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Self-Consistent Linearly Rising p Regge Trajectory
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A bootstrap calculation of a linearly rising p Regge trajectory is performed using the Balazs method
of decoupling the N/D equations, with the left-hand cut approximated by 7 poles. The input p mass
and width are taken as the experimental values of 750 MeV and 100 MeV, respectively. The value of
the bootstrapped slope is 0.701 GeV corresponding to an input intercept of [a (0)];„=0.605, an
output intercept of [0.'(0)],„,= 0.608, an output p mass of (m p),„t = 747 MeV, and an output p width
of (hm p),„,= 71 MeV. The sensitivity of the results to the details of the calculation is studied
extensively. The details of the Balazs method are given as well as some techniques of handling the
method in an approximation with a large number of poles,

I. INTRODUCTION

Previous work' ' on the bootstrap of the p and
fo mesons by the Baiazs method4 has shown that
the N/D method, in addition to bootstrapping
masses, can also produce narrow widths in rea-
sonable agreement with experiment. The above
results depended on the use of the Williamson-
Everett (WE) criterion' for choosing the optimum
matching point, and the approximation of the left-
hand cut by a large number of poles. The above-
mentioned results seemed to indicate that in a
'1-pole approximation, the Balazs method, in con-
junction with the WE criterion, might be sophis-
ticated enough to handle not only bootstraps of
resonances but also of whole Regge trajectories.
In this paper we report on one such successful
bootstrap calculation of a linearly rising p Regge
trajectory for small values of angular momentum.
Several other bootstrap calculations of the p tra-
jectory have been performed by various methods. '
The present calculation seems to cure some of the
difficulties encountered by these calculations, such
as a large or indeterminate p width, a nonlinear
trajectory, and an uncertain trajectory intercept.

The general calculational methods are similar
to those of Refs. 1 and 2. In the principal portion
of this work, the part of the input force due to the
low-energy absorptive part of the crossed-channel
amplitude is taken as being due entirely to the con-
tribution of the p meson; i.e., we take the long-
range interaction between two pions as being dom-
inated by p exchange. The effect of including f'
exchange is partially investigated. The crossed-
channel absorptive part at high energy, i.e., the
short-range force, is taken as being given by the
contribution of the direct-channel p trajectory,
which we take to be real and linear. The chief

difference here from our previous calculations is
that we are interested in determining the output p
Regge trajectory, rather than just the output p
mass and width, so that we can require that the
input and output trajectories be self-consistent.
A point on the output trajectory np(s) is given by
the pair of values (l,s,), where Re D',(s,) = 0 when
the optimum value of the matching point is chosen;
D', (s) is the denominator function for the I= 1, l =1
partial wave. Although one could, in principle,
carry out the calculation for arbitrary E, we con-
fine ourselves to integral or half-integral values,
for which we can evaluate the integrals for the de-
nominator function, given a suitable approximation
for the inela. sticity parameter 8', (s), in closed form
without numerical integrations.

Since the approximations involved in a one-chan-
nel calculation get worse with increasing energy,
the reliability of the present calculation is best at
low energies and consequently low angular momen-
tum. As such, only a bootstrap of the p trajectory
in the range 0 &l +2.5 is attempted.

The Balazs method and the procedure followed
in bootstrapping the p trajectory are discussed in
Secs. II and III, respectively, and the numerical
results of the bootstrap are given in Sec. IV.

H. THE BAI.AZS METHOD

This section is based on Refs. 1-4, and combined
with Appendixes A-C gives a description of the
Balazs method as applied to the m-n scattering
problem, with a discussion of the approximations
employed. We will start by defining the problem
and the different kinematical variables.

