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In order to correct the threshold behavior of scalar Pade approximants in NN- scattering,
"matrix Pade approximants, "which take into account the various positive- and negative-
energy states, have been considered by several authors. In a recent paper by Bessis, Tur-
chetti, and Wortman, truncated matrices based on an incomplete set of basis states were
used and a qualitative description of the energy dependence of the Po phase shift was ob-
tained. In this work it is shown that this result is not obtained when a complete set of basis
states is used. The main effect of matrix Pade approximants using a complete set of basis
states is to introduce an additional attraction at higher energies. Our analysis of the fourth-
order graphs is done in a way which allows the external momenta to be completely off shell
so that the irreducible graphs can be used as kernels in the Bethe-Salpeter equation. This
will make possible the calculation of several higher-order graphs by iterating the Bethe-
Salpeter equation.

I. INTRODUCTION

Nucleon-nucl. eon scattering, in particular for
partial waves 1.~ l (I. being the orbital angular
momentum) and low energies, is an appropriate
case in which to study whether Pads approximants
can be successfully applied to the summation of
the perturbation series of a strong-interaction
Lagrangian. The reason is that the phase shifts
do not exhibit a resonance behavior and that there-
fore the perturbation theory can be assumed not
to be too drastically divergent. Earlier calcula-
tions' show that the Born term alone describes
higher partial waves reasonably well, and one can
therefore hope that I' waves and higher waves can
be described by a manageable higher-order calcu-
lation.

In this paper we investigate a fourth-order cal-
culation in the Yukawa model with the interaction
Lagrangian

&ini = -iggys7' (jhow

of pseudoscalar pion-nucleon interaction.
A deficiency of low-order Pade approximants

has been that the Born term in many partial waves

['8„'P„'D„.. . (see Ref. 2)] has an anomalous
threshold behavior, For the Sp wave, e.g. , the
Born term behaves like a I' wave at threshold
(-P', P being the modulus of the c.m. momentum).
As the fourth-order term has a normal threshold
behavior (-P), the [l/l] Pade approximant behaves
like a D wave, and also sharp resonances at low

energies occur. ' This deficiency has been cured
by Bessis, Turchetti, and Wortman and before
that by Barlow and Bergere, ' following Bessis's
suggestion. These authors considered "matrix
Pads approximants" by taking matrix elements
between the various positive- and negative-energy
states. The elements of these matrices have in
general a normal threshold behavior, and there-
fore forming Pade approximants in this space does
in fact correct the threshold behavior. Further-
more it is hoped that the use of these matrix Pade
approximants will improve the convergence be-
cause the whole matrices contain more informa-
tion than just the physical element.

The authors of Ref. 4 did not perform a calcula-
tion of the complete matrices. They used the
same set of basis states used by Barlow and

Bergere, which, although sufficient at threshold,
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where it was applied by Barlow and Bergere, is
incomplete at positive energies. Their conclusions
for higher energies (up to Ehb -400 MeV) drawn
from these "truncated" Pade approximants seem
to be not correct according to our calculation. In
particular the decrease of the 'P, phase shift at
higher energy which they obtained from a [1/1]
matrix Pade approximant does not occur once
one uses a complete set of basis states.

Thus it seems to us that the matrix Pade approx-
imants do not contain as much physics as the au-
thors of Ref. 4 imply, though we still consider
them a very useful tool in the summation of the
perturbation series of a strong-interaction field
theory. We consider it absolutely necessary,
however, to attack higher-order calculations, and
as a preparation for that we allow the external
momenta of the fourth-order graphs to be com-
pletely off shell in order to obtain higher-order
graphs by iterating the Bethe-Salpeter equation.
Apart from this, these kernels will also be useful
in a Bethe-Salpeter calculation itself.

As the Dirac algebra becomes quite involved
for the complete spin matrices, we have at present
performed a calculation only for the J =0 states
'8, and 'P, . The calculation of higher partial waves
is feasible, however, and a description of aHEDUCE
code which does these calculations has been given
in Ref. 6. The formula-manipulating language
HEDUCE' has been of great advantage in the calcu-
lation of the J =0 partial waves in this paper as
well.

