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A new class of sum rules is developed within the context of the m system. One of these
sum rules is used to extract the pox Regge residue function from the recent xm. data of
Carroll et a/. , for a wide range of momentum transfer. The residue has a zero near t = —0.5
GeV, in agreement with duality and with a new prediction which we make from the dual ab-
sorption model together with 7tp and pp data. The vr7( charge-exchange amplitude is shown
to be dominated by p exchange above 1.0 GeV. We also derive a new representation which
expresses m7t amplitudes in terms of a single subtraction parameter and integrals over
physical-region absorptive parts. The representation is valid over a substantial portion of
the physical region, and constitutes a powerful tool for studying the 7f7r interaction. Finally,
we show that a unitarized Veneziano model proposed earlier by the present author is an ex-
cellent approximation to nature below about 800 MeV, despite its neglect of Pomeranchon
exchange and EE; production.

I. INTRODUCTION AND SUMMARY

Standard assumptions of S-matrix theory enable
us to express scattering amplitudes in terms of
fixed-s dispersion relations (D.R. s) and alterna-
tively, in terms of fixed-t Q.H. .'s. By taking dif-
ferences between such D.R.'s, it is possible to
eliminate the subtraction terms, and thereby
obtain sum rules equating certain integrals over
absorptive parts to zero.

In the present paper, we apply this technique to
the mm system. We obtain sum rules which are
similar to, but more powerful than, the sum
rules of Wanders, ' Roskies, ' and Roy. ' We use
one of these sum rules to extract the pew Regge
residue function from the recent mm data, of Carroll
et al. , and obtain results with uncertainties of
the order of 10%. The residue has a zero near t
= -0.5 GeV', in agreement with duality and with a
new prediction which we make from the dual ab-
sorption model' together with 7|P and PP data.

We show that in the sense of local averages,
the mm charge-exchange amplitude of Carroll et al.
can be well approximated above 1.0 GeV by
Reggeized p exchange, with our value for the resi-
due function.

We derive a new representation which expresses

II. DISPERSION RELATIONS AND SUM RULES

We denote the mm elastic amplitude with isospin
I in the s channel by A'(s, t ), and the amplitude
with isospin I in the t channel by TI(s, t). Accord-
ing to standard assumptions' of analyticity and
crossing symmetry, the A' and I' are related by

Ar(s t) = TI(t, s),
and also by

(la)

X'(s, t) = g C„,T'(s, t),
I'-- o

where C= C ' denotes the s-t crossing matrix

(ib)

g77 amplitudes in terms of a single subtraction
parameter and integrals over physical-region
absorptive parts. Qur representation is valid over
the same portion of the physical region as the
twice-subtracted representations of Roskies' and

Roy, ' and therefore constitutes a powerful tool
for studying the wm interaction.

Finally, we show that a unitarized Veneziano mm

model proposed earlier6 by the present author is an
excellent approximation to nature below about 800
MeV, despite its neglect of Pomeranchon exchange
and KK production.
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channel, and we normalize the amplitudes such
that

Hose symmetry implies that

A'(s, f) = (-1)'A'(s, u),

T (s, t) =(-1) T (u, t),
(1c)

(ld)

A' = 5' (2l+ 1)A""(s)P, (cos 8),
1=0

A 'i'(s} =. [s/(s —4p, ')]' 'exp(i6', ) sin5',

where s, t, and u may take on any values consistent
with

s+l+Q=4p,

where p, denotes the pion mass.
%'e shall regard the s channel as the direct

in the elastic region. Equation (1c) implies that
Ai'i~ vanishes for even (odd) I when I is odd (even).

As a final remark on conventions, we shall use
units wherein h = c=1.

By writing a fixed-s D.R. and exploiting Eqs.
(la) and (1c), we obtain

IA (s, t) =A (s, t,)+ ds'ImT (s', s) (-,— )(, )
—(-1) (-, ———,)(, —,

) J. (2a)

Ne assume that wm double-spectral functions have the boundaries predicted by Mandelstam, in which
case Eq. (2a) is valid for arbitrary t and f, when s is real (+is) and -32'' «s «4p, '. Convergence of the
integral in Eq. (2a) is ensured over this range of s by familiar tenets of Regge theory.

By writing a fixed-t D.R. and exploiting Eqs. (1b) and (ld), we obtain

+f+s 4~)(s+f+s 4

which is valid for arbitrary s and s, when t is real (aim) and -32', «t «4p'. Again convergence of the inte-
gral is assured by Regge theory.

We could now replace the subtraction term in Eq. (2a) by the right-hand side of Eq. (2b) evaluated at t = t„
and thereby obtain a formula expressing A'(s, f ) as the sum of A'(s„ t, ) plus certain integrals. ' We could
also replace the subtraction term on the right-hand side of Eq. (2b) by the right-hand side of Eq. (2a) evalu-
ated at s= s„and thereby obtain another formula expressing A'(s, t) as the sum of A'(s„ f,) plus certain
other integrals. Upon taking the difference between these two formulas, the subtraction terms would cancel,
and we would obtain a sum rule equating certain integrals over absorptive parts to zero.

