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A simple s-channel resonance model based on a new scheme of duality is proposed and is shown to
explain successfully (iy the appearance of distinct exotic peaks with slopes and relative heights similar to
those of the ordinary Regge exchanges, and (ii) the rapid falloff of exotic cross sections vs energy, which
have been recently observed in E p and P p backward scattering. %e also discuss the predictions of the
model for the spherical-harmonic moments and the dip systematics of two-body hadronic amplitudes. In
particular, the model predicts the persistence of the Odorico dips as well as the usual wrong-signature-
nonsense-zero dips up to high energies if the increase of Ima, is not faster than linear in s. Experimental
data now available support our approach.

I. INTRODUCTION

The existence of distinct exotic peaks has been
revealed by the recent measurements at CERN of
5-GeV/c K p and Pp backward scattering' (see
Fig. 1).

The prominent features of these experiments
are the following:

(i) The differential cross sections of K p and

pp scatterings, in spite of their exotic nature,
have distinct backward peaks with slopes similar
to those of the ordinary Regge exchanges, while
the magnitudes of the differential cross sections
in these exotic cases are greatly suppressed com-
pared with the nonexotic ones, by two or three or-
ders of magnitude at 5 GeV/c.

(ii) The K p and pp backward cross sections
do'/du ~„,fall off very rapidly vs energy, varying
as s ' or s ' up to 5 GeV/c. '

The interpretation of these features has usually
been attempted either in terms of exotic cuts
based on the double-Regge exchange mechanism'
or by exotic trajectory exchanges such as Z*.
Exotic cuts, however, predict neither the correct
magnitude nor the s dependence of the rapid falloff
of exotic cross sections up to 5 GeV/c. ' Further,
the whole theoretical scheme of double-Regge cuts
suffers from serious problems in its enumeration
of intermediate states. ' The interpretation due to
the exotic trajectory exchange also seems im-
probable, since it requires an unusual value of
s0-0.05 QeV' in its Regge fit to K p backward
scattering. '

In this paper we would like to show that both the
existence of exotic peaks and the rapid falloff of
exotic' cross sections are quite naturally under-
stood from the direct-channel-resonance point of

view based on duality.
In Sec. II, we will propose a simple resonance

model based on a new scheme of duality' which
successfully explains the essential features of
exotic amplitudes. The physical picture of this
model will also be explained. In Sec. III, we will
investigate various physical implications of our
mode1. We first give a simple formula which re-
lates the u- (or t )channe-l exotic cross section to
those of the line-reversed s-channel exotic pro-
cess at all angles. It shows that the occurrence of
exotic peaks is quite a universal phenomenon in
two-body hadronic collisions and these exotic peaks
must have slopes and relative heights similar to
those of the allowed ordinary Regge exchanges.
We also investigate the predictions of the model
on the dip systematics and the s dependence of
spherical-harmonic moments of two-body hadronic
amplitudes. It will be shown that the so-called
Odorico dips as well as the usual wrong-signature-
nonsense-zero dips persist even up to high ener-
gies if the increase of Imo. , is not faster than lin-
ear in s. In Sec. IV we make a check of our un-
derstanding of exotic amplitudes with recourse to
experimental data. By comparing the K p and K+p
differential cross sections we estimate Ima, at
5 GeV/c. This, together with the low-energy
resonance data, determines the rate of the falloff
of

up to 5 GeV/c to be s ' ', in agreement with
s '4'o' obtained from experimental measure-
ments. Finally, Sec. V is devoted to discussions
and concluding remarks.
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An abbreviated version of this paper has already
been reported in Ref. 7.

1I. THE GENERAL APPROACH

%e begin by explaining the physical picture of
our direct-channel resonance model based on a
new scheme of duality.

Contrarily to the conventional view of exotic am-
plitudes, ' we would like to consider in this paper
the physical consequences of a new scheme of dual
models with the boson system of Regge trajectories
spaced by tuo units of angular momenta bootstrap-
ping among themselves.