Four pions with masses ng, converge to the same
space-time point and annihilate. ' P; is the four-
momentum of the ith particle and is timelike, and
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I,' is the third component of the isotopic spin of
the ith particle. The c.m. energy squared in the
s, t, and u channels is given, respectively, by

s =(p, +p,)',
t=(p, +p.)',

(Pl +P4)

We have

(2)

where k= ~P; j is the magnitude of the c.m. momen-
tum in the s channel, p& and E, are, respectively,
the c.m. momentum and energy of the ith particle
in the s channel, and v= k'. The s-channel scat-
tering angle is defined by

p p = —vcos8 .
The partial-wave amplitude for s-channel scat-

tering with total angular momentum l and total
isospin I is denoted by A, (v) and is normalized to

d, D', ( v' ) Im H', ( v')
4V

V —v

]
N', (v) =-

IT p~

1 "I dx D I (1/x) Im HI (- 1/x)
'll'

0 X 1 +XV

1 '["' dx D', (-1/x) 1m'', (- I/x)
)I o X 1+XV

(8)

The effect of neglecting the first integral in Eq.
(7) has been discussed by Dilley and Gibbons. ' '

A central step in the Balfzs method is approxi-
mating the kerne1 in Eq. (8) by an interpolation
formula:

where x= —1/v' and xI, = —1/vI, . If we now assume
that the first resonance in the t channel is at v,
= v~, where the mass of the p meson is m~ = 2( v~

+1P ', then in the f channel the right-hand cut
runs from vz to ~ if nonresonance contributions to
the partial-wave amplitude are neglected. If we
now choose vt = —vz —I, the first integral in Eq.
('I) vanishes, and N, (v) is given by

Z/2

rm[r)[(v)] '= —
( r)[(r), (4)

O", (x) (9a)

where A, (v) is the ratio of total to elastic partial-
wave cross section.

A. The N/D Equations

where
n

„( )
=g- (x —x)
I; (x; —x,)'j~j

(9b)

The threshold and asymptotic behavior of the
partial-wave amplitude can be factored out of the
N/D equations according to

A', (v) = v'(v —vx)' 'H', (v} .
As usual, one writes

a', (v) =N', (v)/D', (v), (6)

with N, and D, having, respectively, only left- and
right-hand cuts. j vx~ must be large enough not to
destroy the threshold behavior - v' of the scatter-
ing amplitude, and small enough to allow the as-
ymptotic behavior - v to set in at a point which is
consistent with the assumed starting point of as-
ymptotic behavior in the rest of the equations. We
will consistently assume throughout this paper
that asymptotic behavior sets in at a fixed value
of v which we '; signate by v». Thus it seems
reasonable to set v~ = —v».

The starting point of Halhzs is to separate the
dispersion relation for N, (v) into two parts:

The values of the x; are chosen so as to make the
approximation of Eq. (9a) as good as possible in
the range of integration of Eq. (8). A rather sim-
ple method of evaluating the x&'s is given in
Appendix A. A priori the larger the value of n,
the better is the kernel approximation.

Substituting Eq. (Qa) into Eq. (8), we find
n

NI (v) Q f ll

, , (v+ll), )
' (10)

where ll); =1/x;. Thus the numerator function is
approximated by n poles whose positions are de-
termined by Eq. (9). The residues are determined
by requiring that the partial-wave amplitude and
n —1 of its derivatives, as given by the N/D equa-
tions, be in agreement at some matching point v~
chosen in between the right- and left-hand cuts,
with the expression for the partial wave ampli-
tude A, (v), and n —1 of its derivatives, as ob-
tained by projection from a fixed-energy disper-
sion relation for the scattering amplitude.

Using Eq. (10), one finds the denominator func-
tion is given by

D'l(v) =1—,'p f'lI
Z/2 Vrl jtI ( Vr)

v' + 1 ( v' —vo)( v' —v)( v' + ll)l)( v' —vr[)' '
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The function A, (v) is defined by Eq. (4) and is explicitly evaluated in Appendix A of Ref. 2, for values of
v& vDR. To siniplify Eq. (11) we introduce a parameter vD defined as the point at which inelastic effects
become appreciable. " We take vD in the range 20 & vD &30. We then approximate R', (v) by

~( )
1 for v& vD

for v&v»

where A, is a, constant estimated as a weighted average over v from a graph of A, (v) such as Fig. 1 of
Ref. 2.