The procedure outlined in the preceding paragraph has the merit of being quite general. However, we
find it simpler for present purposes to exploit a special feature of the mm system, namely, the fact that
Bose symmetry implies the vanishing of A'(s, t) when cos8, =0. Since cos8, =1+2t/(s-4p'), we can make
the subtraction terms in Eqs. (2a) and (2b) vanish for I=1 by setting to=2'' —s/2 and s, =4p.' —2t. With
these choices for t, and s„we obtain

w ',„, (s'„—f )(s'+s+ f —4g') '

A~( f )
s+ 2t —4P

Q 4P

1,, (s —f )(2s'+ t —4p')
(3b)

Equation (Sa) is valid for arbitrary t when s is real (+is) and -32ij,' «s «4y. ', while Eq. (Sb) is valid for
arbitrary s when t is real (+is) and -32', ' «f «4p'.

Upon subtracting Eq. (3a) from (Sb) and interchanging (for future convenience) the parameters s and t,
we obtain

ds' . . . , (t —s) (2s'+ s —4 g')(, ), , ImT'(s', s) —ImT'(s', )+(, ,)(, )- ImA'(s', s) =0, (4)

which holds for real s (+ie) and real t (+fe) when -32'' «s «4p, ' and, simultaneously, -32@,' «I «4p, '. We
remark that the imaginary part of the integral in Eq. (4) vanishes as a direct consequence of Bose symme-
try, so it is only the vanishing of the real (principal) part which contains new information.
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Equation (4) is the sum rule which we shall use to extract the prrv Regge residue function from the data.
Note that the integrand in Eq. (4) is indePendent of S waves, so that we will be spared from the ambiguities
which have plagued experimental studies of the I=O S wave. However, the integrand does involve the I'
wave, so that Eq. (4) is more powerful than the sum rules of Wanders, ' Roskies, ' and Roy. '

We shall make the standard Regge assumption that for large positive s,

ImT (s, t ) = y p(t )(s/s) "&~",

where yp is related by a mell-known factor to the residue of the p pole in the J plane, and o.p denotes the

p trajectory. We shall use s=1 QeV', which defines the scale of pp.
Equations (4) and (5) imply that

(5)

y p(t) =f (s, t; t; A) f(s, t; s; A)y~(s)+h(s, t)+P ds', ImT'(s', s) —ImT'(s', t )
(5)

where

(s'/s) r'"'
f(s, t;x; A)-=P ds'(, )(, ,),

(2s'+ s —4 p, ')ImA'(s', s)
(Vb)

and A may take on any positive value large enough
for Eq. (5) to hold for T'(s', s) and T'(s', t) when
s' & A. Since Eq. (5) is only expected to hold for
8 ~90', the minimum suitable value for A must
satisfy

A) (4p 2s)

A~(4p' —2t).
(8a)

(8b)

The useful feature of our sum rule is that if pp
is known for any single value of its argument,
this value of the argument can be substituted for
s on the right-hand side of Eq. (8), and then y,(t )
can be computed over a. wide range of t from a
knowledge of ImT' between threshold and A, to-
gether with knowledge of the rapidly convergent
integral h(s, t ).

IV. ANALYSIS OF DATA AND APPLICATION
OF SUM RULE

We turn now to the experimental results of
Carroll eI al. ,

' who have extracted information on
nm scattering from data on the reaction mN —mmN.

The results of Carroll e/ al. are presented in the
form of S-, I'-, and D-wave phase shifts and in-
elasticities, at 26 points over the energy range
0.60 s'~ ' - 1.48 QeV.

We have assumed that T'(s, t) is given by the
S, I', and D waves of Carroll et al. over the en-
ergy range of their data, and we have investigated
the resulting T' for evidence of Hegge behavior.

To facilitate our discussion of the data, let us
define s, (t) to be the greater of 1.0 GeV' and
(4g' —2t), the latter being the value for s above

which 0 ~90'.

s, (t) =—Max[1.0 GeV', (4p' —2t)].
We also introduce a symbol for the maximum
value of s in the region spanned by the data:

s, = (1.48 GeV)'

The significance of s, (t) is that in the sense of
local averages, we shall find the T'(s, t) of Carroll
et al. to be dominated by Reggeized p exchange
over the interval s,(t) & s &s„ for a wide range of
t. We shall begin by considering the data for
Imr', and return later to a discussion of ReT'.

In Fig. 1, we have plotted the data for Imr' as
a function of s for five different values of I,. For
t=0, the data exhibit a large oscillation as s is
varied over the interval s, (t ) & s & s~. However,
as t decreases from zero, the amplitude of the
oscillation becomes smaller, and almost vanishes
for t near -0.5 GeV' (note the different vertical
scales iw Jig. 1). Furthermore, the data exhibit
a, vet'y definite zero near t= -0.5 GeV' (again note
the different vertical scales). We interpret this
to mean that the pn7I Begge residue function van-
ishes near t = —0.5 QeV'. In particular, we infer
from the data that

y~(-0. 52 GeV') =0.00+0.10,

where the validity of the stated uncertainty may
be judged by examining the spread of the data
points in Fig. 1 for the case t = -0.5 QeV', while
recalling that o~(t) is approximately zero for
this case.