This possibility of dual models has been moti-
vated' by the partial-wave projection of the Regge
exchange amplitude. Since the physical amplitude
would have the resonance poles in the second sheet
of the s plane, we assume that it reduces to the
narrow-width limit of the dual amplitude as Imn,
-0 and to its Regge asymptotic expansion as Ima.,

Since the validity of the Regge behaviors on
the positive real s axis at high energies is as-
sumed, the resonance poles in the narrow-width
limit of the dual amplitude must be shifted into the
second sheet of the s plane in such a way as to
produce the Regge behaviors on the positive real
s axis. Therefore we consider that the above dis-
placed resonance poles would appear as Argand-
diagram circles in the partial-wave analysis of
the Regge formula.

The recurrence of simple zeros with distance
ho. , = I in the residue functions like I/I'(o. ,) makes
the imaginary part of the individual s-channel par-
tial-wave amplitudes oscillate with the interval
An, =2 and hence generates resonances on leading
and even-daughter trajectories. Thus the reso-
nance poles on the odd-daughter trajectory must
be absent also in the narrow-width limit of dual
models in order to have the same number of reso-
nance poles as appear in the partial-wave projec-
tion of their Regge asymptotic expansions. There-
fore, we are led to the conjecture that the Regge
trajectories spaced by two units of angular mo-
mentum bootstrap among themselves. This pos-
sibility has also been advocated by the presumed
linear propagation of amplitude zeros in meson-
meson scattering 'o'x' I.ow-energy gn' and Km

phase-shift data also give several experimental
supports to this scheme. '2

As a basic illustration of the u-channel exotic
amplitude, let us confine ourselves to the m'm-m'm scattering. Since odd-daugther trajectories
are absent in this scheme, only even (or odd) an-
gular momentum states are present in each reso-
nance tower, which give a forward-backward sym-
metric (or antisymmetric) contribution to the scat-
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FIG. 1. (a) K p K p elastic differential cross sec-
tions at pL,=5 GeV/c. Data are from Ref. 1. (b) pp
-pp ela,stic differential cross sections at p~ =5 QeV/c.
Data are from Ref. 1.

tering amplitude. As a consequence, backward
(forward) peaks naturally arise even in the u- (or
t-) channel exotic reactions at low energies. Ex-
perimentally, a strong backward peak is observed
in m'm -m+m' backward cross sections up to W
-1.7 GeV." As the energy increases, the total
widths of resonances begin to spread and the neigh-
boring resonance towers tend to overlap. Since
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the neighboring resonance towers have alternate
signs in the backward-scattering regions in u-
channel exotic reactions, they make destructive
interference between themselves and cause the
over-all decrease of exotic cross sections with
increasing energy. " However, the sharp back-
ward (forward) peaks made up by the individual
resonance towers still survive and appear as
exotic peaks at high energy.

In order to give mathematical expressions to the
above -explained mechanism of exotic amplitudes,
we next propose a simple resonance model start-
ing from considerations of dual models in the
zero-width limit. As is easily recognized from
the preceding discussions, the crucial points in
our understanding of exotic amplitudes are that

(i) the angular dependence of each resonance
contribution should be correctly evaluated, and

(ii) the overlapping-resonance effects caused by
the finite hadronic widths constitute the essential
ingredient of the exotic mechanism.

Dual models in their zero-width limit apparently
violate the above requirement (ii), which is indis-
pensable for obtaining the over-all decrease of
exotic cross sections. In the conventional Ime,
prescription to keep n, (or n„) fixed and then to
replace n, with n, +i Imn, ,

"the requirement (i)
is violated since z =I +t/2q' in the resonance ex-
pansion of the dual model

( )
I"(1 —n )I'(I —n, ) g I'»,

( )I"(1 —n —n2)» 2
N —n

becomes complex by the above procedure, which
invalidates the I; u crossing property of each
resonanc e contribution.

Therefore in order to remedy these defects and
at the same time to keep good properties of dual
models in the zero-width approximation, we pro-
pose

(1) to preserve all the elastic widths I'„, and

angular dependences of individual resonances as
they are (in the zero-width limit), and then

(2) only to shift poles into the second sheet of
the s plane.

Thus our new (s, t) term, which we denote as
(s, t)', should be expressed as

~$.1

~) N —a -iImn

sin22(n, + n, ) 1"(n, + n, )1 (n, + n„)
sin22n, I"(n, )

(2)

using the condition e, + n, + a„=1, which eliminates
odd daughters.

