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01t is amusing to notice that this result is again con-
sistent with Harari’s argument, in which one can switch

off the strong interactions (leaving behind an elementary
neutron and proton), since the deuteron becomes un-
bound in this limit, In this case, the proton and neutron
a =0 terms are given by their respective Thomson limits,
while that of the deuteron is the sum of the two, This
picture becomes suspect when one considers the nucleons
to be composite systems,

PHYSICAL REVIEW D

VOLUME 8, NUMBER 1

1 JULY 1973

Differential Cross Sections for Pair Production by Photons on Electrons

S. Jarp* and K. J. Mork
Institute of Physics, University of Trondheim, Norges Laererhogskole, Trondheim, Norway
(Received 5 February 1973)

The cross section for pair production by unpolarized photons on free, unpolarized electrons is
differential in four nontrivial variables. This cross section is integrated numerically over two or three of
the variables, and various energy spectra and angular distributions are obtained. The calculations are
restricted to low photon energies, below 5 MeV, where effects of recoil and exchange are important

and may be observed.

INTRODUCTION

The differential cross section for pair produc-
tion by unpolarized photons on free, unpolarized
electrons has been calculated earlier,! and the
total cross section has been obtained by Mork.?
It has been shown that for high photon energies,
above a few hundred MeV, the difference between
the cross sections for production of pairs on a
heavy target and on a light target vanishes, since
almost all pairs are created at low-momentum
transfers and the recoil of the target particle is
negligible. Also exchange effects are negligible
at high energies. According to Ref. 2, exchange
effects may also be neglected for lower photon
energies (down to about 6 MeV), and the triplet
cross section is well represented by the Borsel-
lino formula® which only includes recoil effects.
This has been shown for the total cross section,
and it must also be true for the differential cross
sections except for some special geometries.

For photon energies below about 6 MeV, both
exchange and y-e diagrams are important, and
these effects reduce the triplet cross section con-
siderably compared to the Borsellino cross sec-
tion. In order to verify these effects, it is there-
fore of interest to study the triplet cross section
for energies between threshold (4#c?) and 6 MeV.
This energy region also has the advantage in that
screening, binding, and Coulomb corrections
should be small.

At present, a group at the University of Cler-

mont is making detailed investigations of the
triplet process for low photon energies by using
a streamer-chamber technique,* and motivated by
this experiment, we have calculated various cross
sections differential in one or two variables. As
has been shown by the experiment, it is impera-
tive to make use of the kinematical relations for
the triplet process in order to separate real trip-
lets from false ones. For some cases the kine-
matical limits of the triplet variables can be given
by simple analytic expressions (cf. Ref. 1). Some
other more complicated cases are discussed be-
low.

We use units in which 7=1, c¢=1, m =1.

I. THE DIFFERENTIAL CROSS SECTION

The differential cross section for unpolarized
particles is given by

- ayﬁf d3pLd3p2d3p3 4
do= Ip .kl 4172616263 5 (p +k "pl 22 "ps)X’

(1.1)

where X is a function of invariant products and it
is given in Ref. 1. The four-momenta of the in-
coming photon and electron are % and p, and the
four-momenta of the outgoing electrons and posi-
tron are p,, p,, and p,, respectively. Electron
energies and momenta are €, €,, €,and b, D,,
D,; positron and photon energies and momenta
are e€;, wand p,, k, respectively.



160 S. JARP AND K. J. MORK

The cross section given by Eq. (1.1) contains
nine independent variables. Four variables are
easily integrated when we use the 6 function. One
variable is a trivial azimuthal angle since we have
symmetry around K. It is too complicated to do
the remaining integrations analytically and we
therefore use numerical integration.

Present experiments on triplet production are
made in the laboratory system where the initial
electron is approximately at rest. We therefore
perform the integrations using laboratory vari-
ables. The total cross section, however, is most
easily obtained in the center-of-mass system as
has been shown in Ref. 1. We use the Monte Carlo
method of integration.

II. ENERGY DISTRIBUTIONS, do/de; and do/de,

The triplet cross section is of course symmetric
in the variables of the two final electrons, and it
is in principle not possible to distinguish the pro-
duced electron from the recoiling one. For high
photon energies, the pairs are dominantly pro-
duced at low-momentum transfers, and it is then
meaningful to distinguish the low-energy recoiling
electron from the produced high-energy electron.
For our low photon energies, the recoiling elec-
tron cannot be identified, and we have thus two
energy distributions: do/de,, which is the energy
spectrum of one of the final electrons, and do/de,,
which is the energy spectrum of the positron.