As noted earlier, a simple inspection of the data
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near t=0 does not enable one to infer much about

y&, at least not without large uncertainties. How-
ever, the data do appear to make a definite state-
ment about y~ near the point

2.0

l.0—

I I

0 0
00

Jk-- 0
~ e' cF

o o0 0 o
I 0

t, =- -0.52 GBV',

namely, Eq. (9). Therefore, we can substitute t,
for s on the right-hand side of Eq. (6), and use

t.
Eqs. (6) and (9) to obtain y over a wide range f

P ge o
This is the procedure which we shall follow to

obtain our preferred y~(t) from the data.
In our evaluation of the function fwhich appears

on the right-hand side of Eq. (6), we shall assume
that

l.p
t=-.25 Gey~

o0 0I I

0 Q

0-

-.2

I I I

t —.SO GeV

0

o
0

o oo

o

0 0 0

0 00 0 0

n~(t) =0.50+(0.90 GeV ')f,
which is in reasonable agreement with all known
data [except that n~(0) may be as large as 0.57].

In our evaluation of h(s, t), we shall assume
that ImA' is determined below 1.48 QeV by the
P wave, and we use the data of Carroll et al.
over the interval spanned by their data, i.e. ,
0.60 &s'~' &1.48 QeV.

In order to estimate ImA" ' between threshold
and 0.60 QeV, we represent ReA ' ' over this
interval by a quadratic form:

ReA"I'(s) =—(s —4g')Ia, /4+ b(s —4g')]

We use the Weinberg scattering length' a,
= 0.035p, , and we fit the parameter 5 to a phase
shift of 17' at 0.60 GeV, in accordance with the
data of Carroll et a/. We then use unitarity to
obtain ImA ' ' from ReA. ' '. The resulting con-
tributions to the integrals in Eqs. (6) and (7b) are
quite small (about 10%) relative to those from the

p resonance.
The coefficient of ImA' in Eq. (7b) decreases

like s' 'i e s as s - ~, so we do not expect the contri-
bution from above 1.48 QeV to be very important.
Nevertheless, we shall attempt to make a realis-
tic estimate for this contribution. We begin with
a Regge analysis based on the t-channel composi-
tion of A'.

(10)

A& - —To+ ~ T&

We shall assume that in the Begge region, T' is
dominated by Pomeranchon and f, exchange, and
we note that the contribution of f, exchange is
purely real at the point where n&(t) =0, i.e, near
t=-0 ~ 5 QeV'=—t, . We also assume that T' is
dominated by p exchange, with ImT'(s, t,) = 0. Fin-
ally, we assume that ImT ' is negligible.

The preceding remarks would lead us to repre-
sent lmA'(s, t,) by pure Pomeranchon exchange
in the Regge region. However, the g(1680) reso-
nance is well established in A', so pure Pomeran-
chon exchange cannot be strictly valid in theeg

0
t~-.75 GeV

-.2-

I OI0 I

0
00 0

Q 0
0 00

4 J I 0 I

0 I I I

t =-I.OO GeV
ID 0 b

0
0

-.2—

I

.e

0
0 0 0

I I I I I

I.O

Ig

s (6eV)

l.2 1.4

FIG. 1. ImT (s, t) of Carroll et al. , shown together
with prediction of Regge formula (5) using our preferred
result for y&. Statistical uncertainties of data may be
inferred from spread of data points. Vertical bars
intersecting dashed Regge curves denote ts,(t)), the
energy above which agreement in sense of local averages
is claimed to be good. Note the different vertical scales.

for 1.48 GeV, where yp is defined in analogy
with y~ in Eq. (5), I; denotes the partial width
I'(g- IIw) = 0.06 GeV,"and we have used the fact
that P,(cose) = -0.32 at s= s„ ( =t, .

Between s' '=1.00 and 1.48 GeV, the local aver-
age of the data for Im A'(s, t,) increases from
about 0.2 to 0.4, while the local average of the
data for ImA'(s, t, ) increases from about 0.15 to
about 0.30. Since neither A' nor A' contain anain any
resonances in this region, it is reasonable to
associate these absorptive parts with Pomeranehon
exchange. Assuming that

region. Since dualitytells us that resonances can be
added to Pomeranchon exchange without double-
counting, we shall simply add the g contribution to
that of Pomeranchon exchange, using the narrow-
resonance approximation:

ImA'(s, t,) = ayp(t, )(s/s) P '&—'

+ 7m(m, I;/s)(-0 32)5((s —s. ,)/s)
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o~(t, ) =0.74,

i.e. , np = 0,50 QeV ', we estimate that

y (t,) =0.6.

(12a)

(12b)

V. RESULTS FOR y

We have used the data of Carroll et al. to evalu-
ate" the right-hand side of Eq. (6), with s= /„ for
values of t over the range -1.00 ~ t &0.50 GeV'
[even though Eq. (6) is not strictly valid for t
& -32]LI.'= -0.61 GeV', nor for I;&4p, '=0.08 GeV';
see Ref. 12], and for values of A over the range
s, (t) &A &s, ." We have plotted the resulting
values for y& as a function of A in Fig. 2, for five
different values of t.

Note the striking fact that the top three curves
in Fig. 2 remain ui.thin 5% of their central values
over the entire range of A. This strongly suggests
that ImT' is dominated by p exchange for s ~ 1.0
QeV', -0.25 & t &0.25 GeV', with y~ correctly
given by Fig. 2,

For t=t„Eqs. (6) and (9) imply yz-—0, regard-
less of the value chosen for A. The fourth curve
in Fig. 2, namely, for t = -0.75 GeV', remains
within 7% of its central value over the entire
range of A. For the bottom curve (f = -1.00 GeV'),
s, (t) = (1.44 GeV)', so the data do not extend to
high enough an energy to provide a meaningful
test of the stability of y~ against variations of A.