It is to be noted here that one should not take
this condition n, + e, +n„=i very seriously, since
it reduces to n (0) =—,', which is somewhat unreal-
istic. The condition is used here only as a mathe-
matical tool in order to explore the dynamical
consequences of the model which has no odd daugh-
ter poles.

Expressing Eq. (2) in terms of n, and z, and
then replacing u, with e, +i Imn, for fixed z, we
obtain

Evidently the I; u crossing property and the finite-
width effects of individual resonance contributions
are properly taken into account by our prescrip-
tion, and further, by preserving the elastic widths
of resonances, the Regge behavior in the forward
direction is also ensured through finite-energy
sum rules (FESR). Thus our prescription is ex-
pected to give a reasonable description in both
forward and backward scattering regions of the u-
(t-) channel exotic amplitudes.

Instead of the complicated procedure of calcu-
lating I'„, in the zero-width limit and then sum-
ming up these resonances with finite total widths,
we can use the following simple procedure: Keep-
ing z fixed, replace n, with n, +i Imn, in Eq. (1).
In order to elucidate this procedure, let us re-
write the (s, t) term as

( ), sin22[{n, +i Imn, )-,
'

(1 +z)+ (n, ——,')z +-,']
sin22(n, +i Imn, )

I'((n, +i Imn, ) (1 +a ) + (n, ——,
'

)z +—,
' )I'((n, + i Imn, )-,

'
(1 -z ) —(n, - -,

'
Q +-,' }

I (n~ +2 Imn )

where Ime, =0 below threshold.
It is worthwhile to note here that the (s, t)' term

in Eq. (3) can be explicitly expanded as

lim I"„,(q')
ats+ &Im 0S

are the same as I"„„those of the zero-width limit
(s, t), because of the property

lim (n, -N) (s, t) =
Cts

lim (n, +i Imn, -N)(s, t)'.
S+ f Im CXs +

and the resonance residues Hence the {s,t)' term in Eq. (3) is expanded as
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(4)

Therefore, our amplitude (s, t)' enjoys the fol-
lowing favorable properties as compared with the
conventional Im n, prese ription:

(i) Particle spectra and resonance residues re-
main unchanged even after the replacement n, - n,
+i Imo, In particular, odd daughters do not ap-
pear and also no ancestors arise in the above pro-
cedure.

(ii) The t-u crossing properties of the ampli-
tude is preserved as in the zero-width limit.

(iii) Regge behaviors in the forward direction
are also ensured through FESR by preserving
I"~

~
~

So far as the s t crossing is concerned, it is
broken as in the conventional Imn, prescription.
However, the many desirable properties in the
zero-width limit are maximally preserved in our
amplitude (s, t)'.

In this way, our model amounts to an infinite
sum of direct-channel Breit-Wigner resonances
with their residues constrained by duality. All the
resonances of the same mass are assumed to have
the same total widths (-Ima, /Ws). Since duality
determines only the relative strength of the reso-

nance couplings to each two-body hadronic pro-
cess and leaves the total widths of resonances en-
tirely unspecified, "our resonance model here
possesses the elastic widths of resonances I'„,
specified by duality and has the total width of reso-
nances (-Ima, /Ws) as an unspecified parameter to
be determined from experimental data. We note
here that our simplifying assumption of the same
total widths for the equal-mass resonances may
or may not be true in reality. We assume it for
the sake of simplicity of the mathematical expres-
sions of our model.

III. PHYSICAL IMPLICATIONS OF THE MODEL

A. Exotic Peaks

In order to investigate the physical implications
of this model for exotic peaks, it is convenient to
start from Eq. (3). With some trivial algebra, it
is easily shown that our prescription of replacing
e, by n, +i Imn, keeping z fixed is equivalent to
adding extra terms to o, , a, , and n„such as n,
+i Imn„n, +i (Im a,/4q')t, and n„+i Nma, /4q') u,
respectively. The condition o., + n, + n„=1 is still
preserved after the above replacement. In terms
of these variables, Eq. (3) is rewritten in the form

sinn[a, +i Imn, + a, +i (Imn /4q')t] 1'(n, +i Imn, + n, +i(Imn /4q')t)I (n, +i Imn, + n„+i (Ima /4q')u)
sinn (n, +i Im n, ) I'(n, +i Ima, )

(5a)

I'(n, +i Im n, + n„+i (Im a,/4q')u )
I'(n„+i (Imn, /4q')u) s in' (a, +i Imn, ) I'(o,, +i Imn, )

(5b)

(s, t)'-e ""&I'(I—n, )n, "~ (6)

for large values of s and Im n, at small ~t ~

(~t ~

«4q'/m Imn, ) and hence it in fact exhibits the
Regge behavior in the forward direction. For a
fixed u value, Eq. (5b) leads to"

(s t)t 2~i e-wImuqetn'aq

1
X I'(n„+i (im a,/4q')u) (7)

which shows the "exotic behavior, " whose simpler
form has previously been introduced in Ref. 12.

