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It is amusing to notice that this result is again con-
sistent with Harari's argument, in which one can switch

off the strong interactions (leaving behind an elementary
neutron and proton), since the deuteron becomes un-
bound in this limit. In this case, the proton and neutron
e = 0 terms are given by their respective Thomson limits,
whi le that of the deuteron is the sum of the two. This
picture becomes suspect when one considers the nucleons
to be composite systems .
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The cross section for pair production by unpolarized photons on free, unpolarized electrons is
differential in four nontrivial variables. This cross section is integrated numerically over two or three of
the variables, and various energy spectra and angular distributions are obtained. The calculations are
restricted to low photon energies, below 5 MeV, where effects of recoil and exchange are important
and may be observed.

INTRODUCTION

The differential cross section for pair produc-

tionn

by unpolarized photons on free, unpo lariz ed
electrons has been calculated earlier, ' and the
total cross section has been obtained by Mork. '
It ha s been shown that for high photon energies,
above a few hundred MeV, the diff erence between
the cross sections for production of pairs on a
heavy target and on a light target vanishes, since
almost al1 pairs are created at low -momentum
transfers and the recoil of the target particle is
negligible . Also exchange effects are negligible
at high energies . According to Ref . 2, exchange
effects may also be neglected for lower photon
energies (down to about 6 MeV), and the triplet
cross section is well represented by the Bors e1-
1ino formula ' which only includes recoil effects .
This has been shown for the total cross section,
and it must also be true for the diff erential cross
sections except for some spec ial geometries .

For photon energies below about 6 MeV, both
exchange and y-e d iag ram s are important, and
these effects reduce the triplet cross section con-
s iderably compared to the Borsel 1ino cross sec-

tion�.

In order to verify these effects, it is there-
fore of interest to study the triplet cross section
for energies between threshold (4mc') and 6 MeV.
This energy region also has the advantage in that
screening, binding, and Coulomb corrections
should be small .

At present, a group at the University of Cler-

mont is making detailed inve stigati ons of the
triplet process for low photon energies by using
a streamer -chamber technique, ~ and motivated by
this experiment, we have calculated various cross
sections diff er entia1. in one or two variables . As
has been shown by the experiment, it is impera-
tive to make use of the kinematica 1 relations for
the triplet process in order to separate real trip-
lets from false ones . For some cases the kine-
matical limits of the triplet variables can be given
by simple analytic expressions (cf. Ref. l). Some
other more complicated cases are discussed be-
low .

W'e use units in which 5 = 1, c = 1, m = 1.

I. THE DIFFERENTIAL CROSS SECTION

The differential cross section for unpolarized
particles is given by

CVy' 2
do= ~ — p' p' p' 64(p +k -p -p -p )X

I p ~
I

4~",e,e. 1 2 3

where X is a function of invariant products and it
is given in Ref . 1 . The four -momenta of the in-
coming photon and electron are k and p, and the
four -momenta of the outgoing electrons and posi-
tron are p» p„and p „respectively . Electron
energies and momenta are e, e» e 2 and p, p»
p, ; positron and photon energies and momenta
are 6 3 & and p „k, respectively.
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The cross section given by Eq. (1.1) contains
nine independent variables. Four variables are
easily integrated when we use the 5 function. One
variable is a trivial azimuthal angle since we have
symmetry around %. It is too complicated to do
the remaining integrations analytically and we
therefore use numerical integration.

Present experiments on triplet production are
made in the laboratory system where the initial
electron is approximately at rest. We therefore
perform the integrations using laboratory vari-
ables. The total cross section, however, is most
easily obtained in the center-of-mass system as
ha, s been shown in Ref. 1. We use the Monte Carlo
method of integration.