Calculating do/de,, we use as variables of in-
tegration the quantities x, y, €,, and ¢, where x
and y are the cosines of the angles between k and
Pyand P 2 respectwely, and ¢, is the azimuthal
angle of P, with kas polar axis. The phase space
has been obtained by Mork® and Jarp,® and we find
the cross section

do on'
d€ 217(0 ' Slf dxf Ipzl d€

vy X
x L_ @ [a, (3, =) (y =y )2 °

where the trivial integration over ¢, has been per-
formed. The limits of y are

v, =[b, 0, - a;¢,)*?]a, 7, 2.2)

2.1)

where
a,= B, [*(@? + D 5|* ~ 20D o|x),
by =A,[B| @ - [Bylx),
e =A2 = B[P 571 - %),

(w+m)e, +€5 =) +€,4€, .

2.3)

A;=|Dglwx -

The limits of €, are

loe

€5=[b,+ (0, _azcz)l/z]az-l: (2.4)
where
a, =2[ [P 5| wx ~

by=(w+m —€)[|Dg|wx -

(w + m)(eg —m)],

(w +m)(eq -m)] ,
2.5
Cy= (@ +[Bo[? = 2054 ) (@.5)

+[[B gl wx = (@ +m) (€5 ~m)]?.

The maximum angle between k and P, for given e,
is determined by

x_=[(w+m)(e; —m) +2m3](|D,|w)™t, (2.6)

and the positron energy may vary between the
limits
fz{w?em?rof[w(w-4m)] R Qw+m) . (2.7)

It should be noted that since we now integrate
over all final states of the two identical electrons,
we count identical final states twice, and we there-
fore have divided the cross section by a factor of 2.

For the details of the numerical integrations in
Eq. (2.1) we refer to Jarp.® We have calculated
da/de for photon energies w=4.4, 5.12, 1.0,

10.0 mc®. The results are shown in Fig. 1.

The calculation of the electron energy spectrum
do/de, is very similar to the calculation of do/de,.
Since the phase space is symmetric in p, and p,,
the cross section do/de, is given by Eq. (2.1), if
we interchange €,, |P,, and x by €,, |P,], and y,
respectively, in this and the following equations.
The quantity X is of course left unchanged. We al-
so multiply by a factor of 2, since we now do not
integrate over identical final states. The results
are shown in Fig. 2, where do/de, is given for
photon energies w=4.4, 5.12, 7.0, and 10.0 mc?.

III. ANGULAR DISTRIBUTIONS do/dx and do/dy

The angular distribution of the positron is do/dx,
where x =cosf,, and 6, is the angle between k
and B,. This cross section is easily obtained
from Eq. (2.1), if we interchange the order of in-
tegrating x and €, in this expression. We find

+
&

dx ZTIOJF [Pslde, f__ [D,lde,
€

vy x
X.[y-_ dy [al(y+ ._y)(y __y_)]l/z s (3.1)

where the limits of €, are

2 _ 42 2,2 _ 1/2
m[w? —m?2x wx (W2x? — dwm)''?] (3.2)

2

el=
3 (w+m)? — wx®

and x may vary between one and the lower limit
x_=2(m/w)'?, 3.3)
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FIG. 1. The positron energy spectrum do/deg as a
function of €3 in units of mc
d correspond to lab. photon energies w=4.4, 5.12, 7.0,
and 10.0mc?, respectively.
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FIG. 2. The electron energy spectrum do/de, as a
function of €, in units of mc?. The curves a, b, ¢, and

d correspond to lab. photon energies w =4.4, 5.12, 7.0,

and 10.0mc?, respectively.
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FIG. 3. The positron angular distribution do/dx, where x = cos6,, and 0, is the angle between k and 53. The curves a,
b, ¢, and d correspond to photon energies w=4.4, 5.12, 7.0, and 10.0mc?, respectively,

The results are shown in Fig. 3 for photon ener-
gies w=4.4, 5.12, 7.0, and 10.0 mc?.

The angular distribution of one of the final elec-
trons is do/dy, where y =cosf_, and 6_ is the
angle between k and p,. We may again use the
symmetry in p, and p, of the phase space (cf. the
discussion at the end of Sec. II). The results are
shown in Fig. 4.