II. CALCULATION OF THE [1/1] MATRIX PADE
APPROXIMANT FROM YUKAWA THEORY

We do not wish to repeat all of the contents of
Refs. 6, 8, and 9. However, at least some details
may be useful for purposes of self-containment.

Since nucleons have positive and negative energy,
as they have spin up and down, there is an exact
analogy with the spin states of two nucleons. We
speak of "energy spin. " The states are

+ —6' —+
energy-spin triplet

2

+-6—+
energy-spin singlet

2

and e are arithmetic operations, and the symbols
e and o refer to even and odd, respectively.

The four-momenta on the external legs of a graph
are labeled as shown in Fig. 1. Partial-wave am-
plitudes (off shell) will be denoted by
$(P„P, o., q„q, P), where P and q are the magni-
tudes of the three-vectors p and q and the labels

E+p, p E+q, q

po p E-q, -q

FIG. 1. Labeling of the external momenta of the
fourth-order Feynman graphs.

3P + 3P — 1g e 3S 0
0 & 0 & 0 y 0

where the upper right-hand index labels the energy
state. Thus the off-shell amplitudes are 4&&4 ma-
trices (n and P ranging 1 through 4, representing
the above states).

On shell, however, these matrices have zero
elements for P = 4 and o. = 1, 2, 3, and also n = 4
and IS=1, 2, 3, because the P,' and 'S,' states are
odd in the relative energy P„which is zero on
shell. Thus the 4x4 matrices degenerate on shell
into a 3&&3 and a 1&& 1 matrix, and in forming Pade
approximants we only have to take into account
the 3 x 3 part.

As in Ref. 9, we define the tangent matrix

(tan5)„8= —.$(O, P, o, O, P, P) (PB=E'+m'),

the (1, 1) element of which gives us the physical
phase shift. The Yukawa theory results in an ex-
pansion

(tan El) „8= {K,)„r(g '/47r) + (K,) rr (g '/47r) '+

(4)

where K, and K, are matrices. All graphs of order

a and P indicate states of definite Z (total angular
momentum), L (orbital angular momentum), par-
ity, spin, and energy-spin. These states are clas-
sified as simultaneous eigenstates of the parity
operator P (negative- and positive-energy states
have opposite parity) and the exchange operator
PH. ' The latter operator is a generalization of the
Heisenberg exchange operator (P„also operates
in energy-spin space) of nonrelativistic quantum
mechanics and essentially embodies the Pauli
principle. It also contains the parity operator with
respect to the relative energy p, .

In this paper we are concerned with the J =0 par-
tial waves 'So and 'Pp According to the above clas-
sification, ' the following states couple in these
two cases, respectively:

&g+ gs - 3P 8 3PO
0 ~ 0 P 0 9 0
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g' and g4 resulting from the Yukawa coupling are
shown in Fig. 2. The calculation of these graphs
is described in Appendix A. The usual Feynman
rules and renormalization theory apply. The
physical or (1, 1) element of the nucleon self-mass
contribution vanishes because the external mo-
menta are on shell. The other elements are not
on the physical energy shell and do not vanish.
The direct box graph is calculated by iterating the
Bethe-Salpeter equation as described in Refs. 9
and 10.

The [1/1] matrix Pade approximant is

g~ 1(tan!I)„l= —K, —
~

-,
/ ~

K,) . (5)
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FIG. 2. Feynman graphs of order g and g4 in the
Yukmva model.

1 + p
2) 1 x2 1 p(2) g(y(2), x p(2) + jp(2)

2 1+x 2 1+x

with

1 + p( ~ 1 x 1 p(~ 2g(~) x p(~) + zp(~y()) c + 8 +
'

x y

2 1+x2 2 1+X2 2

The dots stand for matrix multiplication, and the
inverse is a matrix inverse. Properties of ma-
trix Pade approximants are discussed in Ref. 11.

p
E(P)+m ' x= /xJ.