II. ENERGY DISTRIBUTIONS, dg/de3 and da/de2

The triplet cross section is of course symmetric
in the variables of the two final electrons, and it
is in principle not possible to distinguish the pro-
duced electron from the recoiling one. For high
photon energies, the pairs are dominantly pro-
duced at low-momentum transfers, and it is then
meaningful to distinguish the low-energy recoiling
electron from the produced high-energy electron.
For our low photon energies, the recoiling elec-
tron cannot be identified, and we have thus two

energy distributions: da/de„which is the energy
spectrum of one of the final electrons, and do'/de, ,
which is the energy spectrum of the positron.

Calculating do'/de„we use as variables of in-
tegration the quantities x, y, c» and cp, where x
andy are the cosines of the angles between k and

p, and p „respectively, and y, is the azimuthal
angle of p, with k as polar axis. The phase space
has been obtained by Mork' and Jarp, ' and we find
the cross section

e,'=[b, + (b
' —a,c,)'"]a, ',

where

a, =2[lp, I&ox —(&u+ m)(c, -m)],

(2.4)

x = [ ((d + m) (E 3
-m) + 2 m '] (Ip ~ I

QJ ) ', (2.6)

and the positron energy may vary between the
limits

g,' = ((u'-m'+(u[(u(( -4m)]'"].(2(u+m) '. (2.7)

It should be noted that since we now integrate
over all final states of the two identical electrons,
we count identical final states twice, and we there-
fore have divided the cross section by a factor of 2.

For the details of the numerical integrations in
Eq. (2.1) we refer to Jarp. ' We have calculated
do/de, for photon energies &u =4.4, 5.12, 7.0,
10.0 I.'. The results are shown in Fig. 1.

The calculation of the electron energy spectrum
do/de, is very similar to the calculation of dc/de, .
Since the phase space is symmetric in p, and p3,
the cross section da/de2 is given by Eq. (2.1), if
we interchange e„ lp, I, and x by e„ lp, I, and y,
respectively, in this and the following equations.
The quantity X is of course left unchanged. We al-
so multiply by a factor of 2, since we now do not
integrate over identical final states. The results
are shown in Fig. 2, where do/de, is given for
photon energies ~=4.4, 5.12, 7.0, and 10.0 mc'.

III. ANGULAR DISTRIBUTIONS do/dx and da/dy

5, = ((u+ m -e,)[lp, l(ux —(w+ m)(e, -m)],
(2.5)

c, = m'(co'+ lp, l'-2(alp, lx)

+[lp, l
~x —(&u+ m)(e, -m)]'.

The mmcimum angle between k and p, for given e3
is determined by

, —=, ' lp. lr «r Ip.l«.

where the trivial integration over y, has been per-
formed. The limits of y are

The angular distribution of the positron is do/dx,
where x =cos8„and 8, is the angle between k
and p3. This cross section is easily obtained
from Eq. (2.1), if we interchange the order of in-
tegrating x and e, in this expression. We find

, =[b, +(b,' —abc, )'"]a, ',
where

a, = Ip. l'(~'+ lp, l'-2~IS. Ix),

b, =A, lp, l(cu —Ip, lx),

c, =A,'- IP.I'lp. l'(I -x'),
A& = lp&l(dx —((d + m)(E'2+E& —m) +6&6& .

(2.2)

(2 3)

X
[,(y, -y)(y -y )j'"

where the limits of e, are

m[&u -m2+ ux(&u'x —4am)~ ]
3 ((d + m) —&d x

and x may vary between one and the lower limit

The limits of ~, are x = 2 (m/&u)'" . (3.3)
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angle between k and p, . %'e may aga
s mmetry in, and p, of the phase space (cf. the
discussion at the end of Sec. II .
shown in Fig. 4.