Although the magnitude of y~ appears to be in-
creasing for A' '& l.4 QeV for the five curves
displayed in Fig. 2, we have verified that inclusion
of a nonzero I' wave in T' would tend to stabilize
the curves in this region. The g (1680) meson,

with a total width of 0.16 QeV and a mm decay prob-
ability of 0,4," implies that the F wave does in
fact become appreciable near 1.5 GeV.

In Fig. 3, we display our result for y~(t) for
1.00 &t &0.25 GeV', averaged over A for s, (t)

~& A ~& S).
When judging the precision of any prediction

based on a sum rule, it is important to ascertain
whether there are any cancellations between major
terms in the sum, which might lead to large per-
centage uncertainties in the result. Fortunately,
the present situation could scarcely be more
agreeable.

As mentioned earlier, the integrand of our sum
rule receives no contribution whatever from S
waves. Thus for A &(1.1 GeV)', the integral in
Eq. (6) is determined almost entirely by the p
resonance, since D-wave absorptive parts are neg-
ligible below 1.1 GeV. Furthermore, the integral
defining h(s, t) in Eq. (7b) is rapidly convergent,
and is thus determined primarily by the p reso-
nance. [In fact if y~(t, ) were simply set equal to
zero, instead of being given the value indicated
by Eq. (12b), our result for y~(t) would change by
less than 0.06 over the interval -0.65 & t & 0.25
GeV'. " The contribution from the g(1680) meson,
via h(s, f), is even less important. ]

As A increases above (1.1 GeV)', D waves begin
to contribute to the integral in Eq. (6), but in such
a way that yz(t) is highly stable against variations
of A. This stability constitutes strong evidence
that, in the sense of local averages, one has
entered the Regge region.

A final source of imprecision lies in the uncer-
tainty of +0.10 stated in Eq. (9) for yz(t, ). Inspec-
tion of Eq. (6) reveals that the resulting uncertain-

f I

0 0
I.5

I.O- I.O

.5-
~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~

0
.25 GeV —o—o—

0

—.50

.00
25- f & -.25

-.75
-I.OO
I

.8

0 OOOO

L.O 1.2

n,'. (Gev)

~ ~ ~ ~ ~

l.4

0 OO

- I.O

0 0
0 Data based

I

-0.5

t {Gev')

FIG. 2. y&(t) computed from Eqs. (6) and (9), shown
as a function of A, for s, (t) ~ A ~s~. Note the different
vertical scales for positive and negative y&.

FIG. 3. Solid curve represents preferred. y& based on

Eqs. (6) and (9). Dotted curve displays p& defined by
Eq. (16). The Veneziano y& is shown for comparison.
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ty in yq(t) is determined by the function f, and
hence is readily computed. Assigning A a typical
value of A= —,'[s,(t) + s,], we find that

by (t) = [0.45 —1.1(t/s)]by (t,) (13)

for -1.00 «t «0.25 GeV', "where again we have
used s = 1 QeV. '. Thus the uncertainty of +0.10 in

y~(t, ) generates an uncertainty of only +0.045 in

r,(0}.
In view of the stability of our results against

variations of A, and in view of the preceding dis-
cussion of uncertainties, we state our result for
yp(0) as

y p(0) = 0.82 + 0.10, (14)

assuming that n~(0) is correctly given by Eq. (10),
and that the data are free of systematic errors.

To facilitate possible applications of our results,
we note that our preferred y~ can be approximated
within 4/o over the interval -1.00 & f &0.20 GeV'
by the simple curve

y (t) = 0.82+ 2.04(f/s) + 0.88(f/s) (15)

(16)

again with s=1 QeV'.
Since our results for y~ depend on n~ only through

the function f, it is easy to obtain from Eq. (15)
the values for yz which would correspond to other
assumptions about o.z. For example, it is readily
verified that if we had assumed n~(0) =0.57, then
we would have predicted that y~(0) =0.76 +0.10.

We remark that Eq. (14}is in fairly good agree
ment with the value yz(0) = 0.68 which would be
required by Morgan and Shaw" to describe ImT'
for their favored solution, if they were to assume
p dominance above 1.5 GeV with a.~(0) = 0.50. We
also remark that the value deduced by Olsson from
mN charge-exchange data together with universal-
ity, namely, y (0}=0.17," is much too small,
being only about one-fifth the value indicated by
the present analysis.

As we mentioned earlier, Eq. (6) is not strictly
valid for t& -0.61 GeV', nor for t &0.08 GeV'."
The resulting yz(t) develops oscillations for f
&0.3 GeV, and it has a spurious zero at t=m&',
because the integral defining f diverges when o.~
~ 1. However, it is reasonable to expect that Eq.
(6) be approximately valid for t as negative as
-1.00 GeV'and as positive as 0.25 QeV', and we
shall now present evidence that this is indeed the
case.

To make a rough comparison of our yz with the
data, we have used the data to compute

~sy

y p(t) -=[s, —s, (t)] ' ds (s/s) "p~'~ imT '(s, t) .

The resulting y~ is displayed in Fig. 3 along with
our preferred y~ based on Eqs. (6), (9), (11), (12a),
and (12b). The agreement is good over the entire
range -1.00 «t «0.25 QeV', which supports our
claim that Eq. (6) is approximately valid over this
entire range, and also our claim that ImT '(s, f)
is dominated by p exchange when s ~ s,(t).