IV. THE OPENING-ANGLE DISTRIBUTION do/dz

The opening-angle distribution is do/dz, where
z =cosf,_ and 6, _ is the angle between the posi-
tron momentum P, and the momentum p , of one of
the final electrons. To calculate this cross sec-
tion, it is necessary to integrate over the vari-
ables keeping z fixed. The kinematical equations
now lead to very complicated relations for the
limits of the variables, and we shall discuss this
in some detail. The cross section do is propor-
tional to

d%. d%.d3
dgp="‘£é"€—iz'd—p3 6(p+k =py =py=ps) - (4.1)
16263

Using the & function to integrate over d*,, we
find
d3p d3p

dPp=—2—L25(w+1l—€, —€,~¢,), 4.2)
E1 263
where
61:[m2+(_1;"§2‘§3)2]1/2- 4.3)
Writing

d®p,addp 3= lﬁ2!62’152]53|€3d'€3dxd¢3dyd¢2 ’ 4.4)

where the variables are defined in Sec. I (¢, is
the azimuthal angle of §,), we introduce instead
of ¢, the variable ¢ =¢, —~ ¢, which makes ¢, a
trivial variable. Then we introduce instead of ¢,
the variable

z =cosf, _
=xy +[(1 = x3)(1 =»?)]*2cos9, (4.5)

and after integration over y, using the 6 function
in Eq. (4.2), we find

|D,lde de ,dxdz
1-x2—y2 - 22+ 2xyz ]2

d%p =2n I (4.8)
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where y is determined in terms of €,, €,, x, and
z by Eq. (4.3), and the condition w +1 —€, —€, —¢€,
=0. The square root in Eq. (4.6) must be real.
This condition determines the limits x, of the
variable x. These limits can be written in the
form

%, =[bgx (b5° —agcy)’?la™, @

where a,, b,, and c, are functions of €,, €;, and
z, (cf. Jarp, Ref. 5). Since x, must be real, we
require by® —a,c, >0, and this inequality gives

[W2 = (@ +m =€, = |D,[2%%]e 2 = 2(w+m —€,) (W + M) (€, =m)e, + (W2 +22M32)|P |2 = (W + M) (€, —m)* — wPm?

This condition determines the allowed values of
€,, €;, and z. If we solve it with respect to €, or
€,, we find fourth-order equations which are too
complicated for complete analytical treatment.
However, we may easily solve (4.8) with respect
to z, and afterwards, determine the limits for €,
and €,. Choosing a large number of combinations
of allowed values for €, and €;, we could compute
the corresponding limits of z, and thus find nu-
merically, the minimum value of z for each pho-
ton energy w. Allowed opening angles are deter-
mined by
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z_sz<1, 4.9)

and we show in Fig. 5 the dependence of z_ on w.
For comparison, we also show x_=2(m/ W2,
which gives the maximum angle between k and the
momentum of any of the final particles.

For a given, allowed value of z, the inequality
(4.8) leads to a fourth-order equation for €,, and
the limits of €, are determined by two of the roots
of this equation. These roots depend on €,, and
by varying €, and requiring that €, be always in
the region m <€, sw -m —€,, we also obtain the

g
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Y

FIG. 4. The electron angular distribution do/dy, where y = cosé_, and 6_ is the angle between ik and 52. The curves
a, b, ¢, and d correspond to photon energies w =4.4, 5.12, 7.0, and 10.0mc?, respectively.
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w(mc?)

FIG. 5. The maximum opening angle (0..),, between
positron and electron momenta, and the maximum angle
Omax between photon momentum and the momentum of any
of the final particles, as a function of photon energy w
inme?. 2-=coS(8, ), aNd X =COSOn,x =2(m /W) 72,

allowed values of €,. Thus we are able to inte-
grate the cross section, and resulting opening-
angle distributions are shown in Fig. 6.

V. DOUBLE DIFFERENTIAL CROSS SECTIONS

We have prepared programs for calculating the
cross sections d?0/dxde,, d%c/dxde,, d*c/dyde,,
d?c/dyde , .

The cross section d?c/dxde, which is differen-
tial in positron angle and energy, is easily ob-
tained from Eq. (2.1) if we leave out the integra-
tion over x.

The cross section d?0/dxde, which is differen-
tial in electron energy and positron angle, can be
integrated if we use a method similar to the one
described at the end of Sec. IV. This is necessary,
since the kinematical relations again lead to com-
plicated fourth-order equations for the limits of
the variables.

The methods of integration for d%o/dyde, and
d?c/dyd €5 are similar to the methods used for
d%/dxde, and d*0/dxde,, respectively, since the
phase space is symmetric in positron and elec-
tron variables.