IV. THE OPENPENING-ANGLE DISTRIBUTION do/dz

The opening -Rngle dlstx'lbu tion is dojdz, where
8 ' the angle between the posi-z =cos8, and, ls

d the momentum p, gf one otl on I11ODlentuDl ps RQ

the final electrons. To calculate this cross sec-
ver the vari-t' 't ' necessary to integrate ov

f' d The kinematical equations
w lead to very complicated relations for e

1' 't f the variables, and we Shall ill discuss this
in soDle de 1 .ta 1 The cross section d& is propor-
tional to

Using ethe 6 function to integrate over d~p, , we
find

ds s s 6(re+1 ei qs cs)d p= (4.2)

s, =[m'+ (k-p, -p,)']'".
Wl ltlQg

d'p, d'p, = )p, )e,de, (p, (e,ds, dxdy, dydee„ (4.4)

z =cos8+

=xy +[(1-x')(1 -y')]'" cosy,

RQd Rfte1' lntegx'atloQ ovex' pq us guslIl the ~ fu11ctloQ
in Eq. (4.2), we find

(4.5)

where the variables are defined in Sec. 1 (, is
f we introduce insteadthe azimuthal angle o ps,

of y„ the variable y = ps -y, which makes y, a
trivial Vax'ia e.' bl Then we introduce instead of P,
the VRI'iable

(4
6162E3

(ps)desde sdxdz
~[1 —x' -y' —g'+ 2xyx]'-" (4.6)
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where y is determined in terms of e„e„x,and

z by Eq. (4.8), and the condition &@+1 -e~ —e2-e
= 0. The square root in Eq. (4.6) must be real.
This condition determines the limits x, of the
variable x. These limits can be written in the
form

x, = [b, + (5,' -a,c,)'"]a, ',
where as, b, , and c3 are functions of &„&„and
z, (cf. Jarp, Ref. 5). Since x, must be real, we

require b,'-a, c, ~ 0, and this inequality gives

[+' —(++ m -&2)2 —Ip, l'z']en' —2(&u+ m -e,)(++m)(e, -m)e, + (&u'+z'm')Ip2I' —(u&+ m)'(e, -m)' —adam'

—2z Ip, I Ip, I[((u+ m —e,)z, + ((u+ m) (c, -m) —&u'] ~ 0 .
(4 8)

This condition determines the allowed values of
e„&„and z. If we solve it with respect to ~, or
c„we find fourth-order equations which are too
complicated for complete analytical treatment.
However, we may easily solve (4.8) with respect
to z, and afterwards, determine the limits for ~,
and e, . Choosing a large number of combinations
of allowed values for e, and e„we could compute
the corresponding limits of z, and thus find nu-
merically, the minimum value of z for each pho-
ton energy &. Allowed opening angles are deter-
mined by

z ~ z ~ I (4 &)

and we show in Fig. 5 the dependence of z on ~.
For comparison, we also show x =2 (m/&u)'~',

which gives the maximum angle between k and the
momentum of any of the final particles.

For a given, allowed value of z, the inequality
(4.8) leads to a fourth-order equation for e„and
the limits of e, are determined by two of the roots
of this equation. These roots depend on c„and
by varying &, and requiring that &, be always in
the region m & e3 & ~ —~ —e„we also obtain the
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allowed values of &, . Thus we are able to inte-
grate the cross section, and resulting opening-
angle d.istributions are shown in Fig. 6.
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V. DOUBLE DIFFERENTIAL CROSS SECTIONS d~ I'mb)

We have prepared programs for calculating the
cross sections d'o/dxde, , d'v/dxde, , d'&r/dydee, ,
d v/dydee 3 .

The cross section d'o'/dxde, which is differen-
tial in positron angle and energy, is easily ob-
tained from Eq. (2.1) if we leave out the integra-
tion over x.

The cross section d'o/dxde, which is differen-
tial in electron energy and positron angle, can be
integrated if we use a method similar to the one
described at the end of Sec. IV. This is necessary,
since the kinematical relations again lead to com-
plicated fourth-order equations for the limits of
the variables.

The methods of integration for d'o/dydee, and
d'o/dydc, are similar to the methods used for
d'a/dxde, and d'o/dxd~„respectively, since the
phase space is symmetric in positron and elec-
tron variables.