As a further comparison of our results with the
data, we have inserted our preferred yz into the
right-hand side of Eq. (5), and have compared the
resulting ImT' with the data. Some of these com-
parisons are displayed in Fig. 1. In the sense of
local averages, the agreement is good for s ~ s, (t)
over the entire range -1.00 «t «0.25 QeV', pro-
vided the physical ImT ' turns up again near s' '
=1.5 QeV for t near zero. Fortunately, the exis-
tence and properties of the g(1680) meson ensure
that this will happen.

The good agreement for t&-0.6 QeV' is rather
remarkable in light of the fact that n~(t) &0 for
t & -0.6 GeV', and n~( —1.0 GeV') = -0.4. Hence
there is little reason to expect the contour integral
at ReJ= -2 in the Sommerfeld-Watson transform
to be negligible for these values of t.

Since the Veneziano model has been a subject
of great interest, we have also plotted the
Veneziano value" for y in Fig. 3. The Vene-
ziano model has a somewhat richer resonance
spectrum than is indicated by the data [for ex-
ample, the Veneziano p'(1250) does not appear in
the data], so the Veneziano y~ is somewhat larger
than the yz computed from the data. However,
the qualitative agreement is quite good. In particu-
lar, the Veneziano yz vanishes at precisely the
point where n(t) =0,"and the data indicate a zero
in y~ at nearly the same point.

Since the Veneziano model and the physical P
wave have p resonance poles with nearly identical
residues, " the physical curve for y~ should inter-
sect the Veneziano curve near t=mz'. Note that
both data-based curves in Fig. 3 are in fact
drawing close to the Veneziano curve as t ap-
proaches 0.25 QeV'. Smooth extrapolations of
the data-based curves could easily be drawn
wherein they intersected the Veneziano curve
near m~'=0. 58 GeV', where y~(Ven. ) = 1.81. This
further supports our claim that our result for
y& is approximately valid up to about 0.25 QeV',
despite the fact that Eq. (6) is not strictly valid
above 0.08 QeV'.

VI. ANALYSIS OF Re T'

In addition to analyzing the data for ImT', we
have also studied ReT'. We find that in the sense
of local averages, ReT' is also dominated by p
exchange for s ~ s, (t), over a fairly wide range of
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values for t.
We have computed the average of the data for

ReT '(s, t) over the interval s, (t) & s & s„and have
compared the result with the average value of

R(w) = (0.58 + 0.15)R(P) . (19)

that R(w') =R(w'), and that R(p) =R(p). Then Eq.
(18b) implies that

ReT ~(., t) = '
.
'"' ~('

sinw o ~(t)
(17)

The first zero of Z, (x) occurs at x= 2.4, and the
first minimum at x=3.8. Thus the dip in PP scat-
tering at t = -0.5 QeV' indicates that

which is the ReT ' predicted by p dominance. Us-
ing Eq. (5) for ImT' together with our preferred
result for y~, we find a discrepancy between the
two averages for ReT' of less than 7%%uo when -0.20
QeV' & t &0. As t becomes more negative the
percentage discrepancy increases, but the absolute
discrepancy is less than 0.10 so long as t lies
within the interval —0.40 QeV & t &0.

As t becomes more negative than -0.40 QeV',
the resemblance between the data for ReT' and
the prediction of Eq. (17) rapidly disappears. For
example, the average of the data for ReT' at t=t,
is -0.18, whereas Eqs. (9) and (17) predict a
double zero in ReT' at t, . However, e~(t) &0.14
for t & -0.40 QeV', so it would not be surprising if
contributions from the contour integral at ReJ
= —

& were appreciable for these values of t.
Because of the strong evidence for p dominance

of ImT', we regard the additional evidence for p
dominance of ReT' near the forward direction as
compelling support for our claim of p dominance
of T'(s, t) when s' '~ 1.0 GeV, for the values of t
indicated in the preceding discussion.

R( PP) = (5.4 + 0.4) GeV ' (20)

(i.e. , 1.1+0.1 F), where the indicated uncertainty
in R(PP) is based on an estimated uncertainty of
+15%%uq in the dip location, which varies somewhat
with energy.

From Eqs. (19) and (20), we conclude that

R(ww)=(3. 1+0.9) GeV ', (21)

hence that the pnm Regge residue function should
contain a zero at

t„„=(—0.6",",) GeV'. (22)

This prediction is in good agreement with the zero
near t, = -0.52 QeV' indicated by the mm data of
Carroll et al.

From Eq. (18a), we predict that the pKK Regge
residue function vanishes at the same point as the

pres residue function.
We remark that Eqs. (18a) and (19) are both in

rough agreement with what one would expect from
a simple quark model for the hadrons.

VII. PREDICTION OF ZERO FROM DUAL
ABSORPTION MODEL

VIII. PREDICTION OF ZERO FROM DUALITY
AND THE ABSENCE OF EXOTIC RESONANCES

Harari has discussed a dual absorption model'
wherein the contribution of normal trajectory ex-
change to an elastic, nonf lip amplitude is given
roughly by J,(Rv t), where 8, -denotes the zeroth-
order Bessel function, and R denotes the "inter-
action radius" for the two colliding particles. The
model succeeds in explaining the dip structure in
a number of nonexotic elastic cross sections. The
dip occurs where Jp has its first local minimum.