In order to keep down the cost, we have only
computed these double differential cross sections
for one photon energy, w=5.12 mc?, which is the
relevant energy for the Clermont experiment.*
The cross sections are shown in Figs. 7, 8, 9,
and 10 as a function of the energies for electron

lco

(mb)

(o.
~Nlq

FIG. 6. The opening-angle distribution do/dz, where
z=cosf, . and 9, _ is the angle between the positron mo-
mentum and the momentum of one of the final electrons,
as a function of z. The curves a, b, and ¢ correspond
to photon energies w=4.4, 5.12, and 7.0mc?, respec-
tively.
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and positron angles given by x=y =1.0, 0.965,
0.930, and 0.895.

Experimental values are not yet available for a
comparison.

VI. CONCLUSION

The cross section for triplet production varies
slowly with all variables for photon energies close
to threshold, and it is easily integrated by simple
numerical methods. As the photon energy in-
creases, there is a strong peaking effect. The
final particles are emitted close to the forward
direction, and if this is not taken into account ex~
plicitly, large uncertainties appear in the numeri-
cal integrations. Our method of integration
worked well for photon energies up to about 10
mc?, but for higher energies, the technique has to
be refined.

The accuracy of our results is better than 5%.
Characteristic rms errors obtained from the
Monte Carlo method are shown on the figures. If
the number of variables of integration wasn, we

found that it was sufficient to compute the inte-
grand about 10" times in order to keep the errors
below 5%.

From Fig. 1 we see that the positron energy dis-
tribution is almost symmetric about the mean en-
ergy. The electron spectra do not have this sym-
metry since here, lower energies are preferred,
(cf. Fig. 2). It is interesting to compare the trip-
let energy spectra with the corresponding spectra
obtained from pair production in a static Coulomb
field. This is done in Fig. 11, where we show
do/de,, do/de,, and dopy/de , for photon energy
w=17.0 mc®. The last cross section is the sym-
metric Bethe-Heitler energy spectrum,®and €, is
the positron or the electron energy. We see that
the triplet cross section is far below the Bethe-
Heitler cross section, due to recoil and exchange
effects. However, we have comparatively more
low-energy electrons. This may be understood,
since we have to produce in pair production, a
low-energy electron together with a high-energy
positron, while we already have in the triplet
process, a low-energy electron in the initial state.

4

Yoo (mb) do (mb)
dxd€; \mc? 064 dxd&€;\mc?
04 + 0.5 +
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.03 T
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FIG. 7. The cross section d%c/dxde 3, where € is the positron energy and x = cos#,, 6, is the angle between photon
and positron momenta. Photon energy is w =5,12mec?. The curves a, b, c, and d correspond to x =0.895, 0.930, 0,965,

and 1.0, respectively,
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FIG. 8. The cross section d %0 /dyde,, where €, is the
electron energy and y =cosf_, 6_ is the angle between
photon and electron momenta. Photon energy is w
=5.12mc?. The curves a, b, ¢, and d correspond to
y=0.895, 0.930, 0.977, and 1.0, respectively.

At the upper end of the triplet spectra, the posi-
tron and the electron distributions are equal.

This is reasonable, since if one electron has high
energy, the other electron must have low energy,
and exchange effects are negligible. Therefore,
we have symmetry between high-energy electrons
and positrons.

The angular distributions given in Figs. 3 and 4
show that the importance of small angles increases
with photon energy. The effect is more pronounced
for positrons than for electrons. This is an effect
of exchange, since the exclusion prinicple will
cause the electrons to spread from each other,
and therefore, also from the forward direction.

The results given in Figs. 7 and 8 show that we
find more high-energy positrons and electrons as
we approach the forward direction. This is a nat-
ural trend, since the total momentum is along
this direction.

Figures 9 and 10 show the behavior of the cross
sections which depend on one electron and one
positron variable. The positron energy distribu-
tion is almost symmetrical about the mean energy
independent of the electron direction. We see also
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FIG. 9. The cross section d %0 /d xde,. Photon energy
is w=5.12mc?. The curves a, b, ¢, and d correspond
to x=0.895, 0.930, 0.965, and 1.0, respectively.
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FIG. 10. The cross section d %0 /dyde;. Photon energy
is w=5.12mc% The curves a, b, c, and d correspond
to y=0.895, 0.930, 0.965, and 1.0, respectively.

that the average electron energy decreases strong-
ly as the positron direction approaches the for-
ward direction.

The results given above are valid for pair pro-
duction on free electrons. Actual experiments
are performed with electrons which are bound in
atoms, and the theory should therefore, be cor-
rected for effects of the nuclear field and the
fields of other electrons in the atom. However,
we expect that with the present accuracy of a few
percent, these corrections can be neglected for
low photon energies. The minimum energy of any
of the final particles is given by Eq. (2.7). Cal-
culating the corresponding minimum kinetic ener-
gy, we find this to be 13 keV and 78 keV,for pho-
ton energies w=10 mc? and 5.12 mc?, respectively.
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FIG. 11. The triplet positron and electron spectra
do/dey and do/de, are given by curves a and b, respec-
tively. The Bethe-Heitler energy spectrum for posi-
trons or electrons, dO'B,%/de +, is given by curve c. Pho-
ton energy is w =7.0mc".

