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We study the vector and axial-vector excitation of a pion to an arbitrary single-particle state. The
main inputs to our calculation are a hard-pion representation for the relevant off-shell matrix elements,

and use of partial conservation of axial-vector current, the Bjorken-Johnson-Low theorem, and current

algebra as constraints. We find that for a model incorporating a finite number of poles, the pion

cannot be excited to arbitrarily high-spin states. In a particular model we find a cutoff of J = 4, and

also obtain predictions involving branching ratios for the decay of f(1268) and g(1680) mesons into

A, (1070)m and mm composites. The results of our model are checked by comparing with sum rules

based on local commutation relations.

I. INTRODUCTION

In this paper, we shall construct and analyze a
model of the vector and axial-vector excitation
of the pion to an arbitrary single-particle state.
In principle, this phenomenon is observable in
processes where the pion interacts by means of a
current with external probes such as photons or
lepton pairs. Although pion targets are not avail-
able, the type of reaction described above has been
observed for the nucleon in electroproduction ex-
periments. If both the invariant momentum trans-
fer and the energy transfer are not too large
[say, -k's1 (GeV/c)', DE&2 GeV], then excita-
tion of the nucleon to resonances can dominate the
cross section. In such situations, the magnitude
and momentum-transfer dependence of transition-
matrix elements can be read off from the data.

The model of pion excitation used in this paper
is an extension of the method inaugurated by
Schnitzer and Weinberg, ' and modified later by
Brown and West. ' The original hard-pion calcula-
tion of Schnitzer and Weinberg involved taking the

A, (1070), p(765), and m mesons simultaneously off
their mass shells by relying upon the well-known
field-theoretic association of these particles with
vector and axial-vector currents and the axial-
vector divergence. Certain smoothness assump-
tions were then imposed upon vertex functions re-
lated by Ward identities. In the calculation of
Brown and West, equivalent results were derived
for subsystems of the full A, pn system by keeping
one of the particles on its mass shell. For ex-
ample, a typical quantity to be studied would be

dxe" "A~, p, A, T V~OS A, x 0.

In addition, it was shown by Brown and West that
application of the Bjorken-Johnson-Low (BJL)

limit' to (1) yields constraints on the model. The
results thus obtained turn out to be consistent with
the original work of Schnitzer and Weinberg.

We shall be studying matrix elements of currents
which connect a pion to an arbitrary-spin meson.
Unfortunately, there is, in general, no known
relation between an arbitrary-high-spin meson
and a local operator which is, in some way, re-
lated to measurable phenomena. Thus, when we
perform a calculation involving off-shell dynamics,
we must keep the high-spin meson on its mass
shell. For this reason, our calculation will re-
semble that of Brown and West more than that of
Schnitzer and Weinberg.

To be more precise, we shall analyze off-shell
amplitudes of the type

d'xe-"'" m' p, X T J~ 0 e&A x 0,
(2)

where M~ is a spin-4 meson of momentum p and

helicity A. , 4" is either a vector or axial-vector
current, and isospin indices are temporarily sup-
pressed. Throughout, the usual off-shell relation
between the pion and the divergence of the isospin
axial-vector current [partial conservation of axial-
vector current (PCAC)] will be adhered to.' Our
dynamical model for (2) will consist of a collec-
tion of pion and A, (1070) [or p(765), depending on
the current] poles as well as constant terms. '
When taken on the mass shell, such an amplitude
contains particle poles plus constants. This ap-
proach is clearly meant to reproduce the correct
behavior of the current matrix elements at rea-
sonably small values of momentum transfer. The
constants simulate contributions from states of
higher mass than the n, A„p particles, perhaps
even subtraction constants. As we shall show in
Sec. III, for 4=1 our model is equivalent to that
of Schnitzer and Weinberg. Our parametrization
automatically reproduces their smoothness as-
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sumptions. We shall use PCAC and current al-
gebra to provide constraints on the model. More-
over, encouraged by the results of Brown and
West, we shall apply the BJL theorem to our am-
plitudes. It will become evident for matrix ele-
ments involving excitation of the pion to a high-
spin meson that this places rather powerful re-
strictions on the model. The key point is that
imposition of the BJL theorem to an amplitude
such as the one defined in (2) implies a magnitude
for the amplitude of at most O((q') '). However,
one can also express the off-shell amplitude in
terms of form factors and spin wave functions.
When the BJL limit is taken for this latter repre-
sentation, the form factors become multiplied by
large powers of q arising from the orbital angular
momentum needed by the pion + current composite
to couple to the high-spin meson M~. Thus the
form factors are tightly constrained. In fact, we
shall show that in a model incorporating w and

A, (or p) poles for the current matrix element,
the mm and mA, (or mp) systems do not couple to
resonances with J& 4.

Some discussion of our outlook is in order at this
point. The model just described has both virtues
and defects. Its chief limitations are probably its
lack of unitarity, and the simultaneous imposition
of PCAC and the BJL theorem as calculational
procedures. The former limitation has been over-
come in certain specific hard-pion models, where
it has been shown that analyticity and unitarity can
form the basis for a hard-pion calculation. ' How-
ever, we cannot see how to do this generally,
particularly for amplitudes containing high-spin
mesons. Although, in principle, one could write

a collection of unitarity relations, these would be
too complicated, due to the presence of the many
contributing intermediate states, to be useful. The
latter of the above limitations is evident. When we
employ PCAC in an amplitude constrained by the
BJL theorem, we are evidently taking seriously
the idea that the divergence of the axial-vector
current properly describes the pion far off its
mass shell. Clearly, any justification of this
assumption must necessarily follow from the
success of our results. Because it gave good re-
sults for a particular hard-pion calculation, ' we
are motivated to use it here.