III. NUMERICAL RESULTS OF THE MATRIX
PADE CALCULATION

Qur results for the 'S, and 'P, phase shifts do
not confirm the calculations of Ref. 4. Their most
important result seems to us the qualitative agree-
ment of the 'P, phase shift with experiment. From
potential theory one knows that the decrease of
the 'P0 phase shift at high energy is due to an L, S
coupling, and it was hoped that this would be sim-
ulated by a fourth-order matrix-Pade calculation
in the Yukawa model. This is, however, not true
according to our calculation.

The result for the 'P, wave in Ref. 4 is mainly
due to the way the set of basis states was trun-
cated. In the first place, any truncation is a bad
approximation, because in this case in the calcu-
lation of a P state one is leaving out an S-state
contribution ('S;; compare the abo.ve labeling of
the matrix). Secondly, the authors of Bet'. 4 used
as definition for the negative-energy states

y,u(p),

which are not orthogonal to the positive-energy
states. Doing the partial-wave projection we
follow the procedure outlined in Refs. 6 and 8, and
our definition of the negative energy states is
accordingly

y,u(-p) .

For J=0 the relation between the states of Ref.
4 and ours is given by

(8)

where the upper left-hand index B refers to the
states used in Ref. 4 and

Z (j.).T(2)

Here a and p are Pauli matrices acting in spin and
energy-spin space, respectively. " We find

T.~S + = ~S +
0 0

S+
(10)

2x 1 —x2

1+X 1+x

and similarly

3P + 3P +
0 0

T'P0 =
2 'P0 + .2 'P0'

2X 1 —X I
+ 1+x 1+x2 0

Though the authors of Ref. 4 have not said what
their complete set of states would be, assuming
relation (8) for o =3 and 4 as well the matrices
in both cases are related by a nonunitary linear
transformation, For matrix Pade approximants
we now have the following convariance property:

T (M/N]r T= [M/N]rt„r;. , (12)

that is, we obtain the same result if we form at
first the Pade approximant with the original coef-
ficients K; and then apply the transformation T or
transform at first the coefficients K, and then
form a matrix Pade approximant. This is valid
for any linear transformation T."

As the transformation T leaves the (1, 1) element
invariant [see Eqs. (10) and (11)]—and only this
is of physical interest —it is clear that the choice
of negative-energy states does not make any differ-
ence in the calculation of the physical phase shift
from matrix Pade approximants. It does, however,
make an important difference when the matrix is
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truncated. One could obtain many different results
by truncating different sets of basis states. In
fact, our calculation shows that with our basis,
the negative-energy states being defined by (7),
there is practically no decrease at high energy in
the 'P, phase shift (which comes out to be very
similar to the scalar approximant) when one calcu-
lates a "truncated" Pade approximant by leaving
out the third state.

Taking into account the complete basis, one ob-
tains a phase shift which has even more attraction
in it, rising up to about 60' without any decrease
at high energy —in complete disagreement with
Ref. 4. It should be noted, however, that up to
about 50 MeV our results are in good agreement
with the results of Ref. 4 (see Fig. 3").

For the 'S, phase shift our results do not differ
essentially from the ones of Ref. 4. The sign of
the three-momentum in the definition of the nega-
tive-energy states is obviously of no importance
in the definition of an S wave, and in addition the
truncation has no important consequences since
one is leaving out a P-wave contribution ('P,') in
the calculation of an S wave. Thus our calculation
yields only some slight additional attraction (Fig.
4).

In Figs. 3 and 4 we have also plotted the results for
the [1/1]scalar Pade approximant. Comparison of the
matrix Pade approximant with the latter one indicates
that the off-shell effects in spin space (with the
four-momenta on shell) introduce an additional
attraction, This is similar to off-shell effects in
momentum space, observed in calculations based
on the Blankenbecler-Sugar equation. " Apart from

the improvement of the threshold behavior of the
scalar Pads approximants, we consider this the
main significance of the matrix Pade approximants,
and this property may in fact become of great
importance in a higher-order perturbation theory,
where strong repulsive forces will come in through
mm interaction terms in the Lagrangian, e.g. , XP,
which has not been considered in the present work,

We have checked our graph calculations against
those of Ref. 4 at Ebb -—50 MeV. Using the connec-
tion deduced from Eqs. (8)-(11)between our ma-
trix elements and those of Ref. 4, we obtain com-
plete agreement Numerical results for the graphs
in Fig. 2 are given in Tables I and II.
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APPENDIX A