Making use of Eq. (12) the expression for D, (v) becomes

(12)

D i(V) =1+Z &ii(V)fair
fag

where

C'il (V) = — ' [I,*(V,O)+(R', —1)I', (V, VD)], (14)

with

The integral of Eq. (15) is evaluated in Appendix B. A closed-form solution is obtainable for non-negative
integer and half-integer values of l, while for other positive values of l a numerical integration is necessary.

B. The Input Amplitude All(v)

The Froissart-Gribov" interpolation formula for the partial-wave amplitude A, (v) for physical and non-
physical values of l is given by

At (s) =— dtA', (s, t)Q, (I+—), (16)

where A, (s, t) is the s-channel absorptive part of the definite isospin scattering amplitude. Through the
interval -9& v& 0, the absorptive and imaginary parts of the amplitude are equal, and hence AI (s, t) can be
replaced by ImA (s, t) in Eq. (16). The range of integration in Eq. (16) is split into two parts at tDR. For
t ~ t» we assume that the scattering amplitude can be represented by the top-lying Regge poles. t» is
related to v» by

tDR 4(VDR+ 1) 4VDR 4VD

(18a)

where

The last equality in Eq. (17) means that we approximate the amplitude by its Regge form above approxi-
mately the energy of the f meson. We can now write Eq. (16) as

A' ( v) =A ( v) +A.' " ( v)

A, t I( )=—J dtImA (s, t)Q, (I+—
)4

(18b)

AI(tt) (v)
1

&Da

dtImA (s, t)Q, (l —) . (18c)

To evaluate A, ( )(v) we expand ImA. (t,s) in t-channel partial waves. We obtain

A &~) (v) =—q P g —'[1+(-1) " ](2lt+ I)
-()

DR
g I I 2S 2tdtl Aims (dt —1)Pit 1 + Qi 1 +t-4 ' s-4 (19)

where Pzl is the )iz crossing matrix. Equation (19) involves no approximations and is true for -9& v&0.
To evaluate it we need an explicit expression for ImA, I ( —,'t -1). To obtain this we assume that for t& tD,
only partial waves corresponding to physical resonances give appreciable contributions to the amplitude;
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these we treat in the zero-width approximation.
Let the set of values (v„ I'„ l„ I,) describe, respectively, c.m. momentum squared, reduced half-width,

angular momentum, and isospin of a low-energy t-channel resonance whose contribution to the amplitude
is to be included. Making the change of variable t- v =(, t-1—)in Eq. (19) we obtain, summing over reso-
nances,

Avv (v)= —I p (2( +))f sv'Im v(( v)P, ((+, ) s (1+ )i
(20)

To evaluate the integral in Eq. (20) we use the narrow-width approximation for ImA, (v). Thus ImA, (v) is
zero except for v near v&. Remembering that

ReD, (v;) = 0,
one has for v) 0 and near v;

—I"g

(v —v )+([v/(vv))]"'v'l(v- v )' "8 (v)I', I '

where the reduced half-width,

(21)

(22)

I"; = —N~(v&
S ReD;( v)

Bp (23)

is the residue of H, (v) at v = v&. Making the zero-width approximation and performing the resulting inte-
gration over 5 functions, we find

S"v'( )=—QS (2( +())' v'i(v —v )" p (v q (+ '

)P

From Eq. (22) we find that the half-width (4v, ) in v is related to the reduced half-width I', by

av, =[v, /(v +1)]'t' v, "(v —vr)' '& r, ,

where we have set R;(v, ) = 1, and hence the full width in energy of the resonance is given by

4m; =2v;""~'(v, —v„)' '& 1;/(v;+1) .

