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It is shown that, while generalized vector dominance is strictly applicable in the diffractive limit (v -+ ao,

any g' & 0 such that x—:Q'/2Mv~ 0) of electron-nucleon scattering and the parton model is applicable
in the scaling limit (g' ~ oo, x fixed), these two models are identical for describing the deep diffractive
limit (g'-+ co, x -+ 0). This equivalence is then used to interpret the different contributions of vector
hadronic states which couple to the photon. A new scaling variable x™ comes out naturally from our
analysis.

The generalized vector-dominance model' has
been made consistent with the present experimen-
tal data' of electron-nucleon scattering in the deep-
inelastic region and can appear as an alternative
for the parton model, ' where the incident electron
scatters elastically and incoherently off the point-
like constituents of the target nucleon (Fig. 1). In
the vector-dominance model, the collision between
a (real or virtual) photon and a nucleon proceeds
in two steps: (i) the photon (q) transforms into a
vector hadronic state V, and then (ii) V collides
with the nucleon (P). The total (virtual) photoab-
sorption cross section, which is proportional to
the imaginary part of the (virtual) forward Compton
scattering amplitude, is represented in Fig. 2:

tr(e)- Vl+&(&)- t V'-~(e)l+&(&)

Only the three low-lying vector-meson contribu-
tions, V= p, &u, P, were taken into account in the
earlier versions of the vector-dominance model.
However, it is clear now that these earlier ver-
sions are unsatisfactory at the phenomenological
level for at least three reasons: (i) their failure
to explain the total photoabsorption cross-section

data, (ii) their prediction &x~» vr for deep-inelas-
tic electroproduction which is contrary to the ex-
perimental data, and (iii) the big e'e annihilation
hadronic cross sections at c.m. energy higher than
1.3 GeV. The generalized vector dominance has
been proposed precisely to overcome these dif-
ficulties. Here V or V' are interpreted as any had--

ronic vacuum fluctuation of the photon, and not
only as the low-lying mesons p, &u, /but also the
higher-mass vector mesons such as p' (mz, - 1.6
GeV) and the nonresonating vector hadronic-state
contributions with J =1, which are very possibly
not negligible at all. But this is not enough to fix
the present form of the generalized vector-domi-
nance model. For that, we have to introduce the
further assumption, which can only be justified in
the case of diffraction, that, if the ingoing photon
in Compton scattering is coupled to a given had-
ronic vector state V, then the outgoing photon has
to be coupled to the same hadronic state V. There-
fore we take V= V' in Fig. 2. This is analogous to
the assumption of parton models, that in the scal-
ing region, only elastic photon-parton scattering
contributes (Fig. 1).
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Before we begin our discussion, we notice that,
in contrast to the generalized vector-dominance
model, Brodsky, Close, and Gunion' propose that
the discrepancy between the naive vector-domi-
nance model (i.e., V=p, u&, It}) and the photoproduc-
tion data indicates that we are seeing, besides the
p, Id, Ij} contributions, the effect of parton scattering,
just as in the scaling region (Fig. 1). For their
analysis, they use a parton model due to Landshoff,
Polkinghorne, and Short, ' where the photons inter-
act with the proton, as far as the absorptive part
of the (virtual) Compton scattering amplitude is
concerned, in two different ways: (i) through con-
nected off-shell (parton-parton-proton)' six-point
functions [Fig. 1(a) of Ref. 4], which are assumed
to vanish in the Bjorken scaling limit, and (ii)
through (parton-proton)' four-point functions in
which the parton propagates freely between the
ingoing and outgoing photons [Fig. 1(b) and Fig.
l(c) of Ref. 4; our Fig. 1] and which are the only
nonvanishing terms in the Bjorken scaling limit.
Furthermore they make the hypothesis that the
above-mentioned six-point functions can be evalu-
ated by the p, &u, It} contributions as is done in the
naive vector-dominance model [Fig. 3 of Ref. 4].
Because our analysis will show that, at least
when x -0, the contributions of the vector ha-
dronic-state continuum in the generalized vector-
dominance model have an analytical structure
identical to the above-mentioned four-point func-
tions of the parton model, we would expect an
intimate connection between the two models.

We start with the usual tensor 8'„„,which in-
cludes all strong-interaction effects on inelastic
electron-nucleon scattering, assuming one-photon
exchange:

FIG. 1. Parton-model diagram for highly virtual-
photon-hadron collision.
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Defining the Fourier transforms

(2b)

G,.(t}*,e}=f d'ye"'"c}e', e e'}, (3)

with C, (y', y P) =. —C,.(y', -y P) and C,.(y', y P) =0
for y2(0.