In order to keep down the cost, we have only
computed these double differential cross sections
for one photon energy, & =5.12 me', which is the
relevant energy for the Clermont experiment. ~

The cross sections are shown in Figs. 7, 8, 9,
and 10 as a function of the energies for electron
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FIG. 6. The opening-angle distribution do/dz, where
z =cos0+ and 0+ is the angle between the positron mo-
mentum and the momentum of one of the final electrons,
as a function of z. The curves a, b, and c correspond
to photon energies u =4.4, 5.12, and 7.0mc2, respec-
tively.
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Dip in High-Energy pp Scattering and the Proton Substructure"'

G. Eilam and Y. Gell
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The recently observed dip in high-energy elastic pp scattering is explained in the framework of
models in which the nucleon possesses a layered substructure.

During recent years two types of models for
high-energy elastic PP scattering have attracted
much interest:

(a) geometrical and Begge versions of the dif-
fraction model';

(b) models in which the proton exhibits a layered
substructure. ' '

An attractive feature of some of type (a) models
is the dip, compatible with recent experimental
results from the CERN Intersecting Storage Rings
(ISB),' which is predicted at high energy for
-2&t ~-I (GeV/c)'.

It is quite interesting to see whether a similar
dip pattern can be simply explained in the frame-
work of type (b) models. The purpose of this pa-
per is to show that a dip situated in the interval
-2.0stc-1.2 (GeV/c)' is predicted from a type
(b) model; it is also shown that the above result
holds even including the single-flip amplitude.

It is well known that a finite sum of Gaussians
provides an empirical fit to do/dt. ' However, '

such a formula is theoretically unacceptable since
it violates the Cerulus-Martin bound. ' This dif-
ficulty was overcome by Fleming, Giovannini,
and Predazzi' (hereafter FGP) who developed a
theoretically consistent model and also obtained
an excellent fit for dv/dt over the whole angula. r
region at pre-ISH energies.

From the FOP approach, a picture emerged
which visualizes the proton as possessing infinite-
ly many layers. The higher the transverse mo-
mentum, the farther in the layer that gets ex-
cited in the collision. '

Furthermore, it was shown by FOP that at a
given x, x=Pk'sine—= Pk~ (where P is the c.m. veloc-
ity of the proton, A'is its c.m. momentum, and 8

is the c.m. scattering angle), we expect an im-

portant contribution from the nth layer of the nu-
cleon, where n increases like x'. n =x'/n(x )

[&(x ') is the increment in x ' for which a new re-
gion of interaction starts to be relevant]. Since
a break in do/dt which indicates a transition from
the outermost layer to the second layer is ob-
served at pre-ISB energies around t = -1.2 (GeV/
c)', ' one expects that for -1.2&t ~0 (GeV/c)' only
the outermost layer of the nucleon contributes
significantly (note that x' = -f at high energy and
small angle). Thus, 4(x') =1.2 (GeV/c)' and the
second layer of the nucleon will give an important
contribution for -2.4 S t & 1.2 (GeV/c)'-.

Let us now estimate the radii of the first two
layers of the nucleon. Using Eq. (IV. 27) of FGP'"
and taking 0.9 fm for the radius of the nucleon' we
find that the second layer of the nucleon is con-
fined between i = 0 fm and x2 = 0.33 fm. '

In the following we show that, assuming the
double-helicity-flip amplitudes to be negligible
at high energies, the contribution of the second
layer of the nucleon, which was found to be im-
portant for -2.4 its-1.2 (GeV/c)', is consider-
ably reduced for all the other amplitudes for
-2.0&t&-1.2 (GeV/c)', and thus do/dt is ex-
pected to exhibit a dip inside this t interval.

The partial-wave expansion for each one of
the five independent helicity amplitudes I" z &, . z, &,
(where &„A., and &„A., stand for the initial and
final helicities, respectively} is given by

] oo

E„,„,. „~,(cose, s) =—Q(2J+1}Ez x . ~ z (s)
0

x dy~(coss),

where ~ Ay ~ p ~3 ~ From the classical
relation J=kr (Bef. 11'} and the previously stated


