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We discuss the problem of limiting behavior (scaling) in the inclusive scattering from composite
systems when the inclusive scattering of their constituents is known to scale. In particular, the
composite system we study is the nucleus, and the scattering formalism is a multiparticle form of the
Glauber theory. The effects we study come from inelastic collisions of independent products of earlier
inelastic collisions within a given nucleus, i.e., intranuclear cascading. At sufficiently high energies the
distribution from nuclear scattering scales; the scaling function is very closely related to the scaling
function for scattering from nucleons. The approach to scaling depends logarithmically on s but also
on scattering properties of the constituent nucleons and on properties of the composite nucleus. When

these factors are combined we are presented with a rather rich picture of the approach to the scaling
limit. We present numerical calculations to illuminate this picture, and discuss possible experimental
tests which can be performed with nuclear targets. We speculate on the application of our ideas to
hadronic systems themselves and on the features of hadronic systems they may explain.

I. INTRODUCTION

Limiting behavior, ' or Feynman scaling, ' in had-
ron-hadron collisions states that at high energies
cross sections for the inclusive process a+5- c
+X, where X is not detected, become functions on-
ly of the scaling variable x = 2P

~~
'/v s, where P ~~

'
is the longitudinal momentum of c in the center-
of-mass system, and the transverse momentum
P~. Parton models' (or more generally the idea
that the nucleon is composite) similarly, and not
altogether independently, enjoy wide currency.
Implicit in the idea of compositeness, however, is
the fact that in collisions between composite sys-
tems multiple scattering between the constituents
can and must occur. The problem of tying together
limiting behavior with the necessary multiple scat-
tering in hadron-hadron collisions has not been
well understood.

In this paper, which is a detailed account of a
summary of this work published elsewhere, 4 we
examine the following problem: Suppose, in the
inclusive scattering of composite systems, the
scattering between the constituents of the systems
is known to scale. What will be the scaling behav-
ior, if any, of the inclusive scattering of the com-
posite objects'P In this paper we shall concentrate
for concreteness on pionic scattering on nuclei,

m+A- m+X,

where A is a nucleus composed of A constituent
nucleons. We want to emphasize, however, that

formulas and qualitative results which we find can
be applied to the scattering of any composite sys-
tem which has the characteristic that the binding
energy is small compared to the scattering energy.
Therefore we have in mind that our results and
ideas may be ultimately applicable to hadronic
systems themselves. The constituents of these
systems might be regarded as "partons"; in fact,
we often use the word parton to refer to the con-
stituent component of whatever composite system
we are considering. We reserve further discus-
sion and speculation on hadronic processes until
the conclusion of this paper.

The main dynamical effect which makes the nu-
clear cross section different from the nucleon
cross section (aside from simply its greater mass
and area) is the cascading of inelastic reactions
which multiple scattering allows. This cascading,
in which products of an initial inelastic collision
undergo further inelastic collisions, can only take
place if these products exist independently and in-
coherently within the nucleus. In particular, the
detected species must be produced incoherently.
This means that cascading cannot take place if the
final-state particles are the decay products of a
"coherent" hadronic excitation ("fireball" ) whose
lifetime is long compared to a nucleon radius. One
type of mechanism which might allow' these final-
state particles to come into immediate independent
existence is a multiperipheral' type of reaction.
We therefore assume throughout this paper that an
incoherent type of production mechanism is domi-



PAUL M. FISHBANE AND J. S. T RE FIL

nant above some fixed energy. If some type of co-
herent production mechanism (such as diffractive
excitation') were dominant, then our qualitative re-
sults would be quite different. Indeed nuclear-
scattering distributions can help us to distinguish
these two types of reactions, as we have discussed
previously. "

We will show that in the case of reaction (I) the
nuclear cross section will scale when the cross
section for m+N- ~+X scales. Furthermore, the
scaling limit is a mell-defined function of the par-
ton-parton limiting cross section, and takes a
form which is identical to the form one would ex-
pect if the partons scattered independently and in-
coherently. In this way our picture of limiting be-
havior is recursive, the scattering of composite
systems approaching a scaling limit if the scatter-
ing of their constituents scales. Moreover, the
approach to the scaling limit can be calculated,
and depends on nuclear parameters and ~-N scat-
tering parameters as well as the energy; the main
energy dependence is logarithmic. The pattern of
this approach to scaling behavior is a complex
one, as we shall see below.

The thrust of our approach is to use the nucleus
as a "theoretical laboratory" to study the scaling
behavior of weakly bound composite systems, for
in this case we know the elementary interactions
from other experiments and we know the nature
and distribution of the constituent nucleons (a ben-
efit we would not enjoy in treating a hadron com-
posed of partons). In addition, we know that the
Qlauber theory' gives a good description of the
multiple scattering of high-energy particles in nu-
clei at high energies. We do not believe that the
results we find can depend on the particular mul-
tiple-scattering formalism we employ.

The plan of this paper is as follows: In Sec. II
we present a review of the calculation of cascading
in inelastic intranuclear events, using a multipar-
ticle version" of the Glauber theory. This re-
view includes discussion of the computation of all
the different paths along which a cascade can de-
velop. The problem divides naturally into two
parts, given the distribution for m+N- 7t +X: first,
the problem of the distribution of the particles
which are products of secondary inelastic colli-
sions; and second, the probability of occurrence
of these secondary collisions ("nuclear weight
factors"). Both the secondary distributions and
the nuclear weight factors depend on the multiplic-
ity of the initial inelastic collision, i.e., on lns.
In Sec. III, we separately examine the high-energy
behavior of the distributions as well as the weight
factors. This section is the heart of the paper and
contains the discussion of the approach to the scal-
ing limit. Section IV contains some numerical

computations which are designed to confirm and
elucidate the results of the previous section. Fi-
nally, Sec. V, which is divided into two parts, is
concerned with tests and applications of our re-
sults to nuclear-scattering experiments, and with
speculative remarks on the relevance of these re-
sults to improvement of our understanding of had-
ronic phenomena.

II. REVIEW( OF THE INTRANUCLEAR
CASCADE THEORY

A. Diagrams and Distributions

In a previous work, ' the theory of the intranucle-
ar cascade was worked out in some detail. In this
section, we present a review of that theory, em-
phasizing the points which we will need in our dis-
cussion of scaling later in the paper.

We assume that particles belonging to the final
state of an hadronic reaction which can participate
in an intranuclear cascade process are not the end
products of an hadronic excitation which lives
longer than the radius of the nucleon (such as a
"fireball"'). In other words, particles which par-
ticipate in such a cascade must be independently
and incoherently created within the nucleus. To
this extent we shall be referring throughout this
paper to incoherent production processes (IPP)
rather than coherent production processes (CPP)
as the primary collision mechanism. (We have
previously" discussed how nuclear-scattering ex-
periments can help distinguish between these two
primary collision mechanisms. Multiple scatter-
ing when CPP dominate has its own distinctive
signature. ")

The reaction w + N- ~+X can cascade in many
possible ways in the nucleus to contribute to the
process m+ A - m+X. The diagram in Fig. 1 is
one such way. In this diagram, the incident parti-
cle penetrates into the nucleus to the point z„
where an inelastic collision takes place. Let Q

represent the number of particles created in this
collision. Then each of these Q particle's will pro-
ceed through the nucleus, and some of them will
undergo inelastic collisions themselves (for exam-
ple, at z„z„and z, in Fig. I), creating still
more particles. Between inelastic collisions,
each particle can undergo" any number of elastic
scatterings from nucleons. It is clear that, if we
wish to calculate the rapidity distribution of out-
coming particles, we must perform a properly
weighted sum over the distribution for any diagram
which leads to particles of the type we wish to
measure coming out of the nucleus. The problem
of calculation, then, falls naturally into three
pieces: (i) computing the rapidity distribution for
any given diagram, (ii) counting the diagrams,
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FIG. 1. Example of a possible intranuclear cascade.
An initial inelastic collision takes place at z~, with
subsequent inelastic collisions at ~2, ~3, and ~4. Before,
after, and in between inelastic collisions the particles
undergo any number of elastic collisions.

and (iii) determining the appropriate weight for
each diagram. In.principle the "nuclear physics, "
i.e., how we perform the multiple-scattering cal-
culation in a given nucleus, affects both (i) and
(iii). However, when elastic and total cross sec-
tions are taken constant, category (i) becomes a
property only of the topology of the given diagram,
so that the nuclear effects appear only in (iii).

