $\nu_{max} = 14.9\mu$). A Simpson rule is employed for the numerical integration everywhere between ν_0 and ν_{max} , except in the intervals between 1.50μ and 1.54μ , and between 2.82μ and 2.86μ , in which a *linear* approximation to $ImT(\nu', 0)$ and $ReT(\nu', 0)$ is used, and an analytic integration is required. The Regge amplitude of Barger and Phillips, which joins smoothly with the phase-shift amplitude at ν_{max} , is extrapolated to the positive-t region, and is employed for the numerical integration beyond ν_{max} . The result is shown in Table I.

A few remarks concerning the calculation technique are in order. We have included both the points $\beta = 1.0$ and $\beta = 0.0$, at which (6) becomes singly subtracted at ν_1 and ν_2 , respectively. The way the integration is handled is the *same* for all values of β , if the logarithmic singularities at both sides of the singular points ν_1 and ν_2 are precluded when $\beta = 1$ and $\beta = 0$. Certainly we no longer have a broad-area subtraction at these two values of β , but we disagree with the statement that the integration would be easier if they are excluded.

Due to the "singular" factors $(\nu'^2 - \nu_1^2)^{\beta}$, $(\nu_2^2 - \nu'^2)^{1-\beta}$, etc. in the denominators when $\nu' = \nu_1$ and $\nu' = \nu_2$, it is natural to suspect that the integral is enhanced at these two points. This depends on the value of β . One thing is certain, however: that the integration depends heavily on the numerical values of $\operatorname{Re} T(\nu_1, 0)$ and $\operatorname{Re} T(\nu_2, 0)$. For it can easily be shown that

$$\sin\pi\beta \int_{\nu_{1}}^{\nu_{2}} d\nu' \frac{\nu'}{\nu'^{2} - \nu^{2}} \frac{1}{(\nu'^{2} - \nu_{1}^{2})^{\beta} (\nu_{2}^{2} - \nu'^{2})^{1 - \beta}} = \frac{\pi}{2} \frac{1}{(\nu_{1}^{2} - \nu^{2})^{\beta} (\nu_{2}^{2} - \nu^{2})^{1 - \beta}}$$
(7)

for $\nu^2 < \nu_1^2 < \nu_2^2$ and $0 \le \beta \le 1$, so the term involving the real part of $T(\nu', 0)$ in (6) can be written as

$$\frac{2}{\pi} (\nu_1^2 - \nu^2)^{\beta} (\nu_2^2 - \nu^2)^{1-\beta} \sin \pi \beta \int_{\nu_1}^{\nu_2} d\nu' \frac{\nu'}{{\nu'}^2 - \nu^2} \frac{\operatorname{Re}T(\nu', 0) - \operatorname{Re}T(\nu_1, 0) - \operatorname{Re}T(\nu_2, 0)}{(\nu'^2 - \nu_1^2)^{\beta} (\nu_2^2 - {\nu'}^2)^{1-\beta}} + \operatorname{Re}T(\nu_1, 0) + \operatorname{Re}T(\nu_2, 0).$$
(8)

(At the either end of β one of the two subtraction constraints is redundant.) The ordinary broadarea subtraction⁷ (i.e., $\beta = 0.5$) is trying to smear out the dependence of T(0,0) on any particular $\operatorname{Re}T(\nu',0)$. Thus, with the row $\beta = 0.5$ in Table I, we estimated $T(0,0) \simeq 1.1 \,\mu^{-1}$ or $1.3 \,\mu^{-1}$, depending on whether the new¹⁴ or the old¹⁵ phase-shift analysis of Lovelace is used, in contrast to the value of $T(0,0) \simeq 1.7 \,\mu^{-1}$ obtained by CD.⁴

Knowing that

$$\int_{\nu_{\max}}^{\infty} \frac{d\nu'}{\nu'} \frac{\mathrm{Im}T(\nu',0)}{({\nu'}^2 - {\nu_1}^2)^{\beta} ({\nu'}^2 - {\nu_2}^2)^{1-\beta}} \equiv \int_{\nu_{\max}}^{\infty} d\nu' I(\nu')$$

is convergent at $\nu' = \infty$, we can change the variable of integration into $(1/\nu')$, obtaining

$$\int_0^{1/\nu_{\max}} d(1/\nu') (1/\nu')^{-2} I(1/\nu') \, .$$

On plotting $(1/\nu')^{-2}I(1/\nu')$ against $(1/\nu')$, this highenergy integral can be roughly estimated in a model-independent way, because we are sure that one end of the plot must be located at the origin. In practice, since the Regge fit of Barger and Phillips¹⁶ has done a pretty job in the physical region $t \leq 0$, we have simply adopted their amplitude, even though now *t* takes on a (small) positive value $2\mu^2$. The high-energy tail $\int_{14.9\mu}^{\infty} d\nu' I(\nu')$ turns out to be of the magnitude of $0.1\mu^{-3}$.

There are other dispersion calculations on the $\pi N \sigma$ term. Höhler, Jakob, and Strauss¹⁷ used a forward and a forward-derivative dispersion relation. The reconstruction of the forward-derivative amplitude from the partial-wave series is less

TABLE I. Results.

β	$T(0, 0)^{a}$	T (0, 0) ^b
1.0	0.52	1.29
0.9	0.71	1.32
0.8	0.86	1.33
0.7	0.97	1.34
0.6	1.04	1.34
0.5	1.09	1.32
0.4	1,11	1.27
0.3	1.11	1.21
0.2	1.10	1.11
0.1	1.07	0.98
0.0	1.05	0.79

^a New Lovelace phase shifts, Ref. 14.

