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The nonleptonic interaction and its consequences in a particular renormalizable theory of weak
interactions mediated by spin-zero bosons are discussed. It is pointed out that the ES = 0 weak
nuclear processes and the deviations from octet dominance in the AS = 1 nonleptonic decays
B —B'+ m can serve to distinguish it from the usual V —A theory.

It was shown by Kummer and Segre' that the
usual V —A structure of the known leptonic and
semileptonic processes can be obtained from a
fourth-order weak interaction mediated by heavy
spin-zero bosons. Such a theory is renormal-
izable and needs a charged and a neutral scalar
boson and two new leptons, one for the electron,
I, , and one for the muon, I „. The earlier diffi-
culties' with such models were overcome in a
theory proposed recently. ' In this theory, L, and
L„are charged and massive (-10 GeV) like the
single charged scalar intermediate boson W'.
The role of the neutral intermediate boson is
played by the usual pseudoscalar mesons, n, q,
and X, thus requiring a minimum of new parti-
cles. Further, the scalar (S) and pseudoscalar
(P) hadronic currents entering into the theory
were assumed to satisfy the standard quark-model
equal-time commutation rules. This, together
with the massiveness of L', (I = e, p, ) and W', gives
the usual V —A structure to the leading contri-
bution to the leptonic and semileptonic decays. "

The confrontation of the theory with experiment
is possible (a) with improved limits on neutral
lepton currents'; (b) by direct production of L",
and W' (Ref. 3};and (c) by looking at high-energy
quasielastic neutrino processes, ' e.g. , v„+ n- p,

+P. The form factors involved have only a depen-
dence on the square of the momentum transfer in
the usual current && current V —A. theory. How-
ever, in a scalar theory there is in addition a
dependence on the incoming energy. This can be
used as a test' of our theory. '

Earlier it was shown' that our theory was con-
sistent with all the known results for the leptonic,
semileptonic, and nonleptonic weak processes.
In particular, the nonleptonic processes were
merely shown to be of the right order of magni-
tude. The purpose of this note is to comment on
the general properties of the nonleptonic inter-
action and its consequences in this theory, which
is referred to below as the scalar theory, as
opposed to the usual V —A. theory.

Nonleptonic interaction. The interaction I agran-
gian density describing the nonleptonic weak pro-
cesses in our scalar theory' is

2„„=g, W'[cos8(S', —iP', }+sin8(S', —iP', )]+H.c.,

where 5" is the heavy scalar intermediate boson,
SB and P&~ are the scalar and pseudoscalar hadron
currents, and a, P =1, 2, 3 are the SU(3) indices.
The angle 0 was identified with the Cabibbo angle,
and the coupling constant g+ was such that g+'
was of the order of G, the usual weak coupling
constant. For the usual Y —A. theory the non-
leptonic interaction is Z„~(VA) =g~W„'J'"„+H.c.,
where

J"„=cos 8 ( V', —A', )„+sin 8 ( V', —A', )„.
We have written it with an intermediate vector
boson W„' for the sake of comparison with (1);
also, g~' is of order G.

The first-class V and A currents which enter
(2) have & = -1 and +1, respectively. For defi-
nition of 8, see Gell-Manne and Dothan. ' In the
scalar theory the pseudoscalar currents P were
taken to be the source of the pseudoscalar mesons
x', etc. , so their 8 =+1. For the scalar currents
S, 8 =+1 is fixed by the quark-model commutator
of S and P which gives A. . Throughout our dis-
cussion we assume CP invariance. In (1), the
hadronic current is

j" =cosej, +sin8j„ (3)

where jo S2 l'Pp and j,. = S', —iP', are the strange-
ness™conserving AS =0 and strangeness-changing
DS =1 currents. The weak nonleptonic processes
arise from the effective interaction(j", j" }, cor-
responding to fJ~, J""jin the V —A case. Denote
by H(p. c.) and H(p.v.) the parity-conserving and
parity-violating parts of the effective interaction
in the scalar theory. Further, in each case, H

Ho+&z where 00 and &i are the b, S =0 and ~S =1
parts.
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H(p. c.) has 6 =+1 and contains the symmetric
SU(3) representations 1, 8 ~, and 27, the singlet
occurring in H, (p.c.) only. The transformation
properties of H(p.c.) are exactly the same as that
for the V —A. theory. However, since S and P
currents have opposite CP, unlike the V and A.

currents, H(p. v. ) is antisymmetric in S and P due
to CP invariance. Consequently, H(p. v.}contains
the antisymmetric representations 8„, 10, and
10*, and has 6 =-1. In fact, only the combination
10-10*occurs. This is to be contrasted with the
V —A theory, in which the parity-violating part
ha.s 6 =-1 and the SU(3) properties are the same
as for the parity-conserving part. %e discuss
the consequences of these differences below.

AS =0 creak nuclear processes. The parity-
violating amplitude arising from H, (p.v. ), giving
AI =0, has a factor sin'0, while that giving
Al =1 has a factor cos'0. Thus the parity-

violating effects with ~AI
~

=1 are expected to be
larger, in contrast with the V —A. theory, where
~b. I

~

=0 is expected to predominate, because of
the smallness of 0. Further, in the scalar theory
there is no ~al

~
=2, ss =0 parity-violating ampli-

tude, in contrast with the V- A. case. These
differences between the two theories arise be-
cause Ho(p. v. ) is the antisymmetric combination
of two octets in the scalar theory, in contraqt
with the V —A. case.