To sum up, we believe that the model to be
analyzed has enough truth in it to yield some in-
teresting qualitative insights. It has the major
virtue of being a soluble problem for what is a
large class of amplitudes. It should be kept in
mind that we are treating a rather general pro-
blem —pion excitation —to an a~biA any spin state.
As we shall show in the ensuing sections, the
quantitative predictions of the calculation turn out
to be surprisingly good.

We now summarize the contents of this paper. In
Sec. II, we define the relevant amplitudes, intro-
duce the hard-pion representation which forms the
basis of our approach, and then analyze the con-
tent of the PCAC, current algebra, and BJL
theorem assumptions. Certain consequences of
the analysis of Sec. II are explored in Sec. DI.
Decay width predictions emerge from an analysis
of specific transition matrix elements. The mean-
ing of our results is clarified in Sec. IV, where
various current-algebra sum rules are studied.
Our conclusions are discussed in Sec. V.

II. GENERAL ANALYSIS OF THE MODEL

Consider the excitation of an on-shell pion of momentum q, isospin a by the axial-vector current A~)'(0)
to an isoscalar meson M of momentum P, spin J, and helicity A. . Form factors for this transition are
defined by

(M (p, A)~A~~(0}~((,(q})= i5,~h*. .. (p, A)q'2 ~ q'&[g'~" F~(t)+q')h)'G~(i)+q')Q('&~(t )]

The polarization vector of the spin- J meson is h*, , (p, X), and we use the definitions h =q -p, Q=p+q,
t=k'. The assumption that M~ is isoscalar is purely for convenience —if M~ carries isospin c, then the
factor i6„ is replaced by e„,. The same is true of our use of the axial-vector current A~('(0) —results
obtained will hold for vector-current matrix elements as well. The class of mesons M~, which can be
reached via, excitation of the pion as described in (3), obey the spin-parity relation P = (-) . For the class
of mesons with P = (-)~", we must write

(M (p, A)~A~)'(0)~)), (q)) = ib, ~h,* . . ., (p, X)e'» "q'2 ~ ~ q'~qsp&E~(t). (4)

For definiteness, the analysis to follow will treat the situation described by (3) rather than (4), although
the qualitative results are similar.

An off-shell amplitude, related to the matrix element defined in (3), is given by

M,",(qP)=( fd'xe ",*(Af,~(p, x)IT(a.A:(x)A,"( ))~0). 0 (5)
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The prescription for returning to the pion mass shell is simply

m2 — 2

(M'(P, &)I&,"(0)l)),(q)) = »m .' . M', ..(q, P),
q2 ~mP 7{ ll

(6)

where F,= 94 M-eV is the pion decay constant. An appropriate decomposition for (5) in terms of off-shell
form factors is

M~)'„(q, P)=i6„k, . . ., (P, X)q'2 q'&[g')."F (q' k')+ q' {k"E (q' k')+q') Q"E, (q', k')].

The off-shell quantities E~(q', k'), i =1, 2, 3 are related to the on-shell form factors F„(t), G„(t), H„(t)
by using the prescription (6).

Before adopting a, specific model for Mz „(q,P), let us examine the constraints that the BSL and soft-pion
theorems, and current algebra place on it. The Bjorken limit involves taking q'-~, with q fixed. In the
following we shall let Ij, =0 and for convenience, choose q'=q'=0, q'10. The BJL theorem states

M „(q,)) Jd'xe' '"(I (), x))~{A', (0), s,A;(o, i)])~0)
qO ~oo

fixed

(8)

Alternatively, the right-hand side of (7) becomes asymptotically

O Z2 S J 1H„(q') 'k, +(q')~ '(q') k + ~ ~ +(q')~ 'k E~(q' k')

(0')'h, +(0')' '(0')
( &, +" +(0')'h, {tl'{F;(0',k')+n(Q', )'))+O'{)";(0',)")-+;(0',&'){)I, (&)

where k, =—k,*.. . , (P, A.), h, —= k,*„.. . O(P, A. ), etc. Iwe remind the reader that k, . . ., (p, A. ) is totally symmet-
ric in its 8 indices]. Because P is arbitrary, the quantities ko, k„.. . are generally nonzero. Finally we
have

d'xe"" ' M P ~ A~ 0, 0~A, Ox 0

=io, q' "h,&, q', k' + q' p'h, I" q', k' + q' h, &, q', k'J

+(q)' ' h, F', (q', h')+ k(q'))' E'(q*, k')+ h, (q')'E;(q*, ).") + ~ ~ ~ I, (10)

where F, =E,e F, . It is apparent from (10) that the BIL theorem places rather stringent conditions upon
the high-energy behavior of the amplitude describing the excitation of a pion to a high-spin meson.

To facilitate our study of the current-algebra constraints on M~,„(q, P), we define an auxiliary ampli-
tude,

e. ..(q, )') =~ f d'*~ "'*(I'(p, ~)
l
r(a.a:(~)e,w((o)) l

0) .