(24)

(25)

(26)

To evaluate A, t") (v), A (s, t) is approximated by the highest-lying s-channel trajectories with isospin I.
%e obtain

~ [2u,(s)+1] p,(s) C,(a.,(s)) [e " s(') +( 1)i]e ")&')~'"
sin maj (s) (27)

where n,.(s) and p&(s) are trajectory and corre-
sponding residue functions, C,(n) = 2 "I'(u+ —,')/
v v I'(a+1), and we have set 1+ t/2v t/2v-
tuting Eq. (27) in Eq. (18c) and using the asymp-
totic form of Q, we find

or

aj(s) =l)+ eg(v —v)) (30a)

Equation (29) can now be analytically continued to
l (n,.(s).

We assume that all the trajectories are linear
and real:

DR

its (tt) (s (s)-i-1 (28)
a,(s) = u,(0) + u, 's,

where

(30b)

where C,(l) = Wnl'(1+ I)/[2"'I'(1+ —,')]. For l & n,.(s)
the integral in Eq. (28) exists, and we find

(30c)

Furthermore we parametrize the residue function
according to"

A", "'(v) = —v'Q [2u,.(s)+1] „'(,)

C,(a,(s)) C,(l),2

p)(s) = const x v "s ' e'J' .
This can be written as

p;(s) =[p,(s&)lv; &'j'] v &"e'~' "'

(31a)

(31b)

(29) where cz is @. parameter to be determined experi-
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mentally. The residue function is related to the
trajectory slope and the reduced half-width F,~

of a resonance on the trajectory, having mass
Ws, and spin l

&
= n&(s&), by

where
l-l

S'u(v)= „„' -&l(v)C»(v) . (O'I)

[2nl(s) +1] C, (nl(s)}=(2l, + 1) C,(&,) . (33b)

p,(s,) = v, "1'l'(v, —vtt)' "&'~'I'„"(,
) [dn, (s)/dv],

(32)
Finally we make the approximation

[2nl(s) + 1] C, (nl(s) }=const,

and evaluate the constant at s =s& with the help of
Eq. (30) to obtain

III. PROCEDURE AND CHOICE OF PARAMETERS

In performing a bootstrap of the p trajectory we
have considered the effect of retaining the con-
tributions of the p, as well as the p and f', terms
in A', ( ) (v). These terms are given by

[vt"'()] =tt t' (
'

() t '
)v v

Substituting these equations into Eq. (29), we ob-
tain the expression

A1(H)
( )

l t(t lf (I)
Pg(s ') e J 1 (2 vs) ) J~ 1

v,'1 [I, —I + e1( v -v, )]

and

(~, g&( )]
toP, „t) i; t ~ t t(v+t))
(vy —vr) v v1

(38a)

C. Matching the Amplitudes

(33c)

q (
t(v, +t)) (38b)

+l(vF)Dl(vF) (vF vE) Nl(vF) (35)

To complete the solution of the N/D equations,
all that is left is to determine the n residues f',1.
This is done by matching the function v'(v —v~)' '

xNl (v)/D, (v) and n —1 of its derivatives to At(v)
and n —1 of its derivatives at some matching point
v~ in the region -9& v&0.

As is clear from the above discussion, the input
information is stored in the residues (f',1, i =1,
. . . , nj, and thus the larger n is, the greater is
the part of the input information which is retained
by the N/D amplitude. This is also clear from the
fact that the larger is n, the more the number of
derivatives matched and the closer is the functional
form of the N/D equations to that of A1 (v) in their
common range of validity.