Let the rapidity distribution of final pions from
the reaction &+N- 7t+X be given by

(2 I)

(2.3)

for the distribution of a second-generation pion.
Note that we have included explicit &f& dependence
to show thath2 will not scale in general; this is
true even though h, is taken to scale at low ener-
gies. The mean number of pions produced in a
second-generation collision is then

r "max
h 2(Q9 r~«P r2)dr2 ~

0
(2 4)

Similarly the distribution for an nth-generation
pion will be

h„(@;r,„,r„)

f h, (r,„,r, )h, (r„r,) ~ ~ h, (r„„r„)dr,~ ~ ~ dr„,
n-1 n-2

J'h„, (Q; r,„,r„,)h, (r„„r„)dr„,
n-].

(2 5)

with a corresponding mean multiplicity Q„given by

generation pion originating in a given inelastic col-
lision would have a rapidity distribution given by
h, (r„r,), where r, is the rapidity of the first-gen-
eration pion causing this inelastic collision. To
get the actual distribution of second-generation
pions, we would have to multiply this by the prob-
ability of producing a pion of rapidity x, in the
first generation, and then add up over all r, . Thus
we have

f' "max
h, (r~«, r, )h, (r» r, )dr,

dr h, (r,„,r).
Jp

(2.2)

It is not necessary at this point to assume that our
primary distribution scales; we shall make this
explicit assumption when it becomes necessary.

Let us label the "generation" of a pion by the
number of inelastic collisions which separate it
from the incoming projectile. Thus, in Fig. 1,
pions proceeding from z, are first-generation,
those from z, or z, are second-generation, etc.

Consider now the second generation. A second-

where x is the maximum rapidity which the mea-
sured outcoming pion can have consistent with en-
ergy conservation, and x is the rapidity which it
actually does have. In the case where both the in-
coming and outgoing particles are pions, r,„ is
the rapidity of the incident particle as well. (In
what follows, we will consider this case only. ) As
our notation implies, we have normalized this dis-
tribution in the usual manner, so that the mean
number of produced pions is

dr h „(y;r,„,r)
0

(2.6)

%'ith these distributions and the assumption of
energy-independent cross sections (so that elastic
scattering in the nucleus does not affect the rapid-
ity distribution of final pions for the given dia-
gram), we can then in principle write the rapidity
distribution for any diagram simply by counting the
number of pions coming from a given generation.
This count of course depends on more than the av-
erage number of pions produced in an inelastic
collision. In principle there are two types of ef-
fects we must include if we wish to compute the
rapidity distribution for any diagram. (i) There
is dispersion in the number of particles produced
in each inelastic collision. (For a fixed energy,
the number of pions produced in the initial colli-
sion obviously affects the probability of a second
inelastic collision. ) (ii) Each particle in the
(n —1)th generation will have a different energy
and therefore on energy grounds alone will give
rise to different numbers of produced pions should
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it happen to initiate the nth generation.
At this point we make two (related) simplifying

assumptions. We assume that the number of pions
produced in any inelastic collision is exactly the
mean for that class of collisions. (At large Q this
is expected to be satisfactory. ) We similarly as-
sume that every pion in the (n —1)th generation ini-
tiating an nth-generation event produces exactly Q„
pions. For example, the initial collision produces
exactly Q pions, every second-generation collision
produces Q, pions, etc. This type of assumption
is standard when one wishes to deal only with av-
erage properties of a cascade, and, in particular,
is adequate for the single-particle distribution we
are attempting to compute.

If we make these assumptions, it becomes sim-
ple to compute the rapidity distribution for any
diagram. For example, the net distribution from
the diagram in Fig. 1 is just

(
= ~ 'h, +'~ 'h, + ~~I, (2..7)

dr Fig. !
To complete the discussion of diagrams, we now

note that under our averaging and constant cross-
section assumptions, there are many different dia-
grams which would give exactly this distribution.
For example, if the second generation at z, were
caused by the second pion from the top, rather
than the first, the result of Eq. (2.7) would be ex-
actly the same. We will label all graphs which

give identical (dn/dr) as a "sequence, " and the dis-
tribution summed over all of the graphs in a se-
quence as (dn/dr), . Clearly, (dn/dr), will just be
(dn/dr) times the number of diagrams in a, given

sequence. This is an easy number to calculate for
each sequence. For example, in Fig. 1, there are
(,) ways of picking the two pions which will cause
second-generation events, and (', 2) ways of pick-
ing the pion which will cause a third generation.
Thus

Fig. 1 2 1 dg Fig. 1

The final distribution is the sum of the distribu-
tions for all possible sequences, weighted by nu-

clear effects. It is convenient to determine se-
quences by first fixing N, the number of inelastic
collisions. For N=1, there is only the one se-
quence. For N =2, there is also only one sequence,
with distribution

(2.9)

and so forth.

B. Nuclear Weight Factors

The probability of any particular sequence of
course depends on the properties of the nucleus.
We use the Glauber theory, ' as developed for a
sequential series of inelastic collisions, ' to de-
scribe the effects of the nucleus. The contribution
to the doubly differential nuclear cross section for
a given sequence n involving N inelastic collisions
is just'

(
=o r — e'~'~" b ~d2f! d2f! g (s z.)d2s, dz,p s'~ z' ~i zi

x g r. (b —s, )I',*(6' —s,.) g ([I—I',(b-s, )][1—I',*,(b'-s, )])'
8, &z~

x g ( [ I —r, (5- s,)][I —r+, (b'- s,)])"& x
z, & ~~& z2

(2.10)

where A is the number of nucleons, 6 the trans-
verse momentum transfer to the nucleus, x the
rapidity of the single measured outcoming pion,
p(s;, z, ) the ground-state density of the ith nucleon
whose coordinate is r; = (s;, z;), and b and b' im-
pact parameters. Note that the rapidity-dependent
term (dn/dr)„ factors out of all integrations. The
transverse-momentum distributions of inelastic
collisions are contained, as we state more explic-
itly below, in the inelastic profil= .:unctions. We
have written Eq. (2.10) in the form of a cross sec-
tion; this can be converted to a number distribu-
tion by division by the total inelastic cross section

1

v;„, in the usual fashion. '

The profile functions l are related to pion-nu-
cleon scattering amplitudes by

where

and where c is either "in" or "el," depending on
whether we are discussing inelastic or elastic
scattering. In the former case Q =(o. a. /w)'!',
wh!le in the. latter Q„=(1/4~)or, where o. and or
are the inelastic and the total pion-nucleon cross
section, respectively, and a;„ is the width of the
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inclusive inelastic peak.
Equation (2.10) admits of a particularly simple

interpretation. The term

g l(1 —1")(1-1'*)j'
Z &Z)

describes the propagation of the incident particle
up to z„allowing it to scatter elastically any
number of times on nucleons to the left of z, . This
takes into account the "absorption" of the incoming
particle. " The term I'. (b —s, )1 *. (b' —s, ) repre-
sent the inelastic scattering at z, . The term

Zg&Z &g2

represents the propagation of n, particles from zy

to z, by elastic scattering. In Fig. 1, for example,
n, would be 6. The rest of the terms in Eq. (2.10)
can be similarly interpreted.