Thus, the energies of the final electrons are much
larger than the binding energy of the initial elec-
tron, except for some electrons in very heavy
atoms, and we therefore expect binding to be neg-
ligible.

Since the momentum transferred to the recoil
electron is of order 1 mc, the pairs are produced
at impact parameters of order one Compton wave-
length. Thus, the pairs are created close to the
initial electron, where the field of this electron is
dominating. Since the production occurs far from
the nucleus and far from the other electrons in the
atom, and since the final particles are fast, we
expect Coulomb and screening corrections to be
small.

Also radiative corrections are expected to be
negligible. This is because radiative corrections
are small at low energies in general, and also be-
cause triplet production is similar to pair produc-
tion in the Coulomb field, and we know that for
this process, the radiative corrections are of or-
der 1%.7
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The recently observed dip in high-energy elastic pp scattering is explained in the framework of
models in which the nucleon possesses a layered substructure.

During recent years two types of models for
high-energy elastic pp scattering have attracted
much interest:

(a) geometrical and Regge versions of the dif-
fraction model’;

(b) models in which the proton exhibits a layered
substructure.”?®

An attractive feature of some of type (a) models
is the dip, compatible with recent experimental
results from the CERN Intersecting Storage Rings
(ISR),* which is predicted at high energy for
~2sts-1 (GeV/c)?. .

It is quite interesting to see whether a similar
dip pattern can be simply explained in the frame-
work of type (b) models. The purpose of this pa-
per is to show that a dip situated in the interval
-2.0sts-1.2 (GeV/c)? is predicted from a type
(b) model; it is also shown that the above result
holds even including the single-flip amplitude.

It is well known that a finite sum of Gaussians
provides an empirical fit to do/dt.? However,
such a formula is theoretically unacceptable since
it violates the Cerulus-Martin bound.® This dif-
ficulty was overcome by Fleming, Giovannini,
and Predazzi® (hereafter FGP) who developed a
theoretically consistent model and also obtained
an excellent fit for do/d¢ over the whole angular
region at pre-ISR energies.

From the FGP approach, a picture emerged
which visualizes the proton as possessing infinite-
ly many layers. The higher the transverse mo-
mentum, the farther in the layer that gets ex-
cited in the collision.®

Furthermore, it was shown by FGP that at a
given x, x=pk 'sin6= gk, (where f is the c.m. veloc-
ity of the proton, % is its c.m. momentum, and 6
is the c.m. scattering angle), we expect an im-

portant contribution from the #nth layer of the nu-
cleon, where % increases like x%: n=~x?%/A(x?)
[A(x?) is the increment in x ® for which a new re-
gion of interaction starts to be relevant]. Since

a break in do/dt which indicates a transition from
the outermost layer to the second layer is ob-
served at pre-ISR energies around ¢~ -1.2 (GeV/
c)?" one expects that for -1.2s¢<0 (GeV/c)? only
the outermost layer of the nucleon contributes
significantly (note that x®= —/ at high energy and
small angle). Thus, A(r?)=1.2 (GeV/c)? and the
second layer of the nucleon will give an important
contribution for —-2.4</<-1.2 (GeV/c)?.

Let us now estimate the radii of the first two
layers of the nucleon. Using Eq. (IV. 27) of FGP*®
and taking 0.9 fm for the radius of the nucleon® we
find that the second layer of the nucleon is con-
fined between 7, =0.44 fm and 7,=0.33 fm."°

In the following we show that, assuming the
double-helicity-flip amplitudes to be negligible
at high energies, the contribution of the second
layer of the nucleon, which was found to be im-
portant for -2.4<¢<-1.2 (GeV/c)?, is consider-
ably reduced for all the other amplitudes for
-2.0<¢<-1.2 (GeV/c)? and thus do/dt is ex-
pected to exhibit a dip inside this ¢ interval.

The partial-wave expansion for each one of
the five independent helicity amplitudes F ), ;xx,
(where A, A, and A, A, stand for the initial and
final helicities, respectively) is given by

%}(2J+1)F‘;3)\4:;\1)\2(S)

LTS

Fygngsagng(cosd, s)=

x df ,(cosb), (1)

where A=A, - A,, =2;—2A,. From the classical
relation J=~k7 (Ref. 11) and the previously stated