In this appendix we give some details of the cal-
culation of Feynman graphs (off shell) and second-
order renormalization. The results are finally
given in terms of Feynman integrals rather than
dispersion relations. This procedure seems to
be particularly adequate for higher-order calcu-
lations, for which the present work serves par-
tially as preparation.
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FIG. 3. Results for the 3PO phase shift 6(g 2/4x = 14.7).
Curve 1: scalar Pade approximant. Curve 2: matrix
Pade approximant with complete basis set. Curve 3:
matrix Pade approximant with truncated basis set
taken from Ref. 4; the experimental data are taken from
Ref. 12.
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FIG. 4. Same as I ig. 3 for the ~SO phase shift.
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TABLE I. Numerical results for the Feynman graphs of Fig. 2 for the So partial wave at 50 and 200 MeV. The
matrices are symmetric and we therefore have to present only six elements. We have put g /47t. = l.

50 MeV

200 MeV

Fig.

2(a)
2 (b)
2(c)
2(d)
2(e)
2(f)

2 (a)
2 (b)
2(c)
2(d)
2(e)
2(f)

-2.57x 10
7.94x 10
1.21x10 '
0

—1.14x 10 4

5.47x 10

—6.57x 10 ~

1.45x 1p-'
1.54x10 '
0

—8.58x 10 4

4.14x 10 ~

-2.74 x 10'
8.27x10 '

—1.02x 10
9.20x 10

—8.65x 10 3

—7.15x10 '

—2.38x 100

7.44x10 '
-1.65x10 '

8.14x 10
—1.71x 10-'
-6,20x 10 i

(1,3) ~

-2.23x10 ~

6.87x10 3

6.03x 10 3

3.81x10 ~

—9.84x 10 4

-2.92x 1Q

—2.84x 10
9.36x1Q ~

1.05x10 '
5.25x1Q ~

—3.71x10 '
—3.81x 10 2

(2, 2)

—2.57x 10 '
1.99x 100

3.40x 100

0
—1.14x 10 4

2.02x 10 ~

-6.57x 10 '
—9.25x10 '

4.58x 10'
0

—8,58x10 4

5,47x 10 2

(2 3) ~

2.23x10 '
1.56x10 '
1.69x 10 ~

-3.81x 10 2

9.84x 10 4

—5.78x10 '

2.84x10 '
-2.09x 10 ~

3.86x 10 ~

-5.25x10 '
3.71x 10 3

-7.95x 10-~

(3.3) a

8.30x 10
—1.42x 10 ~

—7.88x 10 3

—2.60x 10 '

2.43x10 '
1.94x 1p

1.21x 10'
—6.99x10 '
-1.73x 1p
-3.59x 1p

1.84x10 3

2.55x 10 3

1. Crossed Box Graphs

The labeling of the momenta is shown in Fig. 5,
where

P, =(E+P., i),
P3=(P0 —eo p —i)

P, =(E -e., -[l),

p, = (0, 0) .
Renormalization is not required, and in order to
obtain the result in terms of a Feynman integral
we apply the Chisholm algebra. " We finally have

2 2 ]
(P(G)=(3+2m' v' )(—— dx dr ch dx [m —y J~ ][m —y~ ~ Ii t'] —+ —y( )yr

x +x +x, +x =l. (Al)

Here the four-vectors P " are given by

4

=P[- Zx P[(a)

a=gx, (p -v, ) — Q x,x, p;p, ,

(A2)

2. Nucleon Self-Mass

We choose the labeling of the momenta as shown
in Fig. 6(a). The nucleon self-mass results in the
following replacement for the nucleon propagator:

+ [-iz(p)]—m —m -m —m'

where cr,. means the squared mass of particle i. with

TABLE II. Numerical results for the Feynman graphs of Fig. 2 for the Po partial wave at 50 and 200 MeV. The
matrices are symmetric and we therefore have to present only six elements. We have put g~/4' =1.

50 MeV

200 MeV

Fig.