Multiplication of Mz „(q,P) by fk& yields

fk„M,"„,(q, P) =&. ..(q, P)+~ (M'(P, ~) Ij E,'(0), &.&.'(0)]
I o& (12)

We shall see that the current-algebra relation (12)
is quite effective in reducing the number of arbi-
trary coefficients in a hard-pion amplitude. Fi-
nally, we consider the soft-pion theorems,

lim MJ" .,(q, P) = -& (M'(P, ~)([E', (O), A", (O)](O)
q ~P

(13a)

and

»m &g .g(q, P) = -f (M'(P, ~) II. E!(0),ea&&(o)]l0)
q ~P

(13b}

It is clear that useful information is contained in
the soft-pion theorems only if meson M has spin
0 or 1. For J&1, the content of the soft-pion the-
orem is trivial, implying 0 = 0.

In order to exploit these strictures, we adopt a
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dynamical model for the form factors E, (q', k')—
inclusion of 7j, A, (1070) poles where appropriate—
together with constant behavior for the remainder.
Thus we write for i =1, 2, 3,

aJ bJ
y' J( 2 y2)

(m '-q')(m ' —k') m ' —q'

(m „' -q')(m„' —k') m „'—k'

J J 2 Je, +e, mA -c3 0

aJ2m„2= -inJ,

b, (m, ' —m ') —a~ —c, + b, = -ip ~,

domo =-ip
'6,„(f,—b, —d, —e, )

=ib„y +i &M (p, X)i[E', (0), B„A,"]io)6~,.

(17)

J
eg J+ 2 k2+f~ ~Pl A

—R
(14)

We can obtain more information by considering
the BJI theorem obeyed by Nz, o (q, p},

where a, , b;, . . . , f, are constants. Note that

a, ', b, ', . . . , f ~~ '=0 from kinematical consider-
ations. Also observe that &, (q', k') and &, (q', k')
cannot contain pion pole terms in the variable k'.
This is deduced by examining intermediate states
allowed in (5) and comparing them with (7). Thus
we have a, =a, =d1 d3 0.

We now demand the validity of the BJL theorem.
Upon inserting the representation (14) into Eq. (10),
we find the following:

If J&0:

ib.,(b', +d', +e', +b,'+e,')
=&M'(P, &)ll &,'(O), s„a."(0)l IO)6, ,

If J~l:

N~ „(q,p)

3 f 'x

x &M'(p, z) ) [s,A, {0,x), s„A",{0)]j 0),
(18)

which together with (16) implies

y =0, all J
P'=0, J &2

nJ=O, J~4.
We have proceeded deeply enough into the analy-

sis of the hard-pion amplitudes (14) to reach a
conclusion of real interest. The following is a
compilation of our results so far:

For J=0,
J=O d J=o J=O g J=o g J-P bJ-O

, =0,
(15} 2 2

7r

If J)2:
a +c +c —b —e =0, b +e, =0.2 2 3 1 I & I

If Jo3

J=O
2

c~=o = e~=o(m ' —m ')

c '(m' —m')
2m A

(20a)

If J&4:
c'= 0.I

Before writing down the relations which follow
from the current-algebra constraint (12), we must
define a hard-pion parametrization for Nz „(q,P):

N~ „(q,P) =ib,„kg .. . , (P, A)q'~ ~ ~ q'~

nJ p
J'

X
(m, ' —q')(m, ' —k'} m, ' —q'+

cJ o )nJ' o ip
J' —o

m' m'(m' —m') m' —m''
where we denote the mass of the spin-zero meson
by m, .

For Jo 1

J dJ' fi bt f J' z dz J' fz 0

ip q in
7r 7

p
J

Y (16)
cJ=e +m 'eJ,3 I A 2~

c, = (m~' —m, ')(e, + m „'e, ) —m„'c„
(20b)

It then follows from Eqs. (7), (12), (14), (16) that z &p zb,=,—e, ,1nr
~ J ~ J

b =c —,iP +(m~ -—m ),—e,J J 2n . J 2 2 Zp

m, ' J 7 m 2 2
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In addition, for J ~ 2,

b =P =0,

for J~ 3

J= —CJ2Q
2 2 &

r

and finally, for J ~ 4,

bJ=aJ= c'=n J=0.I 2 2

(20c)

III. SOME EXPERIMENTAL CONSEQUENCES
OF THE MODEL

In this section we analyze specific examples of
the results obtained above. First, however, let us
verify that the Schnitzer-Weinberg (SW) calculation
can be reproduced for J= 1. Taking the spin-one
meson as the p we define:

22&,'m, &p

All coefficients vanish if J~ 4. Therefore, given
the dynamical model described in this section, ex-
citation of the pion by means of currents to single-
particle states with J ~ 4 is forbidden. We check
the consequences of this result in Sec. IV, where
we analyze sum rules and present a more detailed
discussion of it in the summary in Sec. VI.