2. AS =1 nonleptonic decays. Each of the seven
decays of the type B-B'+v is given in terms of
an s-wave and a p-wave amplitude arising from
H, (p.v. ) and H, (p.c.), respectively. The scalar
and V —A theories differ only in the non-octet
part of H, (p.v.). Consequently, as far as octet
dominance holds, the two theories will be indis-
tinguishable. However, differences will show up
in the deviations from octet dominance [viz. , the
~AI

~

= —,
' rule and the Lee-Sugawara (LS) relation']

for the s-wave amplitudes alone. Explicitly, the
SU(3) content in the V —A case of H, (p.v. ) gives

H, (p.v. ) —&5X(27, —,') +X(27, —,') + 3X(8, —,'), (4)

where X(N, I) transforms like the isospin-I part
of the SU(3) representation N. In the scalar case,

H, (p.v. ) - X(10*,—,') -X(10,—,') + X(10, —,')
-x(10*,—,') + x(8, —,').

Incidentally, (4} also gives the SU(3) content of
H, (p.c.) in either theory. Denote the deviations
from octet dominance for the s-wave amplitudes
by

S(~A) -=S(AO) —Wa S(Ao),

s(s=)=—s(= ) —Was(=0),

Wa s(~ z)=- s(z-)+Ma s(z,') —s(z, ),

S(b, (LS)) = S(AO) —2S(- )+&3S(Z '),
where A represents the decay A'-p+m, etc.
For the V -A case a straightforward SU(3) anal-
ysis gives'

S(~A) = -S(~=),

vS S(~ Z)+S(~A) =2S(~ (IS)).
(8)

(7)

In obtaining (7) one needs the value of the relative
coefficient of X(27, —,') and X(27, —,') as given by
(4). In the scalar theory one obtains'0, using (5),

S(~A) =S(~ =-), (8)

&"Z'U, (a+iby, ) „o„U ,s (10)

where &j" is the photon polarization vector and
K' its four-momentum. The amplitudes a and b
arise from H, (p.c.) and H, (p.v.), respectively.
Clearly, the results for g amplitudes coincide in
the two theories. Since, H, (p.v.) in the V —A
theory has 6=-1, one finds

(1 la)

(lib)

(11c)
Equivalently, one can use U-spin arguments". If
one keeps the octet part and neglects the 27 part
then one has the additional relation

&35(A -ny) =f (Zo-ny). (lid)
For an H, (p.v. ) which is a general mixture of 10,
10, a,nd 8 but has 8 = -1, there are four sum
rules which are different. However, the particular
combination in (5) of 10-10*just does not contrib-
ute to the radiative decays. Consequently, for
both the scalar and V —A. theories, (lla)-(lid)
are expected to hold.

A consequence of (lla) is that the asymmetry
parameter o-Re(a*b f}or the two decays is zero.
Experimentally, "n =1.03'0 4,'for Z' -Py. How'-

ever, the value of o. depends crucially on the
dynamics. For example, the use of the baryon
pole model according to Graham and Pakvasa"
would give a small a -0.1 for the scalar theory
too. On the other hand, looking at the short-dis-

W3s(~ z)+29s(~A) =-es(~(Ls)), (9)

In principle, (7) and (9) can be used to distinguish
the two theories. However, the present data ver-
ify the predictions of octet dominance rather well.
As a result, within errors one cannot say anything
definite at present.

3. AS =1 radiative decays. There are six de-
cays of the type B-8'+ y. The amplitude can be
written as
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tance effects using operator-product expansions"
can change the picture. "'" By writing the ampli-
tudes a and b as the sum of a short-distance part
and nonshort-distance part and taking the latter
as given by the V —A theory itself, i.e., by (11a)-
(11d) for the 5 amplitudes, it has been argued"
that the asymmetry parameter in Z'-Py could
be large. The inclusion of the short-distance
contributions modifies the sum rules (11a)-(11d)
to

6b(A -ny)+6b(:- -Ay)

=-v6 [b(Z'-Py)+b(:-' —Z y)], (12a.)

f (=-'- Z'y) —v3 t (=-0-Ay)

=W2[b(Z+ -Py) —b( —Z y)], (12b)

vY[t (Z' ny)+f (=' Z'y)]

= -[&(Z' -Py)+&(: —Z y)]. (12c)

The argument in the V —A case" for the nature
of the short-distance contribution goes through,
mutatis mutandis, for the scalar theory. The
short-distance contribution involves the product
of three currents jo~(x)j, (y) V' (0) when x-y-0.
The leading contribution will again come from an

odd-rank tensor, which gauge invariance limits
to be the divergence of a tensor (or a pseudo-
tensor) which is an SU(3) octet but behaves like
(3, 3 ) $(3*,3) under SU(3)cm SU(3). Since j, is
(3*,3) and jot is (3, 3*), their product with V'

which is (1, 8) 83 (8, 1), will not yield a (3, 3*) or a
(3*,3). Thus, scale and SU(3) SU(3)-invariance-
breaking terms of the same order are needed,
as in the V —A. case. Thus the nature of the
short-distance contributions is the same in the
two theories. To summarize, the radiative de-
cays do not afford a distinction between the two
theories.

We have seen that on the whole the scalar theo-
ry' discussed here and the V —A theory have the
same predictions, though deviations from octet
dominance in the nonleptonic decays can in prin-
ciple distinguish between the two theories. A
clearer test, though experimentally difficult, is
provided by the AS =0 parity-violating weak nu-
clear processes.
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