2(a)
2(b)
2(c)
2(d)
2(e)
2(f)

2(a)
2(b)
2(c)
2(d)
2(e)
2(f)

2.57x 10
1.16x10 3

-7.65x 10 4

0
1.14x10 4

-5.47x10 '

6.57x 1p
4.06x10 '

-6.18x10 3

0
8.58x 10 4

-4.14x 10 4

(1,2)

-8.04x 10 ~

-1.64 x 10-'
—2.66x 10 3

2.60x10 i

-1.29x 10 4

-2.05x 10

—1.14x 10'
—2.34x 10
-5.73 x 10"3

3.59x 10
—9.80x10 '
—2.83x10 ~

(1 3)

2.23x10 '
8.43x 10 3

—3.03x 10
—3.81x10 '

9.84x10 4

2.92x 10

2.84x10 i

1.42x 10
-8.92x1p 2

-5.25x 10
3.71x 10 ~

3.81x 10 ~

(2 2)

2.57x 10
3.05x 10 '
3.51x 10
0
1.14x 10 4

—2.02x 10

6.57x10 '
1.09x 10
1.12x 100

0
8.58x10 4

—5.47 x 10

(2 3)

-2.23x10 ~

-1.79x10 ~

-1.45 x 10
3.81x10 '

-9.84x 10 4

5.78x 10

—2.84x 10
-1.65x10 '
-3.07x 10

5.25x10 '
—3.71x 10 3

7.95x 10

(3i 3)

2.71x 100

6.89x10 '
-4.67x 10
—9,20x 10

8.54x10 '
7.25x 10

2.31x10'
4.75 x 1p

—7.67x10 ~

—8.14x 10
1.62x10 '
6.48x 10
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E+v, p0' p+k
I

E+q, q0

E p0'

/

p +k&, Fp, k

//

/
/

/
p&+ k

/
I

kg

(0) (b)

FIG. 5. Labeling of the external and internal momenta
for the crossed box graph.

, "dk
(p)= g''

(2) ~, .r, ~ ~
r„( )

3 being the isospin factor. The integral in (A3) is
linearly divergent and two subtractions have to be
performed:

where A and B are infinite constants and Z& stands
for the finite part. Introducing

p'- k

kg
p-k

(c)

FIG. 6. Labeling of the momenta for {a) nucleon self-
mass, {b) pion self-mass, {c)vertex correction.

and

p —p, where

z,(p) =—— s„g 3 1
4m 4n' pm

g2 3 1
g (p)=——l ~ 4+4+ ~m2 1&

we finally have

S, = — dxxln 1 —, , );
px(1 —x)

x'+ A. '(1 —x,
px(1 —x) "'

d
x'(1 —x) x'+ X'(1 —x) px(1 —x)

x'+ X'(1 —x) .', x'+ X'(1 —x) px(1 —x) x'+ X'(1 —x)

These integrals can be performed analytically, and below the one-pion threshold [Re(p)(X'+ 2k. ] we have

2(1+p) 4(1+p) 1+p

(A4)

1 [ X2 p —(p+2)X2
[ 2 )»],~, A. —p+[(h. —p)2 —4A. ']

(4X' —X') ——,
' X', , „,ar ccos-,' A. (A5)
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3. Pion Self-Mass

The labeling of the momenta is shown in Fig.
6(b). The pion self-mass results in the replace-
ment

4. Vertex Correction

We choose the labeling of the momenta as shown
in Fig. 6(c). The vertex correction results in the
replacement

Z Z z

q2 ~2 ij 2 ~2 ij q2 2 fj 2 2+ K

for the pion propagator, with

K;, = 26;, K(q'),

i and j being isospin indices, and

d'k Tr[(gl'+P+m)y, (0+m)y, ]
(2w)' [(q+ k)' —m'][k' m]

(A6)

with

Xy5
g

k-m (A7)

The integral in (A7) is logarithmically divergent
and an infinite constant has to be subtracted:

The integral in (A6) is quadratically divergent
and two subtractions have to be made:

K(q') = A+ (q' —p, ')B+(q' —g')'K~(q'),

where A and B are again infinite constants and Kf
stands for the finite part. We finally obtain

1 1 g22
2+——I

q —p, q —p, 4w 7l'

with

pl x' —-'x
.2

„, q' —v' 1 —x(1 —x)&'

1 xX
X + dx~

1 —x 1 —x(1 —x)X'

m'
p2

x(1-x) '

~5= I-y5+ A~

where

L=A, (g=m, g' =m, q'= y. ')

and A,& is the finite part. We introduce

a'= -m'x'+ q'y(x —y) + ( p" —m')(1 —x)(x —y)

+ (p'- m')(1 —x)y —p'(1 —x),

k2 a2( p2 pl2 m2 q2 +3)

= -m'x'+ p'[y(x —y) —(1 —x)] .