Now, it has been shown" that (i) if MW, and vW,
scale in the Bjorken limit:

lim MW, (q v) Fi(x)-
Q 2» oo

& fixed

(5a)

lim vW, (q', v) =F,(x),
Q2» oo

x fixed
(5b)

we get the space-time representation of lV» ..
4~'«P

I [&„(y),&.(0)]l»
=(g„„t-j-s„s„)C,(y', y P)

+[p„p„-(ps)(p„s,+p„s„}
+gI},(P &)'J C,(y', y.P), (4)

= —
I

g„„—&"
I

W, (q', v)I}ll 2 )
1 }

Pq tt Pqi+ P„,q„
I

P„—,IW, (q, v)
q

~
q

1=-—{(„,q'-q„„)c,(q', }

+ [ PI}P —Mv(P~gp +P qI})

+ (M v) 2g„„]C (q2, v)) .

We have used the following definitions: P q=—Mv,
q' =——Q' & 0, x —= Q /2 Mv (- 1 & x &+1) and relations:
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and (ii) if the dominant singularities of the current
commutator are on the light cone rather than inside
it in coordinate space, then the matrix element of
the current commutator, up to teems &@hose Eouxi-
er transforms vanish in the scaling limit, is given

C, =4 +(vW, —2xMW),
1

(2a)

FIG. 2. Vector-dominance-model diagram for the
imaginary part of the (virtual) forward Compton scatter-
ing amplitude.
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by Eq. (4), with

C, (y', y P)= . a(y, m')

'dg
&& —;[E,(q) —2»!E,(q)] cosy(P y), (6a)

g(y', y P) =—.4S'(y, m') sing(P y)E, (q) .
dg

2wi ', q(P y)

inance for the diffractive region: v -~ any Q' ~ 0
such that x-0. For the sake of simplicity, we
only consider the transverse part' of the virtual
photon-nucleon cross section or(q', v) which can be
written (See Appendix) in the diff»active region as

or(q', v) A» A,
4w'o. + (1+Q'/m»')' 1+Q'/m, ' '

Q «2@v
(8)

Furthermore, Jaffe' shows that Eq. (4), Eq. (6a.),
and Eq. (6b) provide in ihe scaling limit a space-
time representation for the parton model —assum-
ing a common mass m for all charged partons —in
a form which satisfies current conservation. The
explicit forms of the singular functions 4 and 4'
are

1 2 1-8,(m(y')"') '

I,a'(y m') =—&(yo)8(y ) 1 —m'y'

(Vb)

We note that b, '(y, m') = —d/dm' A(y, m'), and that
the second terms in brackets in Eq. (Va) and Eq.
(Vb) (where the mass m appears) are less singular
than the first ones and do not contribute to the
scaling limit as defined in Eqs. (5), in agreement
with the analysis of Jackiw, Van Royen, and West. '

In the following, we display the coordinate-space
representation of the matrix element of the current
commutator in the case of generalized vector dom-

t

lim vW, (v, q') = Q' PA»,
Q2«I2+vt

' 1+ Q'/m, ' (9)

Observe that Eqs. (5b) and (9) imply that

E,(x = 0) =A, m, '. (10)

After introducing Eq. (9) into Eq. (2b), we expand
in Taylor series with respect to m„'/Q' and
m '/Q'.

where the V's denote vector-meson resonances
like p, ~, p and m, is the threshold mass of the
vector-state continuum. The term proportional
to A, in Eq. (8) represents the collective effect of
the vector hadronic states which couple to the
photon in a nearly continuous way and cannot be
taken into account by a finite discrete set of terms
proportional to the Av's. The numerical values of
the constants Av and A, are determined from pho-
toproduction data. See Sakurai and 8ehildknecht
in Ref. 1. They take m, =1.4 GeV.

With Eq. (8), we can write the expression of
vW, in the diffractive region as

oo 2 oo 2

Q(q, v) =
2

— Q A»m» Q(- 1)"+~n 2
" A~m Q(- 1)"

lp) -moo
I

Q2 «t2Nv)

—=Q Q Cf»~(q', v) + Q Ci"l(q', v).
n=O

Using the relation'

+7 n+1
d'y e' '(y')"g(y')e(yo) =m'i 2 '""+!e(ko), ' 5(&'),

it can be shown" that C~»l, (q', v), as defined in Eq. (11), is given in the diffractive region by

i 1

4&2& Vc, Vc Vc 4 0
0 g(y I' (13)

with
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(15a)

( )c. —( )(,)2.