We conclude this section by writing down con-
straints gleaned from the soft-pion limit. For J
=0, defining an operator v as the isoscalar part
of the commutator i[F', , ep A,"], and e as any T=J
= 0 meson, we find'

J'=1 1, 2e, = -&5g„w „,
A"Ac, = =-,&,m, g„p, ——,(mp —m„)

Pl' A

Here, gA is given by

(24)

and g„p„gp„, and 5 (the anomalous moment of
the A, meson') are defined by

gpss(m~abc I a ~b p ~c +gApif~abc~la~bp ~c

io.~=' (2m ' —m, ')iP

=
& (P)l (0)I0),

(21a,)

In order to obtain the SW results we note the fol-
lowing:

(i) By study of

d xe ""
m, P T ~'A~ xV'„0 0

-Q2
J'= 0 gJ=o

+ —
2 +

m, '(m, ' —m, ') m, '
J'= o

C3 —C2

m, '(m„' —m, ')

d J=o J=o
e2

2 2 2 2
r ~+6 VEA

via the techniques discussed in Sec. II, one finds
that & 7r, (P) ~

8"Ap (0) ~ p, (k) ) satisfies an unsub-
tracted dispersion relation in k'. ' Hence P

~ ' = 0.
(ii) By study of

For J= 1, letting p represent any T =J= 1 meson,
we obtain dxe"" 7t, P T 2~xV', 0 0

z.J= 1 J=x J=&
1 cg Cg

2 2 2 2 2 2m, rn, (m„—mp ) m„—mp

where

&0~ 7,"(0)
~ p, (k, X)) =gpss„e" (k, A.) .

(21b)

(22)

by the same techniques, one finds that H~ '(k')
satisfies an unsubtracted dispersion relation in
O'. ' Hence b, ' = 0. These conditions are obtained
automatically for J & 1. From Eq. (20b), k,
=iP '/m, ' —e2~ ', so that if 5, '=P '=0, we

must have e, ' = 0. We then obtain

(g„/m „')&,m, '[g„p„—-', (m p' —m, ')5/2F, ] -F,'m, 'g„,

1 2gAJ' ~m~ gAP~

(rn, ' —q')(m„' —k') m„' —k' '

F J'=i( z 2)
2 r mr gp~~ gx F 2 gape —2(mp —m, )~/2&r

(m, ' —q')(m „' —k') m„' ' " (m, ' —q')(m„' —k')

(26)

m 2

F &=1( 2 k2)
(m, ' —q')(m„' —k')

There are only two free parameters here since 5, gp„„gAp, are constrained by the soft-pion equation:
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vLp 1 2 2 2 2gp=g~ 2 2 E„gyp +4~ (PE~ —mp +m„) ++. gpDig mQ mp 7r

(27)

These are exactly the results of Brown and West and of Schnitzer and Weinberg.
Now that we have verified the hard-pion results for J =-1, we can move on to other values of J. In partic-

ular, the model can be used to relate A, m and n'm decay modes of arbitrary spin mesons. As a first step,
we show how the parameter e can be determined experimentally. Consider the on-shell transition ampli-
tude:

(m(q)v(k)
~

M (P A)) = lim i -", , " R~ „(q P)
q 2,42~m~ E m„

-Q J
,k... . .., (P, ~)q'~ q ~,'F, m, (28)

for the decay of an I=O, spin-4 meson. If I=1, simply take 5„--ie„,. Squaring the amplitude and sum-
ming over available phase space, we obtain

F„'m„' 32wm~' (2Z)! 2 (2J+1) '

where C' is an isospin factor given by

(29)

It is also possible to write a formula relating the parameters c, and c, to M —A, m decay widths. The
appropriate transition amplitude is given by

m 2 — 2m2 — 2

(w.(q)A»(k, X') ~M'(P, ~)) = lim (-i) ", " ~+(k, ~')M,".,(p, ~)
q2 m2
k ~m

A

k . . (P &)q'& q'&-~e*(k, X'}(c,g"'&+c,q"q").
A

(30)

(31)

After a lengthy exercise in kinematics, we find

2J ~2 C~cs
2J 1 J AQ 4

We may use existing data on the decay of e(700), p(765), f (1269), f '(1514), and g(1650) (Ref. 11}along
with Egs. (29) and (32) to constrain o. , c, , and c, for 8=0, 1, 2, 3. In view of the 8-4 cutoff which occurs
in our model, we shall concentrate in the following upon relating ~w and A, ~ branching ratios for the J
=2, 3 states. In order to have definite predictions, we are forced to make two additional assumptions:

(a) F„'(k') obeys an unsubtracted dispersion relation in k'. This is essentially an A, -dominance as-
sumption. It gives b, ' =0. Note that this assumption does not hold for J=1.

(b) The decay of a high-spin meson into a two-body final state is dominated by that channel having the
lowest available value of orbital angular momentum. Some details pertinent to this assumption are pre-
sented in Appendix B. Here we merely note it implies c, "-=0.

The main consequence of (a) and (b) is that c, '=-m„'o. '/m, '. This latter condition allows us to relate
the mw and A, ~ branching ratios for the decay of a J =2 meson. Moreover, when we consider the J =3
problem, it is necessary just to assume either (a) or (b} (one automatically implies the other). We then
find c, '=-m„'n~ '/m„', again relating the wv andA, m decay modes. Inserting the above relations be-
tween c, , c, , and n into Eqs. (29) and (32}, and substituting in the appropriate numerical values, we

predict

I"(f- A, m) I (y'- A, w) r (g- A, v)

I(f- wv)
' ' r(f'- v7t)

' I"(g- w~)

Current experiments give
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I'(f (1269)-2w'2w )
I (f(1269)- ww)

Noting that theA, m mode may contribute to the 2m'2w final state via the chain f(1269)-A,w- pww-4m, we

predict that

I (f(1269)—2m 2w )~,,
I"(f(1269)- mw)

consistent with the data. The implication of our f '(1514) prediction is that since the ww mode is highly
suppressed, so also then is theA, w mode. Finally, using the current value, I'(g(1 650)- mn)=64MeV, we

predict

I"(g(1650)—4n) „,-=38 MeV,

whereas experimentally, one finds

I"(g(1650)-4m) -=80 MeV (see Ref. 11).