Equation (2.10) represents the basic working
equation for describing the nuclear physics, so we
will review here several features of the Glauber
theory' which are already incorporated into it: (i)
The final state of the nucleus has been summed
over by using closure, so that no restriction is
made on what happens to the nucleus after the col-
lision. (ii) When many pions are propagating
across the nucleus, each pion can scatter elasti-
cally only once off of any nucleon. Thus, while
each nucleon may serve as an elastic-scattering
target for any number of pions in succession, it
may not be struck twice by any given pion. (iii)
All scattering is on-shell. (iv) The nucleons on
which inelastic collisions occur are treated quite
differently from the nucleons off which elastic
scattering occurs. These N nucleons are allowed
to serve as targets for only one interaction. The
physical reasoning behind this assumption is that
in an inelastic reaction, the nucleon is unlikely to
retain its identity after the collision. Thus, a pion
arriving at the site of the nucleon in the wake of an
inelastic collision would find there the fragments
of the target nucleon, e.g. , pions, NN* pairs, oth-
er mesons, and, perhaps, a recoiling nucleon.
The interaction of the pion with this debris is ne-

glected, just as the interaction between pions cre-
ated in different inelastic collisions is neglected.
We regard this as neglecting the effect of final-
state interactions between products of different
inelastic collisions (although the final-state inter-
actions between particles created in the same col-
lision are presumably included in the form of the
primary distribution h, .)

Assumption (iv) has the effect of limiting the
number of possible inelastic scatterings to A. , the
nucleon number. While this is not of great impor-
tance for the discussion of cosmic-ray or acceler-
ator data, since we find adequate numerical con-
vergence for some value of N less than A. , it will
be crucial to our discussion of scaling in the next
section. For this reason, we regard the question
of whether this assumption can be relaxed to be of
the greatest interest. We also note however that if
the number of allowed inelastic reactions were
simply fixed at some value other than', then our
qualitative results would be unchanged.

The approximations (i), (ii), and (iii) discussed
above are inherent in the Glauber theory. In order
to carry out the integrals over the nuclear coordi-
nates easily, we found it necessary to make anoth-
er approximation, " which we call the "rim ap-
proximation. " In this approximation, all pions
which do not subsequently suffer inelastic colli-
sions are assumed to commence elastic scattering
at the plane z =0, rather than at z„z„.. . . As we
discussed previously, ' we do not expect this to be
a bad approximation since the inelastic collisions
will be taking place in both halves of the nucleus.
It must be emphasized, however, that no such ap-
proximation is made for the inelastic collisions,
so that all positions of z„ for example, are
summed over.

Let us take for the ground-state nucleon density
functions in a given nucleus:

s +z
p(p, z) =p, exp (—

We can then simplify the integral over 6 of Eq.
(2.10) by the successive substitutions B = —,'(b+b')
and y =exp(-B'/R'). We find

—(A-N) /2

X d NR / ain+ R )-l ~ k el kR /(kR2+2aei)
2a„+kg'

2' -(A-N) /2
k 2 e& kR /(kR +2aei)

2~„+&&2

dn0',.n ~ a
Ct

(2.11)

(2.12)
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In this equation y = —or/(4ma, |), and n is the total
number of pions which emerge from the nucleus.
Under our assumption of no dispersion in the num-
ber distribution for inelastic collisions, n is a
straightforward function of g and the particular
sequence. The sums over k represent the propa-
gation of particles through the nucleus by elastic
scattering.

We see that the nuclear effects are completely
included in the term 0~, which we must now eval-
uate if we are to proceed farther. Before we eval-
uate these factors, let us complete the formal de-
velopment. The cross section is found by summing
Eq. (2.12) over sequences o.:

where we have set (2.15)

(2.16)

application in mind, where a,|=R' (say, in parton-
type models of hadron-hadron scattering), then it
is straightforward to include higher-order terms.

In this case, we can write

2n k 2a e~ kz2i('2, &+k+2

k 2a„+kR'
2

= 1+,' ys, —,"
y(l +lny)S, + ~ ~ ~,R2 1 R2

dn 0 N

The sums S, which involve alternating series of
large terms, are difficult to evaluate as they stand,
but in the Appendix they are shown to have a simple
value for large n, which is just

(2.13) (2.17)

Since (dn/d~)„ is already in the form of a number
distribution, we find the number distribution for
the process m + A - 7t +X to be

Although the series therefore formally diverges in
the limit n- ~, the ratio of successive terms only
grow as inn-lnlns, and the first term S, numeri-
cally dominates when

dn Q~(dn/dy)~ a(P, N)o „"

dr „P„a(P,N)o „"
(2.14) 20 e]

inn «1.R2 (2.18)

This distribution is of course normalized so that,
when dn/dr

~ „is integrated over r, it yields the
average number of pions produced in the nuclear
collision.

This inequality will be satisfied for typical values
of a,|and R' provided that n«10', which is cer-
tainly true in any case of physical interest. Thus
we have

C. Evaluation of the Nuclear Weight Factors
for Large Energies 2a el

8 =1 — y inn.R2 (2.19)
Although Eq. (2.11) is already in a form which is

suitable for computer evaluation (see Sec. IV), a
great deal of insight can be gained by analytic
evaluation of these nuclear processes at high en-
ergies. In this section, we shall concern our-
selves with the evaluation of the nuclear weight
factors v"„, and will discuss the other factors in
Eq. (2.11) in a later section.

The chief difficulty in writing a simple expres-
sion for the nuclear weights are the sums which
appear raised to the (A —N)/2 power in Eq. (2.11).
We shall evaluate these sums by expanding in the
parameter a„ /R'. We shall assume that this pa-
rameter is small (indeed, it is less than 0.1 for
typical nuclei), so that only a few terms in the ex-
pansion need be kept.

The physical meaning of this approximation in
the case of a nucleus is quite simple. Since a,&,

which determines the width of the pion-nucleon dif-
fraction peak, is roughly the size of the proton,
a„/R' is simply the ratio of the size of the nucleon
to the size of the nucleus. If one has some other

By Eq. (2.18) we may make the approximation

(1 g)Q ~ e-&Q

so that

S~" ")12=exp -y —', (A —N)Inn (2.20)

2 2Q~k e 2ael /(kR +2a e1)
k 2a,) +kR

(A —N)ae| ~ 2 y= exp
k=1

(A-N) /z

(2.21)

The other summation 8' raised to the (A —N)/2
power in Eq. (2.11) can be dealt with in a similar
way. The summation is connected formally with
the propagation of the incident particle in the nu-
cleus, and hence does not depend on n. We can
still keep lowest-order terms in a „/R', however,
to write

(8 g )(A N)/2-
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Since y is a number less than I, and inn is pre-
sumably large compared to 1 at high energies [al-
though not so large that Eq. (2.16) is violated], we
can wl lte

(gs 1)(ll- //) /2 S(A-av)/2 (2.22)

Since we expect that the target areas which de-
termine the width of the diffraction peak in the in-
clusive reaction (a. ) and in elastic scattering (a,~)
will both be much less than R', it is consistent
with the above approximations to write

N R2t/(a .„+R2) N

Putting these results together, we have

(2.23)

where we have written

o. =—(A —N) —' inn.+2 (2.24)

(2.25)

where y(N, o. ) is the incomplete y function.
We shall consider two separate limits of this

function, depending on the value of the parameter
n. This parameter will play an important role in
our scaling argument, and will ultimately deter-
mine the approach to scaling behavior of each nu-
cleus. We have

(2.26)

for cv large, and

for n small.

III. THE SCALING LIMIT

We have now discussed the weights of a given
sequence, the counting of sequences, and the ra-
pidity (or x) distribution h; (Q;r, r) of ith-gener-
ation pions, and how the different factors are com-
bined to give the rapidity distribution for inclusive
scattering on a nucleus. We have seen that all
these factors depend on the incoming energy
through the primary collision multiplicity P. The
question of what happens at very large energies is
then most simply answered by investigating sepa-
rately the behavior of the@& and their coefficients
(these coefficients having been determined by the
nuclear weights and the counting factors). We
shall see that at large energy both the coefficients
and the h; approach scaling behavior, so that the

nuclear scattering process scales. The h; ap-
proach scaling limits when P»1. The nuclear
weight coefficients approach their limits in a much
more complicated way, and for typical problems
they require larger energies to reach their limit
than the energies required for the A'; to scale.