The data for m'P and for K P scattering indicate
dips near t=-0.8 QeV', while the data for PP
scattering indicate a dip near t = -0.5 QeV'. "
Evidently, the interaction radii R(w'p) and R(K p)
are equal to each other, and smaller than R(pp)
by a factor of about (—,')'~':

R(w'P) =R(K P),
R("f)=[" )"R(tt)--

(18a'

(18b)

where the indicated uncertainty in Eq. (18b) is a
rough estimate.

I.et us naively assume that R(AB) =R(A)+R(B),
where R(A) and R(B) are radii intrinsic to the col-
liding particles A and B. We shall also assume

The observed zero in y~ is in fact a simple con-
sequence of duality together with the absence of
exotic resonances. ~ The argument is both impor-
tant and brief, so we shall repeat it here.

Duality equates resonant absorptive parts with
those resulting from exchange of normal Regge
trajectories. Since

g2 1 TP 1 T1+ 1T2
B

contains no resonances, it follows that

~syf(t) —bye(t) =o,

af(t) = np(t),

(23a)

(23b)

where yz characterizes the contribution of f, ex-
change to ImT'(s, t), in analogy with Eq. (5).

The contribution of f, exchange to T'(s, t) is
purely real when oz(t) =0. Therefore, we conclude
that y& must vanish where +f ——0, i.e. , somewhere
between t= -0.5 and -0.6 GeV'. From Eq. (23a),
it follows that yz must vanish at the same point.
This prediction of duality is in excellent agree-
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ment with the zero near t = -0,52 GeV' indicated
by the data of Carroll et' al.

IX. DIPS IN nN CHARGE-EXCHANGE CROSS SECTIONS

As a final remark on the zero in y~, we note that
the mN charge-exchange helicity-flip amplitude
has an approximate zero near t = -0.6 QeV'. "
Such a zero is to be expected from the zero in the
pm@ coupling which we have observed in the mm

data of Carroll et a/. Although one might also ex-
pect the mX helicity-nonf lip amplitude to have a
zero at this value of t, absorptive corrections
(Regge cuts) are known to be important in the non-
flip amplitude, " These corrections may be suffi-

cient to explain why the actual dip in the nonf lip
cross section is rather shallow and is displaced
to about -0.4 QeV'. "

In meson-baryon scattering, -there is a general
tendency for Regge cuts to be important in nonf lip
amplitudes. Since mm scattering is nonf lip, it is
somewhat surprising that the mw data analyzed in
this paper are consistent with pure p exchange.
A relative weakness for nw cuts is partially to be
expected from the fact that wm total cross sections
are relatively small (about 15 mb at high ener-
gies"), since absorptive corrections are typically
dependent on total cross sections. However,
further investigation of these issues is clearly to
be desired.

X. REPRESENTATION FOR mm AMPLITUDES

By using Eq. (2a) to evaluate the subtraction term on the right-hand side of Eq. (2b), and by performing
the subtractions at the "symmetry point" where s~= t, = —,

' p' —=c„we obtain for I= (', ) the representation

,
( )

-5 2(t —c,)' "", Imr'(s', c,)
-2 w „,„, (s' —c,)(s' —t)(s'+ t —2c, )

m „,„2 (s' —c,)(s' —s) ~ " (s'+ t —2c,)(s'+ s+ t —4g') (24)

where A. denotes the subtraction parameter first
introduced by Chew and Mandelstam. ~ Equation
(24) is valid for arbitrary s when t is real" (+i@)
and -32'' &t &4g'. Hence Eq. (24) is well suited
for studying the physical region.

For I=1, Eq. (3b) provides a suitable represen-
tation, since it is also valid for arbitrary s when

32~~ &t (4~2
The Legendre series for Im A~(s, t) converges

for all s & 4p, ' when -32'' &t &4p.'." Therefore,
the Legendre series can be used to evaluate the
integrals in Eqs. (3b) and (24) strictly in terms
of physical-region absorptive parts for -4p, ' &s

&68g', (2g' —s/2)&t&0 (i,e. , 0 &cos8&1). Since
Bose symmetry implies that A is even (odd) in
cos8 when I is even (odd), Eqs. (3b) and (24) en-
able us to express the A. in terms of X and physi-
cal-region absorptive parts for -4 p,

' & s & 68 p, ',
-1 ~cos8 & I. Partial waves can be projected out
by techniques similar to those used in Ref. 25.

It is readily seen that when op(t) &[n~(t) —1],
the contributions from the asymptotic region to
the right-hand sides of Eqs. (Sb) and (24) are
dominated by the contributions from ImT'. This
condition is satisfied for t&-29p. ' if e~'=0, and
for t&-66@. if ep =0,50 QeV '. Therefore, Eqs.
(Sb) and (24), together with the knowledge of yz(t)
presented in this paper, comprise the basis of a
powerful technique for studying the ~m' interaction.

XI. CROSSING CONSTRAINTS AND AN s-u
SYMMETRIC REPRESENTATION

Although crossing symmetry has been used
extensively in deriving the representations (Sb)
and (24), the A~ generated by these representations
do not automatica//y have the correct properties
under interchange of s with t, s with u, or t with

u. Thus crossing symmetry implies nontrivial
sum rules for the absorptive parts appearing in

Eqs. (Sb) and (24). We shall begin by discussing
t -u symmetry.