^b Old Lovelace phase shifts, Ref. 15.

convergent, however. Jakob¹⁸ later repeated the same kind of calculation, using

$$C^{+}(\nu, t) = A^{+}(\nu, t) + \nu(1 - t/4m^{2})^{-1}B^{+}(\nu, t)$$

and

$$\frac{\partial}{\partial t}C^+(\nu,t)$$

at t=0. In addition, he calculated (6) at $\nu = \nu_B = 0$ with $\beta = 1.0$ (or 0.0) and for ν_1 (or ν_2) running in the whole interval (ν_0, ν_{max}). Since $\text{Re}C^+(\nu, 2\mu^2)$ at *higher* ν is not guaranteed to be really reliable when reconstructed from a phase-shift analysis (because *t* is unphysical), his result is not necessarily a more reliable one. Finally, a calculation by Shih and Shepard¹⁹ used the amplitude $A^+(\nu=0,$

- ¹C. G. Callan, in *Proceedings of the Amsterdam International Conference on Elementary Particles*, 1971, edited by A. G. Tenner and M. Veltman (North-Holland, Amsterdam, 1972), pp. 289 ff.
- ²Cf. C. Lovelace, Rutgers University report, 1972 (unpublished).
- ³C. H. Chan and F. T. Meiere, Phys. Rev. Lett. <u>20</u>, 568 (1968); Y. C. Liu, Phys. Rev. <u>172</u>, 1564 (1968); <u>178</u>, 2243 (1969).
- ⁴T. P. Cheng and R. Dashen, Phys. Rev. Lett. <u>26</u>, 594 (1971); Phys. Rev. D <u>4</u>, 1561 (1971).
- ⁵See the last two paragraphs of the text.
- ⁶G. F. Chew *et al.*, Phys. Rev. <u>106</u>, 1337 (1957); R. G. Moorhouse, Annu. Rev. Nucl. Sci. 19, 301 (1969).
- ⁷S. L. Adler, Phys. Rev. <u>137</u>, B1022 (1965).
- ⁸S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).
- ⁹L. S. Brown et al., Phys. Rev. D 4, 2801 (1971).
- ¹⁰H. J. Schnitzer, Phys. Rev. D <u>5</u>, 1482 (1972); <u>6</u>, 1801 (1972).
- ¹¹H. Pagels and W. J. Pardee, Phys. Rev. D <u>4</u>, 3335 (1972).
- ¹²The limit $\nu_B = \nu = 0$ is nonuniform for the Born term. While for $\pi N \to \pi N$

$$\lim_{\nu \to 0} \left[\lim_{\nu_B \to 0} \nu B^+ (\nu, \nu_B) \right] = g^2 / m ,$$
$$\lim_{\nu_B \to 0} \left[\lim_{\nu \to 0} \nu B^+ (\nu, \nu_B) \right] = 0 ,$$

for $\gamma N \rightarrow \pi N$ (as also considered by CD, Ref. 4.)

 $\nu_B = 0$) only. Since the σ term happened to be the difference of two big but nearly equal numbers, the result has been subjected to large errors.

There are also several theoretical papers^{9-11,20} on the $\pi N \sigma$ term, as well as numerical and theoretical work on other systems.²¹ All arguments point to the fact that T(0,0) is much smaller than the value of CD. Although we offer no true solution to a genuine value of the σ term, we have lowered the value of CD by carrying out, independently, the same calculation, in a direction obtained and welcomed by many people.

One of us (Y.-C.L.) would like to thank H. Schlaile and R. Strauss for supplying the computing routine of the Lagrange interpolation method.

$$\lim_{\nu \to 0} \left[\lim_{\nu_B \to 0} (A + \nu C) \right] = - \left(eg/2m \right) \left(\mu_p/m \right),$$

but

$$\lim_{\nu_B\to 0} \left[\lim_{\nu\to 0} (A+\nu C)\right] = -\infty.$$

- ¹³For convenience of numerical computation, we set $\nu_2 = 2.84 \mu$ rather than the 2.85 μ used by CD.
- ¹⁴S. Almehed and C. Lovelace, CERN Report No. CERN-TH-1408, 1971 (unpublished). We have noticed that at two energies the imaginary parts of H_{111} are *negative*.
- 15 The set CERN-EXP, in Particle Data Group, LBL Report No. UCRL-20030 πN , 1970 (unpublished).
- ¹⁶V. Barger and R. J. N. Phillips, Phys. Rev. <u>187</u>, 2210 (1969).
- ¹⁷G. Höhler, H. P. Jakob, and R. Strauss, Phys. Lett. 35B, 445 (1971).
- ¹⁸H. P. Jakob, CERN Report No. CERN-TH-1446, 1971 (unpublished).
- ¹⁹C. C. Shih and H. K. Shepard, Phys. Lett. <u>41B</u>, 321 (1972).
- ²⁰E. T. Osypowski, Nucl. Phys. <u>B21</u>, 651 (1970);
 G. Altarelli, N. Cabibbo, and L. Maiani, Phys. Lett. <u>35B</u>, 415 (1971); Nucl. Phys. <u>B34</u>, 621 (1971); S. J. Hakim, Nuovo Cimento Lett. <u>5</u>, 377 (1972).
- ²¹F. von Hippel and J. K. Kim, Phys. Rev. D 1, 151 (1970); E. Reya, *ibid.* 6, 200 (1972); Florida State University Report No. FSU HEP 72-8-18 (unpublished); M. Ericson and M. Rho, Phys. Lett. <u>36B</u>, 96 (1971); B. Renner, DESY Report No. DESY 71/42 (unpublished); Phys. Lett. 40B, 473 (1972).