Note that

dg si(y I )

( )
sin rt {y P ) = (14)

with Si(y P) varying between zero when

y I'=0, and —,'m when y P =~, with slow oscilla-
tion s. Knowing that

( 1)n+I, ~2 n
L(m{y 2)&i&) J~(m (y2P)2) ( ) n 2

(n ~) 4 '
(15b)

and using Eqs. (3), (Ib), (11), and {13), we get the
space-time representation of C2(q', v) (up to terms
whose Fourier transforms vanish in the diffractive
limit):

C,{y',y P)=- . 4 ~'(y, m, ') sing(y P)m.2&,-~„,~'(y, m„')2' ' ' a g P Hintl(y l')m A I.
4'g

g I
(16)

Comparison between Eqs. (6b) and (16)—using Eq.
(10)—gives us the announced result: The parton
model and the generalized vector-dominance model
have the same analytical structure when we are
dealing with the deep diffractive region: Q'-~,
x-0, i.e., the intersection between the scaling
region (Q'- ~, 0&~&~ & 1), where the parton model
is strictly applicable and the diffractive region
{v ~, any Q'~ 0 such that & -0), where the gener-
alized vector-dominance model is applicable in-
dependently of additional assumptions' on Regge
parametrizations, final-state distributions, etc.
Furthermore, comparison between Eqs. (6b) and
(16) shows that, at least in the diffractive limit,
the contributions of the vector hadronic-state
continuum in the generalized vector-dominance
model, after making the diagonal approximation"
V= V' (Fig. 2), have an analytical structure iden-
tical to the four-point functions of the parton model
in which the parton propagates freely between the
ingoing and outgoing photons (Fig. 1).

In the present analysis we only considered the
transverse part of virtual photon-nucleon structure
functions.

We have checked that if we include a longitudinal
cross section ez(q', v) compatible with Bjorken
scaling, such as

im, — B„
q «2@It

the conclusion of our above analysis is unchanged:
We get the same space-time configuration repre-
sentation for the parton model (with spin-0 partons
of different masses mr) and the generalized vector-
dominance model in the deep diffractive limit,

Finally, two difficulties could arise with our

comparison: (i) The arbitrary distinction between
low-lying vector states and higher states and (ii)
the ra.ther high value of m, (=1.4 GeV) in the anal-
ysis of Ref. 1. On the other hand, direct computa-
tion of vW(q', v) from Eq. (Sb), using Eqs. (2b), (3),
and (4) gives

1
lim vW, (q', v) =1 .. . QF, (q)1+m /'Q

Q2 ~00

x[6(g —x) + 6(q + x)]

1
3/q2 F2( (18)

—v+e(v)(v'+ Q'+ m')"' = Q'+ m'x=-
2m2&v

Equation (18) provides a natural extension of Eq.
(9) into the scaling region with the scaling variable
~= [-v+ e(v)(v'+ Q'+ m, ')"']/lVt. But because sc»-
ing appears aires. dy satisfied with Q' = 1 GeV' in
terms of x, the Bjorken variable, we expect that
m, ' «1 GeV'.

An equation similar to Eq. (18), with x replaced
by (Q'+ m')/2Mv, has been used in Ref. 11 to fit
the photoproduction data as well as the electro-
production data for x™«1. In these analyses m
~ 0.5 GeV and no distinction is made between the
low-lying vector states p, ~, P and the higher-mass
vector states or the nonresonating vector hadronic-
state contributions. This means in practice that
the A„'sare taken equal to zero in Eq. (8). It is
interesting to compare x™ with x', the Bloom-
Gilman variable" and x~, the Rittenberg-Rubinstein
variable" for large v and x fixed:
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+02
M((v'+ Q'+ m, ')"'+ v)

APPENDIX

Let us derive Eq. (8}. We express the trans-
verse pari of the virtual-photon-nucleon cross
section as a double-spectral representation':

2&v+M ' ( 2M~) 2Mi (v')'

with M~'=1.5 GeV' and p.'=0.4 GeV'. The three
variables x, x', and x will be nearly equivalent
when xs 1 if m, '&& p, '. Observe that m„the
threshold mass of the vector-state continuum which
couples to the photon, has to satisfy the obvious
lower bound m ~ 2m„=0.279 GeV.
For these reasons, we are inclined to believe that
m, 2=4m 2=0.08 Gev2. Furthermore, we can note
from Eq. (10) that the smaller m, would be, the
smaller the diffractive part of E,(x) would be too, a
a situation which is not unwelcome~4 if we want to
satisfy the Adler sum rule.