To summarize, the above predictions each fall within existing experimental limits. We hope that the
numerical values for decay widths given above stimulate further experimental study of the A, m decay
mode. It is worth pointing out here that if our model is qualitatively correct, m~ and A. ,r decay modes of
a resonance with J~ 4 should be suppressed. Presumably, such a higher-spin state M would decay, for
example, via pion emission into another high-spin state M ', and so on. " Future experiments will de-
cide on this. Fortunately our J=4 cutoff has further implications which can be studied here; it proves to
be quite important in the evaluation of various sum rules, as discussed in Sec. IV.

IV. SUM RULES

As an additional test of our model, we shall perform evaluations of various current-algebra sum rules.
For our first example, we take the operator

d'x d'y([A', (x),A'(y)] —25'(x —y)V,'(x)]„o,o =0 (34)

between pion states (the Adler sum rule" for a pion target) in the limit of infinite pion momentum. In do-
ing so, we are working in a kinematic domain, q' = m „' and k' =0, where we expect our parametrization
has its greatest validity. We shall attempt to saturate the sum rule by using only the spin-J resonances
described previously. This gives

+,l. I
o"='I'(m, ,' —m, ')'m, , "+ ]. (35)

The ~n ~' are related to the J —m~ decay rates by Eq. (29). As a consequence of the BJL theorem and
current-algebra constraints, we neglect all contributions from states with J~ 4. Inserting the numerical
values"

m~=, ——700 MeV, I"J- —-300 MeV,

m, =765 MeV, I'~, =128 MeV,

m~, =1269 MeV, I'~, =125 MeV,

m J 3 1680 MeV, 1"~ 3 64 MeV

into Eq. (35), we find

1 =0.31+0.47+0.10+0.04+ ~ ~ ~

=0.92 + ~ ~ ~ (36)

which, given the uncertainties in data and the approximate nature of our model, is in rather good agree-
ment with the theoretical prediction. In particular, it lends support to the J=4 cutoff predicted by our
model.

We can probe the commutator slightly away from the forward direction by insertion of the operator
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0= d'~ d'yg' " ~ A. , xA' y —25 x-y V,' x (37)

between pion states. The derivative with respect to k' is taken in the infinite-momentum frame and the
resulting sum rule is again evaluated at k' =0." However, now we must include the contribution of the odd-
parity mesons, B(1233,I=1), D(1286, I=O), E(1422, I=O)." For these states, we parametrize the I=O
off-shell amplitude Mz" „(q,P) as

(38)

where

J J JJ 2 2 a b C J
(q k ) 2 2 2 2 2 2 + 2 2 +d

(m, —q)(m„—k) m, —q m„—k
(39)

a, 5, c, d being constants. For I=1, we take i6„-e„,. The off-shell form factors E (q', k'} are re-
lated to the on-shell form factors E~(t) of Eq. (4), as described in Ecl. (6). From the BJL theorem, we
conclude that

J?1, d =0; J&2, b +c =0; Jo3, b =c =0; J&4, a =0. (40)

Thus again, there is a J=4 cutoff. In terms of the on-shell form factors of Eqs. (3) and (4), the sum rule
reads

0 = 2H„'='(0)(H„'=') (0)+, ( 2[ F~='(0) —(m, ' — m, ') H„='(0)][(F„=')'(0)—(m, ' —m, ')(H„=') (0) —H~='(0)]
J=l

—4m, ,'[H„'= '(0)]')

+ 24, (2[(m~, ' —m, ') F~='(0) —( m~, ' —m, ')'H~='(0))
mJ-

x[(m~, ' —m, ')(F~=')'(0) +F~='(0) —(m, =,' —m, ')'(e~=')'(0)

—2(m, ,' —m, ') H„'='(0) + 4 m, ,'H„'='(0)] —3 m, =,'[ F„'='(0)]']+,( -2(mz, '+ m, ')[(mz, ' —m, ')F~='(0) —(mz, ' —m, ')'H„'(0)]'
160rnJ, '

+ (m, ' —m, ')'2[(m, ' —m„')F„'(0)—(m, ' —m, ')'H„'(0)]

x [(m~, ' —m„')(F„=')'(0)+F„='(0)—(m~, ' —m, ')'(H„=')'(0)

+4m H„= (0) —2(m —m )H„= (0)] — m =, [F„='(0)]']
I [ EX= 1(0)]2 (41)

The final term refers to the sum of the contributions from the J~=1', 8, D, and E mesons. This becomes
much simpler when we note that for 4 ~2, with the assumptions made previously, H~(k') =0 and F„~'(0)=(1/
m„')F~(0). lf we demand A, dominance for &~ '(k') we find from Eq. (41), along with Eq. (35),"

1 =0(spin 1)+0.04(spin 2)+0.07(spin 3)+ & m„'{[E~s(0)]'+[E„(0)]'+[E„(0)]'}+ (42)

with obvious notation. Thus, the odd-parity mesons must make up most of the remainder. Assuming A, -
dominance for each of the E„='(k'), and using the latest data, we find that the contribution of the D and E
mesons is probably quite small. However, since the 8 meson lies so near the A, m threshold, a reasonably
large amplitude could be masked by a small &-Ap width. We deduce from the relation

~ 3 Arm~ [E~ (0)] = 1's-~. 2, I&I (43)

that if 1'(B- A, w)
-=7 MeV, the sum rule (42} is saturated. Of course, there are other states which can

contribute, so this should be considered as an upper bound. It is hoped that future experiments seek evi-
dence for this mode.