Therefore, our (s, t)' term exhibits the Regge
behavior at small ~t~, starts to deviate from it as
~t~ increases, and then changes smoothly into the
"exotic behavior" at small ~u~.

I.et us see how Eq. (7) gives a nice quantitative
expression of our foregoing discussions on exotic
amplitudes.

Equation (5a) shows that our (s, t)' term reduces to" (i) It exhibits the damped oscillation of exotic
cross sections caused by the alternating signs and
cancellation of neighboring resonance towers. '4

(ii) There appear distinct backward peaks with
slopes and relative heights similar to the allowed
ones, ' even though no Regge exchange is allowed
in the u-channel.

(iii) It also shows the appearance of the back-
ward fixed-u dips (the so-called Qdorico zeros)
which have been observed in low-energy K p -K'n
cross sections" and also in low-energy zm scat-
tering amplitudes. " Thus our Eq. (7) concisely
embodies our empirical knowledge of backward
exotic amplitudes.

I.et us next take the absolute squared values of
Eq. (3) to obtain cross-section relations. Ne-
glecting the dips in (s, t)', we have for large values
of s and Ima,

(see Ref. 20). This is quite an interesting formula,
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relating the u-channel exotic cross section to its
line-reversed s-channel exotic cross section at all
angles in a very simple fashion. All the effects of
the overlap and destructive interference of s-
channel resonances are simply factored into
e ~' ~~" ", and aside from this the two cross sec-
tions are identical. The (s, i) term inherits the
"allowed" backward Peaks in the (u, i) term and
exhibits them as"forbidden" peaks. Therefore,
the occurrence of these forbidden peaks must be a
universal phenomenon in two-body hadron colli-
sions, and these peaks must have slopes and rela-
tive heights similar to the allowed ones. We make
an experimental check of the above formula in
Sec. IV.

C. Normalized Spherical-Harmonic Moments

The arguments of the previous subsection show
that in the case of u-channel exotic process we
have successive entrances of fixed-u dips into the
physical regions through the forward boundary as

B. Systematics of the Properties of Dips

Apart from its implications on exotic peaks, our
amplitude predicts an interesting systematics of
the properties of dips in two-body hadronic ampli-
tudes.

As we have already noted in the previous section,
the (s, t) term predicts the existence of fixed-u
dlps as

1
l (u„+i(lmn, /4q') u)

Therefore, if the increase of Ime, is not faster
than linear in s (which in fact is required in order
to have Regge behaviors"), distinct fixed-u dips
persist even up to high energies. Especial'ly when

Ima, is proportional to s, the depths of the fixed-
u dips do not change along the line e„=integer in
the Mandelstam plane. On the other hand, the
depths of the dips become shallower as we go
from the first dip (n„=0) to the second (n„=-l),
third (n„=-2), and so onat fixed energy, since
the imaginary part of the argument of Eq. (9) in-
creases with IuI.

We show in Fig. 2(a) the typical predictions of
our model for the differential cross sections of .

backward exotic amplitude at various energies.
The dips in fact fade away rapidly as we go to
larger values of In„I.