The plan of this section, then, is as follows: In
Sec. IIIA we discuss the approach to the scaling
limits of the distributions h &(Q;r, r) In.Sec.
III B we discuss the behavior of the coefficients by
example. Finally, in Sec. IIIC, we put these re-
sults together to find the scaling behavior of the
nuclear distribution.

=ar +finite terms. (3.2)

Next consider the numerator,

We shall study the following three regions for r.
(a) r &r, (target fragmentation). Break the inte-

gral up into two terms:

A. Limiting Behavior of the h;

The secondary collision distributions h, (P;r, r)
defined in Eg. (2.5) do not scale for arbitrary r,„
even though the primary distribution k; may do so.
An illustration of this nonscaling behavior can be
seen explicitly in the example worked out at the
end of this section, where h „(Q;r, ~) depends on
the ratio r x//, „rather than on the variable x. Nev-
ertheless, in the limit of large r,„, we shall show
that the 0; approach a scaling limit. In particular,
in the projectile fragmentation region all of the h;
except h, go to zero, while in the target fragmen-
tation region all of the h, become equal to h, .

In order to show this, we separate the primary
distribution/z, (r, x) into fragmentation and pion-
ization regions, marked off arbitrarily well by a
cutoff rapidity r, :
h, (r „,~) = f(r)8(r)8(r, —r)+a8(r —r, )8(r r, —r—)

+f (r —~)8(r —r +r,)8(r,„-y),
(3.1)

for r &2rc. The three terms represent respec-
tively the target fragmentation, pionization, and
projectile fragmentation regions. If y-,„&2r, ,
then we could write an analogous two-term form;
we shall not concern ourselves with this case.

Consider now Eg. (2.3) defining h, (Q; r,„,r).
The denominator takes the form

"max
D -=h, (r, ~)dr

0

/ rc ( rmax rc rmax

f(r )dr+a ~ de+ J' f (r~~ r)dr-

oop

rc rmax -rc
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ry r
Ã= Cr'[f(r')9(r, -r')+ag(r' —r, )]f (r' —r)

r
r max

+ Cr'[f (r')0(r, —r') +a8(r, r—')8( r—'+r,„-r,) +f (r „—r')8(r' —r,„+r,)]
&& [ f(r)+ f(r' —r)6(r-r'+r, )].

To proceed further it is convenient to study the
two cases 2~ & r, and 2x & x, - ~ separately. In
each ease it is straightforward to show that the re-
gion where one f (r') term overlaps the pionization
term of the other factor is dominant, giving

X= f(r)ar +finite terms.

Combining this with our result for D, Ecl. (3.2),

If we confine our attention to the case x' —,'e"m»1
(i.e., look at nonwee. x only), then

1 1 , „ fx/1 ——= ———ln (x+ ~x~)-,'e" »+ ' -e " '2).
2 x'

(3 3)

For x negative (target-fragmentation region),
x+ (x~=0, so that

tt, (y; r.,„,r) =f (r)+o(y ')- (3.3)

in the target fragmentation region. It is straight-
forward to generalize this result in higher orders:

lnfx(
1 ——=1+ —— (3.9)

t, (y;r.,.„,r) =f(r)+O(y-'), (3.4)

i.e., a result which scales and is just the same as
A ) rn this region.

(b) r &r,„—r, (projectile fragmentationj . In this
case the integration range of N is of width ~x, .
This finite range gives a finite result, which, com-
bined with the growing result for D, implies

h, (y; r.,„,r) =O(y-')

(3.10)

1
1 ——= ——lnx

y'
(3.9')

so

h„(r, r) ~ 1+O
r ~ oo y'

On the other hand, for x&0 (projectile-fragmen-
tation region),

in the projectile-fragmentation region. This re-
sult similarly generalizes for all i,

h„(r, r) ~ 0+O((lnx/r )" '). (3.10')

r~, (y; r„,r) =o{y.-'). (3 4') If we look at the pionization region, x2-,'-e"m«1,
we find

h, (r, r) =
m

Some simple integrations then yield

It „=[ 1 —(r/r )]" '.

(3.5)

(3.6)

To show scaling in general, it is necessary to
show that the h; become functions of the variable
x only. In general,

r =-,'r„, +ln[x-', e™~2+(x'—,'e" +1)'"],

1 ——= ———ln[x —,e ~~2+(x —,e ~+I) ~ ].y 1 1 1 21 r i/2

~m 2 ~m

(c) x, &x&x —x, (Pionizution). The integration
range of N is now a, finite fraction P of r, so that
we get contributions from overlaps of both f and f
with pionization regions. Thus h; tends to a finite
limit which depends on the fractional length P as
well as the details of both fragmentation regions
of k, .

In order to illustrate these general results con-
sider an elementary distribution of the form

1
2
—Xe mt2 (3.9")

h„(r„,r) (-', )" '+0(-,'(n —l)xe™2/r).
r -+ oo

ln

(3.10")

8. Limiting Behavior of the Nuclear Coefficients

The general form of Cn/Cr for a reaction on a
nucleus was presented in Eq. (2.14). The terms of

From this simple example, then, we confirm
that (i) the secondary distributions'; approach a
definite limit at large energies; (ii) in the frag-
mentation regions, limiting forms of the h. ; can be
expressed simply in terms of h „ the elementary
distribution, while in the pionization region, the
limiting form depends onh, in a more complicated
way; and, finally, (iii) the approach to scaling is
different in all three regions, and depends explic-
itly on the value of x, although the x dependence is
only logarithmic.
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P»A. (3.11)

In this regime, which corresponds to a different
energy for each nucleus, the coefficients of the A. ;
in the expression for (dn/Ch)„[i. e., the distribu-
tion for a given graph, without the counting factor
a(Q, N)] become non-negative integers c,". indepen-
dent of Q,

(3.12)

The c,"- have the following two special properties:

that equation take on a particularly simple form if
we assume that

where b„ is a positive number less than one which
depends on the particular sequence n. For exam-
ple, the counting factor for the sequence in Fig. 1

[see Eq. (2.8)] is just

= fi pig. i Q (3.17)

which for the simple distribution of Eq. (3.5) yields
1

&Fg. i =2

There are precisely 2 ' sequences to be con-
sidered for the terms with N inelastic collisions.
The 6 have the property that for just those terms
with N inelastic collisions

c; =N, (3.13) 2Ã-2

Q b„=o(1). (3.18)

ccrc

(3.14)

Equation (3.13) follows because when there are N
inelastic collisions and Q» N, then N distribution
functions Ii; must appear, while Eq. (3.14}follows
from the fact that there is but one primary colli-
sion.

As an example, in this limit Eq. (2.7) becomes

(3.15)

a(Q, N) (3.16)

In this example we only required that Q be large
compared to one. In a graph in which the ili first-
generation pions undergo A. inelastic. collisions we
would require P»A to approximate (Q —A)//=1.