In conclusion, we would like to make the follow-
ing observations:

(a) The realization of Bjorken scaling, in the
generalized vector-dominance model is obtained
from the dominant singularities of the current
commutator on the light cone and not from those
jI.nsxde xt.

(b) The second term in brackets in Eq. (Ib)
(where the mass m appears), which does not con-
tribute to the scaling limit, is present in the two
models: In the spin-aparton model, m is the par-
ton mass and, in the generalized vector-dominance
model~ with OL 0~ vl ls 3ust the threshold mass
(m, ) of the vector-state continuum. Generaliza-
tions to the cases where partons have different
masses and ol. 40 are straightforward if we intro-
duce spin-0 as well as spin-~ partons.

(c) In view of satisfying Q'or e0 when Q2-~, the
generalized vector-dominance model cannot be
reduced to a finite sum of isolated vector-meson
contributions [this is the case if A, = 0 in Eq. (8)].

(d) Then the nonvanishing contributions to Q'or
when Q -~, come exclusively from the vector-
state continuum„ i.e., A, e0 in Eq. (8).

(e) The vector-state continuum contribution has
certainly, in addition to the term A, (1+Q'/m, ') '
in Eq. (8), other terms which vanish in the scaling
limit (see Appendix). Therefore, the parameter
A, is rather arbitrary.

One of us (J.P. ) thanks R. Brout, L. Heiko,
B. Renner, and J. Meyers for stimulating discus-
sions and comments.

where m and m' are the masses of the hadronic
states V and V', respectively (Fig. 2) and (p+q)
= W'. In the diffractive limit we can expect that
V+X- V'+X, with V'4 V, has a negligible cross
section compared with V+X- V+X, and we can
therefore make the diagonal approximation:

lim pr(m', m", W') = 5(m' —m")pr(rrP, W').
g ~ce

Introducing Eq. (A2) into Eq. (Al), we get

(xr(q', v) ~" pr(nP, W')
u~~ 47T A ~4~ 2 (Vl +Q )

Q « 2@v

(AS)

pr(m', W') can contain a finite discrete set of
terms corresponding to the isolated vector-meson
resonances such as p, ru, P and other terms which
represent the collective effect of the vector had-
ronic states which couple to the photon in a nearly
continuous way. Then we use for pr(m', W'} the
following form, comPatible with Bjorken scaling:

pr(m', W~) =Q A„m„6(m'—m„')
V

(A4)

where f (m ') is a function such as

4v'o. ~ (1+Q'/Mv')' (1+Q /m, ')

1+0 ',-- In

This last equation is identical to Eq. (8) except
for the terms of the vector-state continuum which
vanish in the scaling limit.

and m '~ 4m, '. Introducing Eq. (A4) into Eq. (AS)
we get
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Note added in Proof. As we have argued at the
end of this article, because scaling appears al-
ready satisfied with Q2 = 1 GeV', no distinction can
be made between the low-lying vector mesons p, ~,
Q and the higher-mass vector mesons or the non-
resonating vector-state continuum which couple to

the photon. Therefore the A~'s can be taken equal
to zero in Eg. (A4) while the fine structure of the
low-lying vector states can be included in the func-
tion [f(m ') —1], which gives a vanishing contri-
bution in the scaling limit.
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We investigate the processes e N —eh X, {v,p)N —p, h X (h = m, p,y) in three different kinematic
regions and study the behavior of the relevant integrated structure functions in generalized Bjorken
limits. The technique used is a generalization of the bilocal current algebra put forward by Fritzsch
and Gell-Mann. As a consequence of the hypothesis of light-cone dominance, we obtain scaling in the
Bjorken limits of all the three kinematic regions. We also find that the scaling functions are expressible
as a linear combination of those for the ordinary inclusive reactions and that their explicit dependence
on the scale parameters is uniquely predicted once the scaling functions for the processes eN—e X and

(v, P) X —p,X are known.

I. INTRODUCTION

The recognition that several features of the MIT-
SLAC experiments, as viewed in the context of
Bjorken scaling, resemble the behavior of free-
field theory (rather than perturbation theory) in

the vicinity of the light cone led to the proposal of
light-cone algebra of bilocal operators put for-
ward by Fritzsch and Qell-Mann. ' They abstracted
the algebra from free-quark field theory. Subse-
quently Gross and Treiman' showed that the same
algebraic structure remains even in the presence