We find then that of the two axial-vector sum rules, the first is in satisfactory agreement with the theo-
retical prediction, while the second yields a prediction for B- Am which is not inconsistent with current
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experimental bounds. If, however, we try to extend the Adler sum rule to larger values of momentum
transfer, things soon break down. There are two ways in which to take k'w0. One method is to proceed
as before but refrain from taking the infinite-momentum limit. For instance, if we evaluate the sum rule
in the pion rest frame, only the J=0 intermediate states contribute and we have

1=
J=O [(m =')' —4m ']"'
n n

F m ' 4m '(m ')' (m ' —2m„)'(m ' —m )' ' (44)

where the sum runs over all possible J =0 resonances. Upon taking into account just the e(700) contribu-
tion, we find 1=0.10+ ~ ~ ~ . Clearly, the agreement is quite poor. Another procedure is to use a covari-
ant dispersion relation with k' fixed at some arbitrary value. " We then find

1 =[H '(k')]'+ ([F '(k') —(m ' —m '+k')H '(k')]' —4k'm '[H~ '(k')]')1

J= 1

+ 1[(m
' m '+k')F '(k') -((m ' —m '+k')' 4m 'k')H„'(k')]'-3k'm '[F '(k')]']1

SZJ+,[[(m~,' —m, ')' —2k'(m~, '+ m, ') + k']
PPZ J 3

x(((m '-m '+k')F '(k') —[(m ' —m '+k')' —4k'm ']H '(k')}'
8 m 2k2[HJ-3(k2)]2)]

2
——[Z'-'(k')]'+"

4 A (45)

This reduces to the infinite-momentum result at k'=0 but, since all form factors drop off no faster than
1/k' in our model, we see that disagreement sets in before too long. " Thus only the results near k'=0
appear to be valid, which is consistent with our feeling that the model works best when applied to situa-
tions where q', k' are relatively small. This also suggests that when the pion is excited by the axial-vector
current, resonance production is dominant near k' =0, but multiparticle states become important at larger
momentum transfers. "

Finally, it is interesting to evaluate the small -k sum rules for the case in which the axja].-vector
currents are replaced by vector currents. That is, we evaluate

d3xdsye'k'("-y) Vo x, Vo y -253x-y V03x „0 0=0 (46)

between pion states in the infinite-momentum frame. In the limit k'=0, conservation of vector current"
(CVC) implies that only the pion intermediate state contributes. Thus, the k'=0 sum rule is a trivial
identity. However, if we differentiate with respect to k', and evaluate the sum rule at k'=0 and in the in-
finite-momentum frame as before, we obtain a nontrivial relation for the pion radius. In describing the
vector-current matrix elements, we use the same formalism as that employed for the axial-vector cur-
rent. We define

(M )) „(q,()=if''xe "'*(M (), x) T(a, (A;(x) ()))((Do)

=H„k~g. . . , (P, X)q'2 ~ ~ ~
'q[~g"" G(q', k')+q" k"G,(q', k')+q 'Q"G, (q', k')], (47)

with the G~(q', k') having the same structure as before, except that pion poles in k' are not present and A,
poles are replaced by p poles:

yJ ~J eJ
Gi( 2 k2) ( + i ~ 3 + PJ'

m ' —q (m —q)(m —k) m —k
(48)

The on-shell counterparts of G„G„Q,are F~, G„, H~, respectively. The BJL and current-algebra con-
straints are identical to those given previously if we set a, =d; = z =P =y =0, the latter three conditions
being required by CVC. ~

For the isospin-zero odd-parity mesons, we define

(Mv)z. s(q P) =«.~k* a &""'"q"" q "q),unH'(q' k'), (49)
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with

J J J
II' 'k'=

(
' —q')( ' —k') ' —q' ' —k'

'lI P p

(50)

and analogously for the isospin-one odd-parity states except that i5,„-e,~, . The analysis of the BJL limit
goes through as before.

The structure of the vector current sum rule is then identical to the axial-vector sum rule (41) if we
make the replacements F„,H„, F.„-F~, G„,F~, respectively. We shall use the sum rule to solve for the
pion form factor in terms of the other contributions. Because we are working in a pole model, the sum
of these other contributions is to be compared with the p-dominance value for the pion form factor, 2~

m~
' r„'= 6 (p-dominance value)

m 2 —m22='m ' Il"~0 '+ Z" 0 '+ Z~O '+ "' Z"20 '+
mg~

=5.72m '+ ~ ~ ~ (51)

Again, agreement is quite good, suggesting that contributions from higher spin states are relatively un-
important.