In addition, the graph counting factor a(Q, N),
which is in general a rather complicated expres-
sion, becomes

For example, for Fig. 1,

n=Q —2+2/, —I+/,
= 0+242+4p i (3.20)

which for the distribution of Eq. (3.5) gives a
2 1 7+ ~ +2 3 3'

With the approximations of Eqs. (3.12) and (3.19),
which follow from the assumption that Q is large
compared to A, the expression in Eq. (2.14) be-
comes

Finally, we note that the nuclear factor depends
on n, the number of particles emerging from the
nucleus, through the incomplete y function in Eq.
(2.25). Since the parameter ci depends on n only
logarithmically, and since for any sequence n

=a/, where [with the approximation of Eq. (3.11}]
a «Q, we can write

(3.19)

dn "mm

msx »2 ~m~
v~h via~(h +h )+ +g 'vi Q 5, P c,'h;)

at=1 i =I

2 +max -2

a +(f&v +' ' '+ijP " a Q 5
C=1

(3.21)

In this equation, we have carried out the sum over inelastic scatterings to N,„. The question of how

many inelastic scatterings are to be allowed in a nucleus is, as we have pointed in Sec. II, crucial to our
derivation. In all that follows, we shall use the arguments given above to set

Nmdx =A . (3.22)

However, it must be stressed that all of the significant features of our results would be the same if we

chose some other Nm„provided that N depended only on the nucleus and not on the energy.
It is also useful to rearrange the terms in the above equation and define new quantities 8; by writing

(3.23)
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Nmax

A
(3.24)

2Nmax-2

1+yS + ~ ~ ~ +y~m.. iS g 5
a=1

It may be worthwhile to pause at this point to consider the case Q & A, which we have explicitly excluded
in the above derivation. This case presents numerical difficulties in calculating the approach to scaling.
(It is clear that in the extreme high-energy limit, when Q -~, the results which we derive would not be
affected. ) Simplifying approximations such as Eq. (3.19}could not be made in this case. To see this, con-
sider a sequence in which every first-generation pion fathered a second generation, so that n~ P, and
Inno in/. The number of such sequences (where we require Q»A rather than Q»1) is small compared
to the total number of sequences which must be summed over, so we expect the results of numerical cal-
culations for arbitrary P to agree approximately with the results calculated in the limit &f»)) A. We have
found this to be the case by explicit numerical calculation.

The result for (dn/dr) i"„'"in Eq. (3.21) is still rather complex, and the investigating of all the regions
of experimental and theoretical interest contained therein will occupy the remainder of this section. Let
us begin by dividing the numerator and denominator of Eq. (3.21) by v, in order to set a dimensionless
number from which to measure scaling behavior. We find

2 maxN -2
Nmax

h, +Qs2(h, +82)+ ~ ~ ~ +y max-'s~ Q b„Q ci"h;
%=1 i -l

where

N

(3.29)

A. N 7tR n y1, n
(3.25) where we have used the elastic-scattering ampli-

tude of Eq. (2.12) together with the identity

It is obvious that the behavior of the distribution
will be governed by the parameter

X„—P 'S~, (3.26)

1 (A —1)! &f&a;„'
N (A —N)! N! wR'

(3.27b)

Since these two forms of XN appear frequently in
the following, it is convenient to define two new
parameters,

In/
0ln

wa,
&

(3.28)

which depends explicitly on the energy through the
power of Q, and implicitly on the P dependence of
o. (recall that in n we allow n to be replaced by Q).

As we remarked in Sec. II, the incomplete y
function has two interesting limits, n «1 and
n» 1, and interpolates smoothly between them.
In discussing high-energy behavior we shall con-
cern ourselves primarily with these limiting forms
of the y function, leaving the intermediate range of
a to the numerical calculations.

In these two eases, then, recalling the definition
of n, Eq. (2.24},

1 (A -1)! P 1 o;„
N (A —N)! In/ A —N ma, i

(3.27a}

to eliminate a,i from the definition of & in favor of
elementary particle cross sections.

Since we have required from the beginning that
n/(A —N) = (a,l /R') In/ be small compared to unity
[Eq. (2.18)], it is clear that terms in the distribu-
tion with A —N small will correspond to n «1. If
A -N is large, then n may be any size according
to the size of (A —N)(a, i/R')In/. Setting N .,=A,
we can study several interesting cases using this
type of distinction.

We begin by dividing our systems into "large"
or "small, " depending on whether A(a, i/R') in/ is
much greater than or much less than unity. Clear-
ly, this definition is somewhat energy-dependent,
but we need not concern ourselves with borderline
cases when considering limiting behavior.

For large systems, it is clear that n»1 for se-
quences with small N, and Q. «1 for large N. For
terms corresponding to intermediate N, we would
simply have to use the incomplete y function rather
than the limiting forms for X„given in Eq. (3.27).
The fact that both e»1 and n «1 can occur in dif-
ferent terms in the same expression is a major
complication in considering large systems. For
small systems, however, n «1 for all values of
N up to N,„=A.

Once this basic division is made, we can subdi-
vide further according to different energy regimes
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or differentiate between different types of compos-
ite systems. In our discussion, we shall concen-
trate on realistic particle-nucleus collisions, but
the same formalism could be used to study scaling
in nonrealistic systems which might have theoret-
ical interest, or in hadronic collisions, where the
nucleons would be replaced by quarks or partons.

2(a). Large System, Very High Energy

Since P grows logarithmically with the energy,
it is obvious that for sufficiently large energy the
terms with the highest powers of P will dominate
both numerator and denominator in Eq. (3.24).
This term corresponds to N=N, „=A. This term
must dominate not only the terms with N=N, „
but also those terms with N«N „.These re-
quirements are not equivalent in a large system
since we have n «1 for large N and n» 1 for
small N. However, we ean easily calculate the
ratio of the N=A term to other terms in the se-
ries. We find the ratio of the last term to the
next-to-last term to be

X„P(r (A
—

1)

the highest known cosmic-ray energies, so the re-
sults of this energy regime are of purely theoreti-
cal interest. In this limit, we have

dn Qb Qc h; 1
dr Q, b,

Since for Q» A c,"= 1, we have

8, =1 —O(1/Q),

e,. =a,. —O(1/~),

(3.33)

(3.34a)

(3.34b)

where the a; are positive numbers of O(1), and
from Eq. (3.13)

(3.36)

This case, where N = A dominates, corresponds
to a multiplicity so large that every nucleon in the
nucleus is likely to undergo an inelastic collision.

2(b). Large System, Low Energy

When Q is sufficiently small, the leading term in
the denominator will be 1, and in the numerator
the leading term for 6; will be the first term which
contains h;. This limit will be reached provided
that

(3.30)

while we find the ratio of the last term to one of
the first few (small-N) terms to be

and

~=N —,N«A

2 (-A
X~

(3.36a)

(3.36b)

are both small. Since for real nuclear systems
$, this limit is reached when «&1, i.e., when

—;ln vcr'
in/ 16o;„c„' (3.37)

nR2

cr.
(3.32a)

and

Obviously, in the limit Q-~, both of these ratios
will be large compared to unity, and the N=A
term will dominate the expression. If we ask what

energy is necessary for this to occur, however,
we find that we must have

e, =1-o(1/y),

6„=0(g '), (small N),

(3.38a)

(S. 38b)

While this would occur at very low energies (a
multiplicity of 2-3 for m-N scattering) where our
assumption of scaling in the elementary scattering
will not hold, it is interesting to note that the cri-
terion is independent of the nucleus. For this case
the nuclear coefficients take the form

(3.32b)

For parameters typical of a "large" nuclear sys-
tem, the satisfaction of the first criterion is suf-
ficient to satisfy the second. If we take R'=5 fm'
and A =10, we must then have Q~ 100. The ener-
gy associated with a multiplicity this large exceeds

with the remaining p; vanishing still faster.
This case corresponds to a primary collision

multiplicity so low that only the primary collision
occurs in first approximation.

2(c). Large System, Intermediate Energy

This is the energy region which interpolates the
two previously discussed regions, and with the
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previous discussion in mind we see that the multi-
plicity may run from 5 upwards to nearly inacces-
sible multiplicities. In other words, for large
systems this is the region of most interest from
the point of view of accelerator or cosmic-ray ex-
periments. At such energies all A terms in the
numerator and denominator of dn/dr may contrib-
ute to the final answer. We can distinguish be-
tween two types of terms —those for which N is
small and n is large and those for which N is large
and n is small. For the first type of term

(3.39a)

so that the first few terms in numerator and de-
nominator are a power series in g. For the sec-
ond type of term

ior between & and $. The very-high-energy limit
is reached when X„terms dominate all others.
The criterion is now simply that (I/A)$»1, or

&in
(3.42)

2(b) Sm. all System, Low Energy

Remarks and results here are identical to those
of 1(b), except we replace g by t'. The criterion
that we be in this region is thus ) & I, or

This is the same criterion as for the large system,
and the 8& take forms identical to those of Eq.
(3.34). If for a typical small system we take A = 5,
R' = 3 fm', then we require p a 25. We may be
capable of reaching this limit in cosmic-ray ex-
periments.