All of the above remarks on the fixed-u dips are
equally applicable to the other Odorico zeros as
well as the usual wrong-signature nonsense zeros
that appear in various combinations of Veneziano
terms such as (s, t)'+ (u, t)' (s, t)'+(u, t)+ (s, u)'.
Therefore, one of the crucial predictions of our
resonance model is that the Cips in the angula~
disA ibutious of two-body hadronic amPlitudes"
a@ill pe~sist even at high energy, uhile the uidths
of resonances continue to sPread indefinitely
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FIG. 2. (a) Typical prediction of our model for
differential cross sections of u-channel exotic processes.
For simple illustration we show calculations in f(+n

elastic scattering. We take o."=1, o.'0 ——3 and neglect
pion mass. Imo', is taken to be linear in s as Imn,
=0.09s+0.04, which reproduces the p and f widths.
(1) is for s =2 GeV2, (2) is for 4 GeV~, and (3) is for
6 GeV . The units of the vertical axis are arbitrary.
(b) Calculation of (Y &(s)) for the same process.
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we go to higher and higher energies. Since the
normalized spher ical-harmonic moments

(F)(s))= ) d() —F&(z) f dQ

with odd l are sensitive indicators of the passing
of amplitude zeros through the forward- or back-
ward-peak regions, " it is also interesting to con-
sider the s dependence of (Y,'dg(s)) predicted by
our (s, f)' term.

As the entrance of fixed-u dips through the for-
ward physical-region boundary accompanies the
sharp drops in (Y'.di(s)), ""and also the over-all
decrease of backward cross sections raises
(Y',Qd(s)) to large positive values at high energies,
the harmonic moments (Y,'qq(s)) of the u-channel
exotic amplitude would a,t first show sharp drops
periodically (dn, =1) at low energies and then
make a gradual rise to large positive values, with
their periodical falls growing less and less sig-
nifica, nt at higher energies. Exactly such a be-
havior of (Y, (s)) is predicted in Fig. 2(b). As we
see in the figure, an interesting correlation exists
in our model between the rate of the over-all de-
crease of exotic cross sections and the depths of
fixed-u dips, which are both controlled by Imn, .
Readers should compare Fig. 2(b) with the zero-
width calculation in Ref. I2 to appreciate the fi-
nite-width effects in exotic amplitudes. (Yoqq(s))
oscillates around zero even at high energies in the
zero-width calculation, and in particular (P,'qq(s))
=0 at n, = integer due to the absence of odd daugh-
ters. Similar behaviors as (Y, (s)) in Fig. 2(b) are
predicted by our model for the other odd-l mo-
ments, and also the periodical falls in (Yoo~i(s))

occur simultaneously for all odd l, as observed
experimentally in mw scattering. "

D. Comparison with Conventional Imn, Prescriptions

I'(1 —n, -i Imo.,)I"(1 —a, )
I'(o.„-iImn, )

On the other hand, with the n„-fixed prescrip-
tion, the (s, t)„ term behaves as

I'(1 —n, —i Imn, )I"(o., + o.„+i Imo.,)
I"(n„)

(12)

at all angles H.ence the (s, f)„ term is suppressed
even in the forward direction, and also the fixed-
u zeros remain the exact zeros.

As we have pointed out in Sec. II, all these dif-
ficulties arise from making z complex in the reso-
nance expansion of the dual model in Eq. (1) and
the subsequent violation of t-u crossing prop-
erties of each resonance contribution to the am-
plitude. In other words, the n, -fixed (n„-fixed)
prescription makes the resonance residues F„'

r

(I'„",) defined by

I,Pr„,p, 1+-. . . =~r'„,Z, 1+
2q +iIme, ye' 2g

(13a)

u &=Jr„",~, (-( —,", ,l (()b)
r

complex numbers, and hence the (s, t), ((s, t)„)
term

(14a)

(14b)

The advantages of our prescription of keeping z
fixed over the conventional ones of keeping a, or
e„ fixed becomes quite apparent if we compare the
predictions of both prescriptions at all scattering
angles. Denoting the conventional amplitude with
the prescription of keeping a, fixed as (s, t), , we
have for large values of s and Imn,

(s, t), =
I'(1 —o., —f Imn, )1 (1 —n, )

I'(1 —n, —o., —i Ima, )

is no longer a sum of Breit-%igner resonances.
Our prescription of keeping z fixed resembles

technically to the o., -fixed (u„-fixed) one in the
forward (backward) region, and therefore our am-
plitude interpolates the Regge behavior and the
"exotic behavior. " In this way our resonance mod-
el is a successful construction of dual amplitudes
having second-sheet poles with their residues con-
strained by duality both in the forward- and back-
ward-scattering regions.