V. CONCLUSION

We conclude with a review of our results and a
discussion of their physical significance. In this
paper, we have undertaken an analysis of the class
of transitions, "current +pion- spin-J meson. "
The dynamical content of our on-shell amplitudes
involves m, A„or p poles plus constant terms.
These constants simulate higher-mass contribu-
tions or even the nonvanishing of form factors
at infinite energy. The intent of this kind of model
is to give a reasonable description of the trans-
ition amplitudes at moderate values of momentum
transfer. Because we restrict the calculation to
pion targets, we are able to exploit the powerful
off-shell constraints of current algebra, PCAC,
and the ML theorem. Several different types of
results were obtained.

Of the most immediate experimental interest are
the A p branching ratio predictions. Data on these
branching ratios are sparse at this time, so we

are restricted to concluding simply that our pre-
dictions are consistent with those experimental
results now available. This lends tentative support
to our parametrization of the 4' dependence of the
axial transition amplitudes in terms n and A., poles.
The pattern of predictions [I (f, g-A, w) measur-
able, I'(f'-A, m) suppressed] is distinct enough
to allow future experiments to make decisive
statements about them.

The result which proved most fruitful to explore,
and which is probably the most important result of
this paper, is that in our model, excitation of the
pion by a current to a meson with J~4 is forbidden.
In order to show that this result is dynamic and
not kinematic, and also to indicate how the cutoff
value J= 4 depends on the model, we shall study
an extension of it in which Nz„(q,P) [see Eq. (11)]
is allowed to contain poles representing w', a
hypothetical particle with the same quantum num-
bers as the pion, but with mass M&m, . Thus, we
temporarily replace Eq. (16) by

eJ pJ gJ
(q P) =f5 k* && X)q'& ~ ~ ~ 'z + +

(m '- q')(m '- k') '- ' '- k' ~ (M' ')(M'- k2)

M'- q' M'- k' (M'- q')(m, '- k') (~,'-q')(M'- k')

JO0
J&2:
J~4,5:

y'=0;
P'+ q'= 0;

2@~+5~+n~ —2m, 'P —2M'g =0;
(52)

~ ~ ~

In Eq. (19), we showed how the BJL theorem con-
strains a~ P~, y~. Upon evaluating Eq. (52) in the
BJL limit and comparing to Eq. (16), we find

Clearly the results of Eq. (19) are not insensitive
to modifications in our dynamical model. It fol-
lows that the J =4 cutoff value obtained from the
calculation performed in Sec. II depends on the
pecific model employed there. Hence, the sig-

nificance of this result requires a certain amount
of interpretation. We feel that Eq. (10), in which
the BJL constraint upon the model-independent
amplitude is exhibited, clearly shows that the



1496 E. GOLOWICH AND B. R. HOLSTEIN

amplitude for pion excitation to a high-spin meson
must obey stringent conditions. In any reason-
able model, this must lead to a suppression in
producing the highest-spin mesons. The ques-
tion is: For which value of J does this sup-
pression start to become really effective'P Our
opinion is that, despite its apparent simplicity,
the hard-pion model studied here has enough truth
in it to give a reasonably correct estimate for the
cutoff in spin. It is fortunate that this conclusion
need not be taken on faith. There does exist a
meaningful testing ground in the form of local
current-algebra sum rules.

The connection between sum rules" and the cal-
culation of pion transition amplitudes lies in our
ability to evaluate contributions from the single-
particle intermediate states. Due to the nature of
the model, we analyzed first the sum rules at and
near k'=0. In the cases studied, the sum rules
were not inconsistent with saturation by the states
which our model allowed even though there was no

reason to expect, solely on the basis of our hard-
pion model, that multiparticle contributions could
be ignored for k' = 0. This perhaps fortuitous
event implied that the J= 4 cutoff provided a rea-
sonable, if approximate, indicator of when pion
excitation becomes suppressed. This result is
interesting because, although saturation by single-
particle states has been a popular method in the
evaluation of sum rules and spectral functions,
there is generally no firm criterion for selecting
the set of states to be included. We have men-
tioned in Sec. IV why our model is not appropriate
for studying sum rules with fixed, but large, val-
ues of momentum transfer,

Finally, we want to transmit the hope that our
conclusions about pion excitation might be sub-
stantiated in alternative theoretical approaches.
Although for calculational reasons we have con-
sidered only pion targets in this paper, we con-
jecture that any hadronic target would behave
analogously. That is, it is a property of hadronic
matter that excitation with local currents at small
values of momentum transfer leads predominantly
to transitions to a limited number of states nearby
in mass and spin. By associating a p meson with
the appropriate vector current, it is not hard to
see that we could reproduce the qualitative results
discussed here for the case of a p target. However,
in general, the relation between an arbitrary had-
ron and a quantum field is obscure, so the means
by which our conjecture might be proved or dis-
proved is not evident. Perhaps light-cone tech-
niques can lead to further insights, although in
one method wherein both external particles in a
form factor are kept on the mass shell, "much
information is lost due to the presence of unknown

equal-time commutation relations.
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APPENDIX A

W'e discussed in Sec. III the evaluation of various
of our parameters for J=1,2, 3 by means of addi-
tional dynamical assumptions and use of experi-
mental data. In this appendix, we show how to
evaluate the J=0 parameters by employing Eq.
(21a) in a simple model. As in Sec. IV, let us con-
jecture" that the & meson with m, =700 Me7 and
I'(elm) =300 MeV may be used to characterize the