(3.39b) 71R2

0 in
(3.43)

where we have defined

a=-A -N«A. (3.40)

2(a). Small System, Ver y High Energy

The small system is characterized by A(a, ~ /R')
x In/ «1, so that o. «1 is appropriate for all X„.
This can be satisfied for some very light nuclei.
All X„are therefore proportional to $ ', and we
no longer have to worry about interpolating behav-

The low-energy region is determined by /&1
(and hence small $, since for nuclear systems
$«g), while the high-energy limit is determined
by $»1. It is then natural to characterize the in-
terpolating region by large g but small (.

Since there is a single primary collision in every
sequence, we still have in this region

(3.41)

However, the remaining g; are in a state of tran-
sition, increasing to their asymptotic values in
Eq. (3.34b) in the high-energy limit. Their behav-
ior depends on & at the low end of the intermedi-
ate-energy region and on $ at the high end of the
intermediate-energy region. In regions of experi-
mental accessibility, for example for energies
less than 10 TeV, we would expect that the expres-
sion for dn/dr would be dominated by the terms
for which Eq. (3.27a) is valid; that is, by terms
where X~ is proportional to a power of g. Since g
is independent of the nuclear parameters, we ex-
pect that in this intermediate region, which is of
most interest experimentally, the nuclear coeffi-
cients (and hence the distributions) should be
largely independent of the nucleus for "large" nu-
clei.

For realistic systems, this means that Q must be
less than 4 or so. We are thus not so tightly re-
stricted as for the large system case in our abil-
ity to observe this low-energy behavior.

2(c) Sma. ll System, Intermediate Energy

As E passes through 1 and becomes large we
pass through this region. Again, this corresponds
to the major experimental range where one might
expect IPP-type events to be probable. We have
&, =1 —O($ ') again, with the remaining 8; in-
creasing to their high-energy limits.

C. Limiting Behavior of the Nuclear Distribution

In this part we consolidate the results of Secs.
IIIA and III B to discuss the full nuclear distribu-
tion dn/dr. We concentrate on the case of realis-
tic nuclear scattering, so that Q» g or $, and in
general the distributions k, reach their limits be-
fore their coefficients t';. For other applications,
such as composite models of hadrons, one can
easily recompute the distributions; the qualitative
form of the high-energy limits will not differ from
the nuclear case.

To compute the nuclear scaling behavior for a
given regime of energy andA, we look up the rel-
evant forms of the coefficients t'. ; defined in Eq.
(3.23) and discussed in Sec. IIIB, and combine
them with the forms of the h; from Sec. IIIA, us-
ing the relation (3.23).

Table I shows the analytic behavior of the nuclear
distribution according to the categories in Sec.
III B and according to the fragmentation and pion-
ization regions. In Sec. IV we illustrate this be-
havior with some numerical examples.



HAD RONIC SCALING IN THE SCATTERING OF COMPOSITE. . . 1479

bf)

Cd

Q
~~
M0

Q

0

Q

0
0

~W

Q

Cd

Cd

M

0
~W

Q
Q440
Q
Q

~M

Cd

0
Q

~W

Q

Q
bf)0

0

Q
Q

~W

4

I
Q
bo
.8
Q

0
8

+
Q0 0

8 ~
~A"
cd +

Q

Q

cd

Q

Q
Cd0

Cd
C4

~W

8

~R

0
~W

Cd
Q
Q

Q 0

0
~)ale

Cd

80
IK

0
~~
cd

8
Cd

V

V

0
~A

Ck

I

~w

cd V

8
bf)
cd

Q

I

l

V

V

I

Q 0

Q
0 8

bo

8 M
0 cd

0

8

0 cd

~H

8
~Pt

Q

8
~H

Q"e

Q

A

Q erO

a
M O

m/Q

0

8 M0 cd

Q

Q

Cd

0

Q

0
+

0
I

0
+

0

Q
4

VV

Q

AA

8
Q

~ Ol

O
O

g

ZZ

M O

bn 4
cd '0

Q

0

8 g
M

M O

mA

bf)
~H
Cd
Q
M

Q
Cd

8'e
Q

Q W C4

0 cd
bo W

M

Q
cd

a 8hG f„8
0 4 0Q~ ™

0Q

8 M0 cd

~+

Q

84
Q'a

Q

~A

Q
~ A

Q At
M

M

8~
M

0

8 M0 Cd

Q

Q

0
b6
Q
Cd

bo
~~
Cd
Q

Q
~~

cd

0

4
Q

Q
Q

.& 8
Q

Q
8 a
Q ea

I

8 ~
Q
M

M

8~
CQ

b6
~ IH

Cd
Q
M

Q
Cd

8
~ W

0
c~
Cd

M

~~
~W

8
~A

0

0
+

b
I

0
+

Q

8~
Q VZ

M

M

g
8~

%e make the following explicit comments about
the table and our general results.

(i) In the target-fragmentation region there is no
distribution for x&-A, and the scaling function
is h, (Ax) rather than h, (x). This is simply because
x is approximately the fractional target momentum
in the center-of-mass system. Since at high ener-
gies the A constituents of the target are weakly
bound, each constituent carries A ' of the target
momentum, and therefore no pion can be detected
in the backward hemisphere with more than' '
of the target momentum. Similarly, while the in-
put target distribution function has argument x in
the projectile-nucleon system, in the projectile-
nucleus system this pion-nucleon distribution
function must have argument Ax.

(ii) In the projectile-fragmentation region, the
nuclear distribution approaches the pion-nucleon
distribution functions, in its projectile-fragmen-
tation region. This follows from the fact that in
this region all the h; approach zero as P

' except
h, itself, regardless of the behavior of their coef-
ficients 8;, while 8, = I —O(p '). In the target-
fragmentation region, the nuclear distribution ap-
proaches a limiting value which is A times the ele-
mentary distribution. This follows from the gen-
eral result [see Eq. (3.4a)] that in this region all
h, approach h, as P ', and that

[see Eq. (3.35)].
Note that the approach to scaling in the target-

fragmentation region is governed by Q, while in
the projectile-fragmentation region it is governed
by $. Thus the approach to scaling is faster in the
projectile region than in the target region.

(iii) Our results illustrate two forms of indepen-
dence of fragmentation regions. The first and
stronger (in the sense that fewer assumptions are
required) form is that, given the pion-nucleon dis-
tribution in the pion-fragmentation region, this
distribution remains asymptotically unchanged
when we scatter pions from a target composed of
any number of nucleons. (We shall speculate along
these lines in Sec. V. ) The second and weaker
form states that if we start with a pion-hadron dis-
tribution with independent fragmentation regions,
then our composite-system scattering distributions
certainly retain this property.

(iv) The linear behavior in A of our limiting re-
sults may at first appear surprising, because we
have grown used to thinking in terms of surface
(-A"') effects in high-energy hadron-nucleus scat-
tering. This result follows from the fact that we
are computing a number distribution, and not a
cross section. To convert our results to a cross
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section, it is necessary to multiply dn/dr by the
normalization factor o r„[see Eq. (2.10)]. This
factor, which is the inelastic pion-nucleus cross
section, contains the hadronic A dependence, and
is usually said to behave according to an "A"'"
law.