Bose symmetry implies that A'(s, t) is antisym-
metric under interchange of t with u. Since the
right-hand side of Eq. (Sb) does not automatically
have this property, a nontrivial sum rule is im-
plied. However, the resulting sum rule is not a
new one. To see this, we note that the right-hand
side of Eq, (3a) is manifestly antisymmetx ic under
interchange of t with u. Thus Bose symmetry can
be imposed on the A' of Eq. (3b) by equating the
right-hand side of (Sb) with that of (Sa). The result
is simply Eq. (4), which is the sum rule discussed
earlier. Hence nothing new results from the im-
position of Bose symmetry on A.'.

Bose symmetry implies that A" and A are sym-
metric under interchange of t with u. Imposing
this condition on the right-hand side of Eq. (24),
we obtain for I=O and 2 the sum rule
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2(u —t )(s' —c,)ImT'(s', c,) ImA'(s', t) —ImA~(s', u)
(s —t)(s —u)(s + t —2co)(s + u —2co) (s —co)(s + t+ u —4/L )

ImT, '(s', t ) ImT
(s' —u)(s'+ t —2c,) (s' —t )(s'+u —2c, )

(25)

which must hold for real t (air) and real u(+i&) when
-32'.' «t &4p. ' and, simultaneously, -32p, ' «u
«4p, '. Equation (25) is a new sum rule, as may
be seen by noting that Eq. (4) contains only ImT'
and ImA', whereas the ImT'(s', c,) in Eq. (25)
cannot be expressed in terms of Imr' and ImA'.

It is readily verified that the left-hand side oi
Eq. (25) receives no contribution from S waves.
Furthermore, if u is set equal to c„ then for both
I =0 and 2 Eq. (25} reduces to Eq. (4), with 8= co
in the latter. We also note that just as in Eq. (4),
the asymptotic contribution to Eq. (25) is dom-
inated by a difference between ImT ' evaluated at
two different values of momentum transfer. Be-
cause of these strong similarities between Eqs.
(4) and (25), we conjecture that Eq. (25) is reason-
ably well satisfied when Eq. (4) is satisfied. How-
ever, we have no proof that this is so.

Next let us consider s tcrossing-. Equations (la)
and (lb) imply that

2

A'(s, t ) = L C„.A'(t, s) . (26)
I'=o

If we impose Eq. (26) on our representations for the
A', nontrivial sum rules will follow, since the mo-
mentum-transfer variable is t on the left-hand side
of Eq. (26), but s on the right-hand side. The sum
rule obtained in this way are rather lengthy, so
we shall not write them out. We remark that again
the integrands are independent of 8 waves, and are
dominated in the asymptotic region by differences

between ImT' evaluated at different values of mo-
mentum transfer. Therefore, we conjecture that
these sum rules are also reasonably well satisfied
when Eq. (4) is satisfied.

Finally, we consider s-u symmetry. We begin
by noting that if s-t and t-u symmetry were satis-
fied exactly, then s-u symmetry would automatic-
ally be satisfied, since the A'(s, t) are either even
or odd under interchange of t with u.

In practice, s-t and t-u symmetry will some-
times be satisfied only approximately. In this
case, it is advantageous to have a representation
in which s-u symmetry is manifest. Such a repre-
sentation can be obtained by first setting s, = cp
in Eq. (2b}, subsequently setting s, =4p, ' —t —c„,
and then using half the sum of the resulting expres-
sions .

For the sake of brevity in writing the result, we
shall use a matrix notation, with A forming a 3-
vector denoted by A. The s-t crossing matrix C
was given earlier. We shall now denote it by C„,
and we define C,„and C,.„by

(C,„}„.=- (-I)'5„.,
Csu Cst Ctu sk ~

in terms of which crossing symmetry may be
stated as

A(s. t) = C„A(t, s) = C,„A(s, u) = C,„A(u, t) .
We can then write our s-u symmetric representa-
tion as

+ OO

X(s, t) =,'-(I+ C„) A(c„c,)+—- '- ' ds' —, —, '","- ImA(s', c,)
7 ~4p2 S —t S + t —2&o S —4o

4}I2 S Qo 8 S S Q S + t 2Cp S Q S S
(27)

where

('-5X
A(c„c,) = 0

Since (C,„)'=I, the A generated by Eq. (27) mani-
festly satisfy A(s, t) = C,„A(u, t). Bose (t —u) sym-
metry implies a (vector) sum rule for the absorp-
tive parts appearing in Eq. (27). If Bose symmetry
were satisfied exactly, then s-t symmetry would
automatically be satisfied.

Do the sum rules considered in this paper con-

stitute sufficient conditions for crossing symmetry
to be satisfied'? Unfortunately, the answer is neg-
ative. The reason is that all the sum rules implied
by crossing symmetry hold only for restricted
ranges of s and/or t and/or u. If the amplitudes
generated by our representations were analytic in
these variables, then the sum rules would imply
complete crossing symmetry by analytic continua-
tion. However, the integrands of our representa-
tions involve ImA'(s', t). Therefore, one must use
absorptive parts with the proper analyticity in ~

in order to obtain amplitudes which are fully cross-
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ing-symmetric. In practice, this is difficult to do.
(Similar remarks apply to the representations of
Roskies and Roy. )

Notwithstanding the difficulty of constructing
amplitudes which are fully crossing-symmetric,
we believe that satisfaction of the sum rule (4) is
sufficient to ensure results consistent with cross-
ing in the low-energy region.