-e-'""il"(1 —c(,)n, "& (10) IV. COMPARISON VfITH EXPERIMENTS

at all scattering angles Therefore .
~ (s, t), ~

-
( Q, t)~

and th. ere occurs no over-all decrease of exotic
cross sections. Also the fixed-u zeros disappear
with increasing Imn, , since

As we have shown in the previous section, our
resonance model gives nice predictions on exotic
peaks, on systematics of dips, and also on the s
dependence of harmonic moments.
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ln g' pdu
—(K'p) -»[ [(s, t)'('/[(~, t)~']

aim-o. , (1 -z) . (15a)

In particular, the energy dependence at g --1 is
given by

In this section we focus our attention on an ex-
perimental check of our formula at large angles
and exotic peaks. Firstly let us use Eq. (8) to de-
termine Imo., at high energy and see if it lies on
a reasonable extrapolation from the low-energy
resonance data. One way to do this is to compare
the s-channel exotic cross sections with their line-
reversed u-channel exotic cross sections, such as
d c/dt (K'p)'

the low-energy region. A fit by eye gives approxi-
mately Ime, =0.09s —0.16, which, when approxi-
mated by Imn, = 0.65 lns —0.76 in the 2-5-GeV/c
range, gives

0'
(R'p) -s ~',

Q

gran

in agreement with the experimental value s ~"".
Therefore the rapid falloff of exotic cross sections
varying as s ' or s ' is semiquantitatively under-
stood.

Though these figures cannot be taken very seri-
ously owing to both theoretical and experimental
uncertainty, the nice consistency of the data anal-
ysis seems to support our understanding of the
exotic mechanism.

ln —(K' pdQ
—(ft'p) - -2~ lma, . (15b)

Q z~-1 V. DISCUSSIONS AND CONCLUDING REMARKS

In making a realistic fit to experimental data,
spin and other complications arise." However,
we can show that the crucial exponential depen-
dence on z always appears in our damping factor
e "' "&" ", and therefore we assume that the es-
timation of Ime, through the damping factors in
Eqs. (15a), (15b) is legitimate even in the pres-
ence of spin.

Determination of Ima, from 5-GeV/c data is
shown in Fig. 3. The logarithm of the ratio of
do/du (K p) and dc'/du (E'p) turns out to be approxi-
mately linear in z for u ~ -4 Ge&', in accordance
with our formula. The resulting Ima, is plotted
in Fig. 4 along with the low-energy Y,* and Y,*
resonances taken from Ref. 24. It is remarkable
that it lies on a linear extrapolation of Ima, from

Finally, let us compare our understanding of
exotic amplitudes with other interpretations.

The conventional view of exotic amplitudes would
be to consider the local parent-daughter cancella-
tions as the cause of the over-all suppressions of
exotic cross sections. Such a view has been mo-
tivated' by the conventional mp Veneziano model, "
where each resonance tower has opposite-parity
states (even daughters and odd daughters). It is
easy to show, however, that such a local cancella-
tion does not lead to essential differences between
exotic and nonexotic amplitudes. " Contrary to the
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FIG. 3. Plot of the logarithm of the ratio of K p and
K+p large-angle cross sections at 5 GeV/c. Data for
~t~ & 8 GeV2 are excluded on account of Pomeron contri-
butions. Data are from Ref. 1.

FIG. 4. Plot of Imn, of Y~o, Y~& resonances. Imn,
determined at 5 GeV/c is plotted with n'mI'"' of low-
energy Y*, Y~& resonances (n' is taken to be 1 GeV ).
The solid line Imn, =0.09s —0.16 is a fit by eye to
low-energy data, and the dash-dotted line Imn~ =0.65
lns —0.76 is its approximation in the 2-5-GeV/c region.
Resonance data (Q for Yo's, x for Y*'s) are from
Ref. 24.
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conventional view, our resonance model has only
the states with the same parity in each resonance
tower and embodies the cancellation mechanism
between neighboring resonance towers. It natural-
ly leads to the existence of strong backward peaks
at low energies which persist and appear as exotic
peaks at high energies.