We also note that in our calculation there is no
mechanism by which a pion can be absorbed in the
nucleus. The pion either emerges after scattering
elastically, or it scatters inelastically, creating
other pions. [In extremely large systems (such as
neutron stars) this would not be the case, and our
results could not be expected to apply. ] Note that
while factors like 1 —I',

~ are normally thought to
give absorption, we are here taking exPlicit ac-
count of the allowed inelastic channels in which

this absorption will take place. All these inelastic
channels lead to pions in the final state.

IV. NUMERICAL EXAMPLE

In this section we present the results of com-
puter calculations of the nuclear distribution. This
can include computations of the k;, summation
over sequences, and calculation of the 0 ~ using
Eq. (2.11). We simplify this procedure in two
ways. Firstly, we use as a w+N- m+X input dis-
tributionh, a step function of height 1 from x =-1
to x =+ 1. As we previously discussed, for such a
function we can compute the h; analytically, as in
Eq. (3.6). Secondly, the form for o„" in Eq. (2.11)
is not directly susceptible to numerical integration
for large values of Q. This is because of the sec-
ond sum in brackets in that equation, which in-
volves the summation of high-order binomial co-
efficients with alternating sign. The resulting
very large cancellations cause difficulty. As we
discussed in Eq. (2.15) ff. , this can be circum-
vented by expanding in the small parameter a,~/R',
with coefficients S, as in the Appendix. We use
this procedure, keeping both S, and S, (i.e., up to
O((a„/A')'), given by Eqs. (AV) and (A11), in or-
der to perform the numerical integration over y.

Additionally, time limitations did not allow us to
take N =A for any A. However, the qualitative
behavior of the high-energy limits in Table I is re-
produced for any fixed N,„. The only quantitative
change is that the factor A multiplying h, (Ax) in
the target-fragmentation column becomes a factor
N . Therefore we are still able to make mean-
ingful numerical computations.

The process we have chosen is ~+'Be- m+X. In
this nucleus the root mean square radius is 2.2 F.
We can take for pion-nucleon parameters a;„=a„
=10 GeV ' and o. =4 mb. In addition, we run Q up
from 5 to 25. If we take a typical value of n, then
inn will be -3. This gives us

Qel inn
g2

We computed up to N =6. In this range

(A —N ), =0(1),

the nucleus is a "large" system, and we are just
beginning to make the transition from &-type to
$-type behavior. Therefore in most of the range
we discuss &-type behavior is dominant. This be-
came numerically apparent when we repeated our
calculations for larger nuclei and found the results
to differ from the 'Be results we are about to pre-
sent by only a few percent.

We begin with a calculation in the low-energy
regime of Table I. By taking the pion-nucleon pa-
rameters as above, except 0- =2 rather than 4 mb,
we find ( & 1 over the entire range of &j& rather than
g&1 over much of the Q range. This is just the
situation corresponding to low energy. Figure 2
shows the nuclear distribution plotted as a function
of x. N has been fixed at 5, although these re-
sults are quite insensitive to N „. We see the lin-
early increasing Q behavior near unity in the tar-
get-fragmentation region, as well as the stability
of the projectile-fragmentation region near unity.

Next we return to the case o. = 4 and fix N,„=6.
As we increase Q the target-fragmentation region
distribution should approach the limit 6 for ——,

' &x
&0, and, in smaller steps, the projectile-frag-
mentation region distribution should approach the
limit unity for 0 & x & 1. In the pionization region,
the distribution should approach an intermediate
limit. Figure 3 shows the distribution as a func-
tion of x to illustrate the fragmentation regions,
and Fig. 4 shows the distribution as a function of
center-of-mass rapidity to illustrate the pioniza-
tion region. The qualitative behavior we have dis-
cussed appears in a rather striking fashion. To
probe this distribution a bit more deeply, Fig. 5
shows the behavior of the coefficients 6; of the
distributions h;, as we discussed in Eq. (3.34) and
Sec. IIIB1(c). We see 6, fairly quickly approach-
ing the value unity, and the remaining 6; approach-
ing definite limits less quickly. Their sum also
approaches a limit near to 6.

The authors are preparing a paper which will
contain results of calculations for realistic nuclei
and realistic elementary distributions, and the in-
terested reader is referred to that work for fur-
ther numerical studies.

V. DISCUSSION

Having presented the main results in the previ-
ous two sections, we devote this section to two
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main topics. First, we discuss the possible tests
and applications of our ideas to accelerator and
cosmic-ray experiments on nuclear targets. Sec-
ond, we discuss and speculate on the role our
ideas may play in understanding the hadrons them-
selves, pointing out new ways to look at some
characteristics of hadronic properties as well as
the possible connections of our ideas with other
approaches to these characteristics.

A. Experimental Tests

The original and still valid motivation to study
cascading in nuclei, which we first discussed in
Ref. 7, was to help distinguish between incoherent
production processes (IPP) such as multiperipher-
alism and coherent production processes (CPP)
such as diffractive excitation. Because, e.g. , a
diffractive excitation lives for a very long time
compared to nuclear radii at high energies, CPP
models do not cascade as we have discussed above,
although the excitation itself may rescatter. On

the other hand, IPP models can give cascading as
we have discussed it. Thus a simple way to dis-
tinguish between IPP and CPP models is to mea-
sure the multiplicity of pions in nuclear collisions.
An increasing excess over ~P multiplicity in this
quantity would favor IPP models. We shall discuss
these distinctions in more detail elsewhere.

Assume that IPP behavior dominates at some ac-
cessible value of energy. By appropriate choice of
nucleus the actual distributions we discuss above
can then be tested Avai.lable Q runs roughly from
5 to 25, the latter in ~10'-GeV cosmic rays. We
can then test the behavior in o. by an appropriate
choice of nucleus, and should see either an ap-
proach toward a limit or a transition region from
g- to $-type behavior. In particular it should be
possible to verify that the projectile-fragmenta-
tion-region number distribution is unaffected by
the choice of nucleus.

There are many aspects of our problem that de-
serve further theoretical attention from this prac-
tical point of view. First, a mixture of IPP and
CPP (which at present appears to be a satisfactory
way to explain hadronic data") should be treated.
Nuclear scattering remains a very attractive
method to help pin this mixture down more closely.
Second, we have integrated over the transverse
momentum. It would be interesting to see if a
richer structure emerges when we do not do so.
As a guess, we recall that the transverse momen-
tum structure in the incoherent production of ex-
clusive channels is the same on nuclei as on had-
ron targets. Perhaps this result is also true for
the inclusive distributions. Third, we have treated
number distribution in only an average way; our

results assume (and result in) no dispersion in the
number of outgoing pions. Such effects could be
treated by Monte Carlo methods. This is impor-
tant as it relates to two-particle (and higher) in-
clusive measurements. Such measurements are
presently our principal tools for distinguishing
IPP and CPP behavior in hadronic collisions. It
would be most interesting to study such quantities
in hadron-nucleus collisions.

In summary, the study and possible behavior of
hadron-nucleus inclusive distributions presents us
with a very rich field of exploration. Such explor-
ation can shed useful light on the nature of hadron-
ic interactions.

B. Speculations on Hadronic Reactions

If we want to try to apply these ideas and meth-
ods to hadronic processes by assuming that had-
rons are composite systems whose constituents
are partons, then the complexity of the phenomena
we have discussed provides us with many possibil-
ities to choose from. Is hadronic scattering in a
region of approximate scaling at AGS or NAL en-
ergies, as in the low-energy regions of Table I?
Or is hadronic scaling at a true scaling limit, as
in the high-energy regions? Regardless of these
distinctions, there are some systematic features
necessary in such a, treatment, which we discuss
below.

Unlike the nucleus, which has a fixed number of
constituents, we might expect the hadronic state
to be a superposition of states with differing num-
bers of partons. During the brief time of an had-
ronic collision, we have a certain probability of
being in an n-parton state. We expect the kind of
multiple scattering we have discussed to occur
when the n partons are weakly bound, in the sense
that the partons carry fixed fractions of the mo-
mentum. The longitudinal cutoff in x occurs for
the n-parton state at I/n. In addition, the limiting
distributions are approached from below. Com-
bining these facts, there are then three conclu-
sions to be made.