XII. UNITARIZED VENEZIANO mn AMPLITUDES

Recently a model' (henceforth UV) has been
proposed for the A in which the following condi-
tions are satisfied exactly; analyticity, crossing
symmetry, positivity of partial-wave absorptive
parts with definite isospin, satisfaction of fixed-t
D.R.s with one subtraction, and satisfaction of
fixed-s D.R.s with two subtractions. It follows
from the preceding conditions that the inequalities
of Martin'6 and others are satisfied, including the
highly stringent inequalities of Yen and Roskies. "

%'hen s is given the symmetry-point value s
=-', p. '= c„ the model also satisfies fixed-s D.R.s
with only one subtraction, and hence satisfies the
I=1 Regge sum rule" for the symmetry-point de-
rivative parameter X, of Chew and Mandelstam. "

In addition to the preceding exact properties, the
S waves and I' wave are unitary within 2'%%uo from
threshold up to energies exceeding I QeV. Solu-
tions in agreement with data above 600 MeV were
constructed for values of the isoscalar scattering
length ranging from 0.0 to 1.1p, ', thereby dis-
proving various claims in the literature about
alleged uniqueness for the 8-wave scattering
lengths.

The absorptive parts of all partial waves with
l =- 2 are given in UV by the 0-function absorptive
parts corresponding to resonances'in the Venezia-
no model. " Thus through duality, asymptotic ab-
sorptive parts are given by the Begge exchanges
of the Veneziano model.

From the preceding remarks, it is clear that UV
satisfies exactly all the hypotheses upon which the
representations (3b), (24), and (27) are based.
Thus all solutions of UV are automatically solu-
tions to Eqs. (3b), (24), and (27).

Although the rigorous representations derived
herein are satisfied exactly by the solutions of UV,
we have seen in the present paper that the Vene-
ziano value for y~ is about 25'Pz larger than the
physical value (Fig. 3). To see how this affects
the solutions of UV, we begin by noting that the A'

are rigorously determined within a neighborhood
of the symmetry point by A, and the derivative pa-
rameter A, ' In UV, A. is treated as a phenomeno-
logical subtraction parameter, while A., is deter-
mined by an integral over jmT'(s, c,).

Ap(s, 0) =O. lie(s —4p. ')/s '. (28b)

Thus between threshold and 1 QeV, the Pomeran-
chon contribution to all three of the A is given
approximately by

A~ (s, 0) == 0.11(s/s)'.

For E, =600, 800, and 1000 MeV, Eq. (28c)
indicates that AI~(s, 0) equals 0.01, 0.04, and 0.11,
respectively. Thus the contributions of Pomeran-

One readily finds that the net contribution to A, ,
from above 1 QeV is 0.04@ ', which is only about
one-third the total value of X,. (For the Weinberg'
value X=-0.01, X, =0.11'. ' in UV. ) Thus an error
of 25% in p~ implies an error of only about 8% in

%hen we recall that the amplitudes are fixed
at the symmetry point by the subtraction parameter
X, . we see that an error of 8/0 in X, cannot lead to
significant errors within the low-energy region.

Furthermore, we note that the p resonance width
used in UV was 120 MeV, whereas the value now
favored [and used in y~(Ven. )" in Fig. 3J is 135
MeV. " Since the Veneziano contributions are nor-
malized to I'~ in UV, the Veneziano y~ is really
only about 11%%up too large in UV, thereby generating
an error of only 0.004'. ' in A, Another conse-
quence of using 120 MeV for I'z in UV is that the

p resonance contribution. to A., was unde~estimafed
by 0.004', '. Hence by a fortuitous circumstance,
the UV values for A., are actually in perfect accord
with a p width of 135 MeV and with the y& reported
in this paper.

A potentially significant limitation of UV lies
in its neglect of Pomeranchon exchange. The cor-
rections which one should make are given by the
Pomeranchon contributions to the right-hand sides
of Eqs. (3b) and (24). Therefore, let us estimate
these contributions.

An asymptotic total cross section of" 15 mb im-
plies that ImT'(s, 0) =1.2(s/s) for large s, where
s=1 GeV'. However, the data of Carroll et al.
for ImA' indicate that Pomeranchon exchange does
not achieve full strength below 1.5 QeV. Further-
more, nonresonant absorptive parts are primarily
S wave below 1.5 QeV, and S-wave absorptive parts
are already present in UV. Therefore, Pomeran-
chon corrections to the solutions of UV should be
estimated by computing contributions from Pomer-
anchon exchange above 1.5 QeV to the right-hand
sides of Eqs. (3b) and (24).

Denoting the aforementioned Pomeranchon con-
tributions by A~, we find for I=O and 2 that

&p(s, 0) —= 0.11[35„(c,)'+ s(s —c,)]/r ',
where 5„denotes the Kronecker 5, and the approx-
imation is valid for s«(1.5 GeV)'. For I= 1, we
find
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chon exchange are negligible below 600 MeV, and

quite small below 800 MeV.
Finally, we must consider the effect of strong

KEY production in the I=0 channel above 1 QeV,
since inelasticity was neglected in the actual cal-
culations performed in Ref. 6.

As might be expected, numerical estimates in-
dicate that inelasticity above 1 GeV has very little
effect on A.' below 600 MeV. Furthermore, A'
is constrained in UV to agree with data in the p
region. Therefore, we conclude that the A
UV are in excellent accord with nature below 800
MeV, notwithstanding the neglect of Pomeranchon

exchange and KK production. The only uncertainty
remaining in the low-energy region is nature' s
choice for A. .
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