On the other hand, the usual folklore of exotic
peaks has been due to double-Regge cuts." How-
ever, the contributions of exotic cuts below 5

GeV/c turn out to be two or three orders of mag-
nitude smaller than experimental cross sections,
and hence they cannot explain the rapid falloff of
exotic cross sections up to 5 GeV/c. ' Also, the
slopes of exotic peaks are predicted to be typical-
ly half the slopes of the allowed ones. These pre-
dictions seem to be inconsistent with experiments.
However, the most crucial predictions of exotic
cuts will be the flattening of the s dependence of
exotic cross sections above 5 GeV/c. On the other
hand. , our predictions are quite contrary to this.
lma, linear in s will give the exponential s depen-
dence, and even the logarithmically increasing
Imo. , gives a strong power s dependence (typically
s ' or s '). Until now only upper bounds have been
reported in K p backward scattering above 5
GeV/c. Thus the future measurement of the s de-
pendence of the decrease of exotic cross sections
above several GeV would make a crucial test dis-

criminating among theoretical models.
In conclusion, we have shown how the simple s-

channel resonance model based on the new scheme
of duality can successfully explain the essential
features of exotic amplitudes, i.e., the rapid fall-
off of exotic cross sections and the appearance of
exotic peaks ~ Our approach to exotic amplitudes
also gives a novel way to estimate the averaged
hadronic total widths (-Imn, /vs ) in high-energy
regions. Experimental data now available give
support to our approach.

It has also been pointed out that our resonance
model gives an interesting predictions on dips,
i.e., the persistence of Odorico dips as well as
the usual wrong-signature nonsense-zero dips up
to high energies.

Future experimental checks of these theoretical
predictions would be extremely interesting.

ACKNOWLEDGMENTS

One of the authors (K.I.) would like to thank Pro
fessor A. Pais and other members of the theory
group for the kind hospitality extended to him at
the Rockefeller University, where this work was
in progress. One of us (T.E.) also wishes to thank
Professor Z. Maki for the kind hospitality at the
Research Institute for Fundamental Physics, Kyoto
University.

*Work supported in part by the U. S. Atomic Energy
Commission under Contract No. AT(11-1)-3282.

)Present address.
~V. Chabaud et al. , Phys. Lett. 38B, 445, 449 (1972).
R. Barloutaud, in P~oceedinI, s of the Amsterdam Inter-
national Conference on Elementary Particles, edited by
A. G. Tenner and M. Veltman (North-Holland, Amster-
dam, 1972).

C. Michael, Phys. Lett. 29B, 230 (1969); C. Quigg,
Nucl. Phys, B34, 77 (1971).

C. Lovelace, Phys. Lett. 36B, 127 (1971).
5A. S. Carroll et al. , Phys. Rev. Lett. 23, 887 (1969).
T. Eguchi and K. Igi, Phys. Rev. Lett. 27, 1319 (1971).

~K. Igi and T. Eguchi, Phys. Lett. 42B, 449 (1972).
"V. Barger and D. Cline, Phys. Rev. 182, 1849 (1969).
~ln the dual resonance model this is the case of Virasoro

(no ——1).
R. Odorico, Phys. Lett. 38B, 37 (1972).
It can be explicitly shown that in the case of dual
models having odd daughters (n, + n, + n„& 1), ampli-
tude zeros do not continue, for instance, at —n, = odd
or even integer in (s, t)+ (u, t) + (s, u) where they are
cut into pieces by the odd-daughter poles in the s and
u channels.

~2T. Eguchi and K. Igi, Phys. Lett. 40B, 245 (1972).
G. Grayer et al. , in Expe~imenta/ Meson Spectxas-

copy —1972, proceedings of the Third International
Conference, Philadelphia, 1972, edited by Kwan-Wu
Lai and Arthur II. Rosenfeld (A.I.P. , New York, 1972).

~4C. Bricman, E. Pagiola, and C. Schmid, Nucl. Phys.
B33, 135 (1971).

~~The notation n, + iImn, is intended to mean a new n~
with Ren, =n, .

~6K. Igi and T. Eguchi, Phys. Lett. 36B, 486 (1971).
'We assume that the increase of Imn, is not faster than
linear in s.