With

K, = (1 —x) ( P' —m)y, ( P —m)

-m x[( jV —m)y, +y, ( p —m) ],
we finally have

g 1 "' "" a p (1 —x) 1 1A~=-(~ ~ ~)——y dx dy ln —+ ——~ +-,'
+x K

dx ' dy —,'
Q

K, has been determined to vanish between posi-
tive-energy spinors but it contributes when sand-
wiched between negative-energy spinors, i.e. , it
contributes to all but the (1, 1) element of the
Bethe-Salpeter kernels for the J=0 partial waves.

A partial integration with respect to y in the first
part simplifies the partial-wave projection con-

sider ably.
The Dirac algebra for the sandwiching of the

various graphs has been extensively described in
Refs. 6 and 8, and a REDUCE code is available. ',
Therefore we consider it unnecessary to list the
kernels in all details.

*Work performed under the auspices of' the U. S. Atomic
Energy Commission.
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It is shown that, while generalized vector dominance is strictly applicable in the diffractive limit (v -+ ao,

any g' & 0 such that x—:Q'/2Mv~ 0) of electron-nucleon scattering and the parton model is applicable
in the scaling limit (g' ~ oo, x fixed), these two models are identical for describing the deep diffractive
limit (g'-+ co, x -+ 0). This equivalence is then used to interpret the different contributions of vector
hadronic states which couple to the photon. A new scaling variable x™ comes out naturally from our
analysis.

The generalized vector-dominance model' has
been made consistent with the present experimen-
tal data' of electron-nucleon scattering in the deep-
inelastic region and can appear as an alternative
for the parton model, ' where the incident electron
scatters elastically and incoherently off the point-
like constituents of the target nucleon (Fig. 1). In
the vector-dominance model, the collision between
a (real or virtual) photon and a nucleon proceeds
in two steps: (i) the photon (q) transforms into a
vector hadronic state V, and then (ii) V collides
with the nucleon (P). The total (virtual) photoab-
sorption cross section, which is proportional to
the imaginary part of the (virtual) forward Compton
scattering amplitude, is represented in Fig. 2:

tr(e)- Vl+&(&)- t V'-~(e)l+&(&)

Only the three low-lying vector-meson contribu-
tions, V= p, &u, P, were taken into account in the
earlier versions of the vector-dominance model.
However, it is clear now that these earlier ver-
sions are unsatisfactory at the phenomenological
level for at least three reasons: (i) their failure
to explain the total photoabsorption cross-section

data, (ii) their prediction &x~» vr for deep-inelas-
tic electroproduction which is contrary to the ex-
perimental data, and (iii) the big e'e annihilation
hadronic cross sections at c.m. energy higher than
1.3 GeV. The generalized vector dominance has
been proposed precisely to overcome these dif-
ficulties. Here V or V' are interpreted as any had--

ronic vacuum fluctuation of the photon, and not
only as the low-lying mesons p, &u, /but also the
higher-mass vector mesons such as p' (mz, - 1.6
GeV) and the nonresonating vector hadronic-state
contributions with J =1, which are very possibly
not negligible at all. But this is not enough to fix
the present form of the generalized vector-domi-
nance model. For that, we have to introduce the
further assumption, which can only be justified in
the case of diffraction, that, if the ingoing photon
in Compton scattering is coupled to a given had-
ronic vector state V, then the outgoing photon has
to be coupled to the same hadronic state V. There-
fore we take V= V' in Fig. 2. This is analogous to
the assumption of parton models, that in the scal-
ing region, only elastic photon-parton scattering
contributes (Fig. 1).