(i) If we want our distribution to reach to x = 1,
then the one-parton state is important. (Note that
this "one-parton state" may be a sAongly bound
system in itself. ) As we move x down from 1,
states with higher numbers of partons begin to
contribute, inc~easing the distribution. We there-
fore expect a distribution smoothly increasing as
~x~ runs from 1 to 0—recall that each parton-par-
ton reaction must also be of the IPP type for this
result to hold.

(ii) Recall from Table I that the approach to a
limiting distribution for an n-parton system de-
pends linearly on n. Therefore we expect the seal-



1484 PAUL M. FISHBANE AND S. S. THE FIL

ing limit to be approached more slowly at smaller
values of ~x).

(iii) As in nuclear scattering, we would expect
to approach limiting behavior from below. Com-
bined with (ii) above, we expect the distribution to
increase in general, and to increase most rapidly
in the small- ~x~ region, until the limiting behav-
ior is reached.

Remarkably enough, except for "leading parti-
cle" peaks in the inclusive distribution, which
would appear to be due to a kind of diffractive ex-
citation, these qualitative results seem to be true.
Particularly with regard to (iii), note that this ap-
proach to scaling follows without the recourse to
the lower-lying trajectories one requires in a
Mueller-type analysis. " Mueller analysis also
states that the rate of approach goes like s~, where
P=-,'. On the other hand, the rate of approach we
find depends approximately linearly on the multi-
plicity, i.e., logarithmically on s. We do not know
whether logarithmic energy dependence would fit
the observed approach to scaling.

The picture we present is a recursive picture of
several aspects of dynamical behavior. In the first
place, the simplest such aspect is scaling itself.
If the scattering of the constituents scales, then so
too does the scattering of the composite system.
In the second place, we can understand the inde-
pendence of fragmentation regions in a recursive
way. Imagine that all hadronic systems are made
of the same kind of partons. Then the stronger
form of fragmentation-region independence we
discussed in Sec. IIIC automatically implies that
hadronic scattering will exhibit this independence
feature. If on the other hand all nucleons were not
made of the same kind of partons, then we would
require the weaker form of fragmentation-region
independence for the parton-parton amplitude to
imply independence for hadronic scattering. In the
third place, we can qualitatively see that particle-
number dispersion will be affected by multiple
scattering. With a given number distribution in
the parton-parton collision itself, there will be a
further effect on the number distribution due alone
to energy differences in the particles producing
the collisions of second and higher generation. It
would then be most interesting to see if it would be
possible to have the output number distribution in
hadron-hadron collisions equal to the input number
distribution in the parton-parton collision. This
would constitute a recursive understanding of this
number distribution, and therefore of the model
for hadronic reactions for which this distribution
applies.

One rather nice logical consequence of extending
this kind of thinking to its extreme is that it intro-
duces a kind of self-consistency into the picture in

which matter is considered to be made up of lay-
ers. If we hypothesize a requirement such as
scaling at some level (for example, in the inter-
actions of partons), then it also appears in other
levels (for example, in the interactions of elemen-
tary particles).

APPENDIX

We consider a sum relevant to the nuclear
weight factors,

or

(A2)

By making the transformation y =1 —x, the inte-
grand becomes Q, y, which we may integrate
over y from 1 to 1 —x term by term. Thus

(A3)

We can now proceed by induction, noting that

or

X

S = dx —S
0 x (A4)

The same transformation y =1-x of the integrand
shows us that

'm-Z
1 p 1 p (1 —x)'~ —1

1=1 ' l ~- ~ l m= 1

(A5)

is a solution to the recursion relation of Eq. (A4).
Application of these series in our case occurs

for x between 0 and 1. A simple test for their
convergence as n-~ is Ermakov's rule, which
implies divergence. This is easy to see by noting
that at large n the 1 term in the numerator is dom-
inant over the (1-x)'~ term. Estimation of the
sum by integral approximation for large n then
gives

Note that the summation index starts with 1 rather
than 0. To treat this sum, start with S, and differ-
entiate with respect to x. The resulting sum is
just a binomial series,

—S, = —[(1—x)'" —1I,
d 1

dx ' x
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d~l f 1 d~2 ~-1 dg
S ~ ~ ~

Zi & Z2 Zm

1
, (1n2n)

m |
1

, (1nn)
tg 0

(A6)

For use in our numerical computations we want
to be a bit more precise and keep up to constant
terms in S, and S„because for large n the multi-
ple sums are expensive to compute directly. The
two terms in S, are well known individually, so
that ignoring terms of O(1/n)

-S, +ln2n + lnx+ C, (AV)

where C =-0.5772 is Euler's constant. By making
the substitution y=i —x, we can also split up S,:

——,
' 1n'x —1nx ln2n —C 1nx +0 ((1 —x)'" 1n'x) . (A9)

We estimate the second sum by means of the Eu-
ler-MacI aurin method. The series has ln'n, inn,
and constant terms. The x-independent constant
terms consist of various complicated sums over
Bernoulli numbers B, and g functions which we
combine and eventually determine numerically.
Additionally, one of the inn terms has a coefficient

2l

E=l

which we recognize as C —0.5. Otherwise the
evaluation is straightforward. We find for this
second sum the result

—,
' 1n'2n+-,' 1n2n+(C —0.5) 1n2n —0.99128.

(A10)

i i

1
~ i ' '" 1

~
1dzz' —P —„P —, .

A=i t =0k
1 I

(A8)

By combining the expressions in (A9) and (A10)
we find

-S2 = ~ 1n'2n + (C + 1nx) 1n2n + C 1nx

It is simple to show that the first sum is given by +—,
' ln'x —0.99128 . (A11)

*Work supported in part by the Center for Advanced Studies,
University of Virginia, and in part by the National Science
Foundation under Grant No. GP-32998X.

~Permanent address.
'J. Benecke, T. T. Chou, C. N. Yang, and E. Yen, Phys. Rev.

188, 2159 (1969).
R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969).

'R. P. Feynman (unpublished); J. D. Bjorken and E. A.
Paschos, Phys. Rev. 185, 1975 (1969),

'P. M. Fishbane and J. S. Trefil (unpublished).
D. Amati. S. Fubini, and A. Stanghellini, Nuovo Cimento
26, 896 (1962).

R. C. Hwa, Phys. Rev. Lett. 26, 1143 (1971); M. Jacob and
R. Slansky, Phys. Rev. D 5, 1847 (1972).

'P. M. Fishbane and J. S, Trefil, Phys. Rev. D 3, 238 (1971).
'P. M. Fishbane, J. L. Newmeyer, and J. S. Trefil, Phys. Rev.

Lett. 29, 685 (1972);P. M. Fishbane, J. S. Trefil, and J. L.
Newmeyer, Phys. Rev. D 7, 3324 (1973).

'R. J. Glauber, in High Energy Physics and Nuclear Structure,
edited by G. Alexander (North-Holland, Amsterdam, 1967),
pp. 311 ff.

' P, M. Fishbane, J. L. Newmeyer, and J. S. Trefil, Phys. Lett.
41B, 153 (1972).

"See also A. Dar and J. Vary, Phys. Rev. D 6, 2412 (1972).
"This provides an "absorption" factor in more usual

applications. See J. S. Trefil and F. von Hippel, Phys. Rev. D
7, 2000 (1973).; see also Ref. 8.

"J. S. Trefil, Phys. Rev. D 3, 1615 (1971); Nucl. Phys.
829, 575 (1971); Trefil and von Hippel, Ref. 12.

' C. Quigg and J. D. Jackson, NAL Report No. NAL-THY-93
(unpublished),

' A. H. Mueller, Phys. Rev. D 2, 2963 (1970).