~ R. Odorico, Nucl. Phys. B37, 509 (1972).
T. Eguchi, M. Fukugita, and T. Shimada, Phys. Lett.
43B, 56 (1973).
We have used

. Imn . ImnsI' n, +i Imn, + n, +i ' t I' n, +i Imn, +n„+i 'u

I'(n, + i Imn, )

Imn, I'(n, + n&)I'(n + n„)
I (n, )

1+ ' (u t)



NEW SCHEME OF DUAL MODELS AND EXOTIC PEAKS 1545

and neglected (Imn, /e, ) since it is of order 10 2 in
reality. See Sec. IV.
Except for the zeros such as n, —e„=fixed.
R. Odorico, Phys. Lett. 383, 411 (1972).
For example, the condition n, +n, ++„=1is well
satisfied with the Y* trajectory, but not with Y~o

[n~*(s) + m (t) + n Y*(g) o.4 where n =—e —2] .
Yo P 0

Particle Data Group, Phys. Lett. 398, 1 (1972).
~~C. Lovelace, Phys. Lett. 288, 264 (1968).
~C. Schmid, in PhenomenoloI, y in Particle Physics,
1972, edited by C. B. Chiu, G. C. Fox, and A. J. G.
Hey (Caltech, Pasadena, Calif. , 1971).

27R. J. ¹ Phillips, lectures at the 1972 CERN School of
Physics (unpublished).

PHYSICAL REVIE W D VOLUME 8, NUMBER 5 1 SEPTEMBER 1973

Matrix Pade Approximants for the 'Se and Pe Partial Waves

in Nucleon-Nucleon Scattering*

J. Fleischer, J. L. Gammel, and M. T. Menzel
Department of Physics, Los Alamos Scientific Laboratory, University of California, Los Alamos, ¹zvMexico 87544

(Received 23 April 1973)

In order to correct the threshold behavior of scalar Pade approximants in NN- scattering,
"matrix Pade approximants, "which take into account the various positive- and negative-
energy states, have been considered by several authors. In a recent paper by Bessis, Tur-
chetti, and Wortman, truncated matrices based on an incomplete set of basis states were
used and a qualitative description of the energy dependence of the Po phase shift was ob-
tained. In this work it is shown that this result is not obtained when a complete set of basis
states is used. The main effect of matrix Pade approximants using a complete set of basis
states is to introduce an additional attraction at higher energies. Our analysis of the fourth-
order graphs is done in a way which allows the external momenta to be completely off shell
so that the irreducible graphs can be used as kernels in the Bethe-Salpeter equation. This
will make possible the calculation of several higher-order graphs by iterating the Bethe-
Salpeter equation.

I. INTRODUCTION

Nucleon-nucl. eon scattering, in particular for
partial waves 1.~ l (I. being the orbital angular
momentum) and low energies, is an appropriate
case in which to study whether Pads approximants
can be successfully applied to the summation of
the perturbation series of a strong-interaction
Lagrangian. The reason is that the phase shifts
do not exhibit a resonance behavior and that there-
fore the perturbation theory can be assumed not
to be too drastically divergent. Earlier calcula-
tions' show that the Born term alone describes
higher partial waves reasonably well, and one can
therefore hope that I' waves and higher waves can
be described by a manageable higher-order calcu-
lation.

In this paper we investigate a fourth-order cal-
culation in the Yukawa model with the interaction
Lagrangian

&ini = -iggys7' (jhow

of pseudoscalar pion-nucleon interaction.
A deficiency of low-order Pade approximants

has been that the Born term in many partial waves

['8„'P„'D„.. . (see Ref. 2)] has an anomalous
threshold behavior, For the Sp wave, e.g. , the
Born term behaves like a I' wave at threshold
(-P', P being the modulus of the c.m. momentum).
As the fourth-order term has a normal threshold
behavior (-P), the [l/l] Pade approximant behaves
like a D wave, and also sharp resonances at low

energies occur. ' This deficiency has been cured
by Bessis, Turchetti, and Wortman and before
that by Barlow and Bergere, ' following Bessis's
suggestion. These authors considered "matrix
Pads approximants" by taking matrix elements
between the various positive- and negative-energy
states. The elements of these matrices have in
general a normal threshold behavior, and there-
fore forming Pade approximants in this space does
in fact correct the threshold behavior. Further-
more it is hoped that the use of these matrix Pade
approximants will improve the convergence be-
cause the whole matrices contain more informa-
tion than just the physical element.

The authors of Ref. 4 did not perform a calcula-
tion of the complete matrices. They used the
same set of basis states used by Barlow and

Bergere, which, although sufficient at threshold,