J= & =0 vm interaction for moderate energies. We
assume that the matrix element of the 0 operator
between pion states, 5,~ T(t) = ( w, (q) i a(0)

~
rr, (p)),

can be expressed off the mass shell in terms of
the effective-range representation:

A+B(q'+p') +Ct
'q ip 1t . 2 (Al)

where A, B, g are constants. Soft-pion theorems
and the (3, 3)+(3, 3) model of chiral symmetry
breaking imply the constraints

q'=p'= t =0: A =m, '(m„' -X), (A2)

X=~, d'x(0iT(o(x)o(0)) ~0),

T(0)
mar

Defining

(~(k) Ic(0)10&=m, 'F.g, ,

(A5)

(A6)

we can use Eg. (21a) to obtain the additional con-
straint

q'=0, p'=1=m, ':
A. +m, '(B+C) =m, '(m, ' -m, ')g, '.

Equations (A2)-(A7) allow us to solve for &,
and X in terms of g„m „and m, . In particular,
we find that I is forced to have its pole dominance
value:

m ~

X=
m 2 (A8)

q'=p'=m, ', t=0: A+2m, 'B=m, 'm, 'Y, (A3)

q2=0) p'=t=m„':

A+m, '(B+C) =m„'(m, ' —m, '), (A4)

where
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We can get a relation between g, and P from e
—mm data by using the equality

q'=p'= m ' t= m '
n~='g,' = A+2m, 'B+ m, 'C, (A9)

where n~ ' is given by Eq. (29). Finally, we ob-
tain for the case 7 =1

The matrix element in momentum space corre-
sponding to this Lagrangian is

M„.(a) =V'(P, ~)~ *(a,~ )(G,g,.a, +G, u„I,

where from this point on, we work in the rest
frame (p=0) of the parent particle. Alternatively
there are helicity coupling constants defined by

RF, 32wl'(ewe) '" 4m, '
)

'"
1—

m, 2m, m

= 1.06.

APPENDIX B

(A10)

(g) d(z) (g)g(&') (B3)

which are constrained by parity to obey g ~

=g~ . Hence there are just two independent
helicity couplings, g~' and g~". By comparing
(B2) and (B3) for particular values of initial and
final helicity, we find

In this appendix, we discuss relations between
various sets of coupling constants pertaining to
the reaction f(p, A)- A, (k, X')m(q). First, there
are couplings G» G~ defined by the Lagrangian

~2g (&)

G~=

(B4)

g,„,(x) =G, f""(x)X,„(x) S„v(x).

+G~f "'(x)A, (x) ~ s„s,s „w(x) . (B1)
Finally, by using the relation between helicity
eigenstates and states in the LS basis (S = 1 here),

2I +1
IX=2, X;LI)= Q C(L12;O, X')C(101;X', 0)

~

J'=2, A.;X'),

we can relate coupling constants g~, g&, which rep-
resent coupling to final states with a specific value
of orbital angular momentum, to the helicity cou-
plings g~'~, g~'~. Then from Eq. (B4), we deduce

3
Gp =

~
(T')"'((y'"gy+rfl,

1
G WSa'm,

(B6)
3m„+ 2~&

v 3 g, (m„—(u, ) — g,v2

Equation (B6) correctly exhibits a point about which

there is sometimes confusion in the literature—
that the Lorentz couplings G~, G~ are not identical
to the orbital couplings g~, g&.

The dynamical assumption made in Sec. III (see
also Ref. 26) is that ~gz/g~~ «1. From Eq. (B6)
we conclude that this implies G~ may be neglected
relative to G~ in the amplitudes of Sec. III (one
must be careful in deducing this because Gp and

G~ are of different dimension). As a brief indica-
tion of the validity of this statement, note that if
G~=0, we have g~/g~= —v 6 /600«1.
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Massive-lepton pair production in high-energy hadron collisions is studied in the ABFST
(Amati-Bertocchi-Fubini-Stanghellini-Tonin) multiperipheral model. The cross section for
point electromagnetic couplings is given by do/dQ = Q 4f {s/Q ) when Q &)M~, where v's is
the center-of-mass energy of the colliding protons, Q the mass of the lepton pair, and M
the nucleon mass. The scaling function f is expressed in terms of mN and NA' off-shell
forward absorptive amplitudes. %%en s»Q, the function f behaves like aln(s/Q ) + b,
Pomeron dominance being assumed. Gauge invariance of the model is discussed.

I. INTRODUCTION

The interesting SLAC-MIT experiments on deep-
inelastic electron scattering probe the electro-
magnetic structure of hadrons when the current
carries a spacelike momentum. The BNL-
Columbia experiment extends the probe to time-
like momentum by studying the reaction

If unpolarized protons of momenta P~ and P„en-
ergies E, and E„and mass M collide to produce a
muon pair of momentum q in addition to anything
else (Fig. l), then, summing over muon polariza-
tions and momentum variables except q'=—Q', the
cross section neglecting muon mass is given by

dg 4o.
dqa 3 3 [ ( 4M2)j 1/2 RQ 7 )

proton+ proton —p, '+ p, + anything. where s =(p~+p, )' and W(Q; s) =W&" (Q', s), with