In between the cuts where the matching is per-
formed, N, (v), D, (v), and (v —vz)' ' are all real,
but v' is complex for noninteger values of l. Hence
it is convenient to factor out v' from the amplitude
before matching. To this end we define the function
8', (v) by

8', (v) = v 'A', (v) .
Then the matching equation for the amplitude can
be written as

In A,'(")(v) we only retain the contribution of the
highest-lying trajectory, which for isospin I=1
is the p trajectory.

vp[1 —I + cp(v —vp)]

where

3V 1( r(l+1)
Kp I —— „, ,), (40)

and from Eqs. (30) and (32),

(41)

ep =[1—np(0)]/(vp+1) .
%e further set

cP-—0,

(42)

(43)

which, according to Eqs. (31b) and (32), is equiv-
alent to the following parametrization of the p
residue function:

Furthermore we use the intercept n~(0) of the

p trajectory as input rather than the slope. Using
Eq. (30b), and remembering that nz(sz) =1, we
have

and making use of Eqs. (10) and (13), we obtain P (s) =I' e v"('"
P P P (44)

ZS]r(vF)fll f3)(vF) t
1=1

(36) Substituting the above results in Eq. (39) we ob-
tain

3&~1(I+1) I (1 —u (0)}(2v )'-""-"~«)]("-'~)«"'~)
2""I(l+-,') ( p 1v)(1+-I)+[1—np(0)](v- vp)
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The pole positions {yo;;i=1, . .. , n) as a function of n are given by Table I. The method by which this
table was obtained is discussed in Appendix A. The central set of parameters about which variations are
considered is n=7, A, =3, v, = —2, v„= —25, vD= v» =25, o.~(0) =0.58 and the experimental values of the
mass and width of the p and f' mesons as given by Table II. Bond" has shown that the positions and widths
of the output resonances are independent of the subtraction point v,. Consequently we will not vary the
value of v, .

Due to the form of the integral in Eq. (15), an analytic expression for the denominator function can only
be obtained for non-negative integer and half-integer values of l. To avoid numerical integration we will
only calculate the points on the trajectory corresponding to l =0, 0.5, 1, 1.5, 2.0, and 2.5.

The roots of the real part of the denominator function ReD,'(v) are denoted by vs. For a given value of
l, the value of v„corresponding to the optimum value (v~), , of the matching point v~ will be denoted v, .
The pair of points (l, v, ) =(a~(s, ), v, ) determine a point on the Regge trajectory.

The WE criterion essentially requires choosing for the matching point v~ the value that gives best agree-
ment between the input and output forms of the partial-wave amplitude in their common range of validity.
Since the first n-1 derivatives of the two forms of the partial wave amplitude are already made equal at
v& by the Ba16zs method, the WE criterion is equivalent to requiring that the nth derivatives be also equal
at the optimum value of v~, or, in case this is not possible in the allowed range of v~, that at least their
difference be minimized. We can thus express the WE criterion as the requirement of minimizing the
percentage difference P', (n, vz) between the nth derivatives, evaluated at vz, of the two forms of the partial-
wave amplitude, where'

(46)

TABLE I. Variation of the pole positions ~&fn, v, vz)
(i = 1, . . . ,n) with n for & = 5.5 and v = —2. m& is inunits of
(m~)2, with &=c=m =1.

n ZUg QJ2 263 ZU4

2 8 ~ ~ ~ ~ ~ ~ ~ ~ ~

3 73 ~ ~ ~ ~ ~ ~ 0 ~

4 6.8 105 ~ ~ ~ ~ ~ ~

5 6.6 28 170 ~ ~ ~

6 6.6 17 39 260
7 6.6 13 22 52

35 ~ ~ ~

13 60
9.5 19
8.4 13
7.7 10
7,3 9.1 370

We have discovered the following alternate pro-
cedure for choosing the optimum matching point,
which in practice turns out always to be equivalent
to the WE criterion, and is much more convenient
to use. As the matching point varies, of course
the roots vs at which ReD~ (v) = 0 vary also, as
well as the width of the produced resonance. It
turns out that the optimum value of v~, as given
by the WE criterion, is that which minimizes
dvs/diaz, i.e., minimizes the sensitivity of the
position of the output resonance to v~. (Minimizing
the sensitivity of the width to v~ yields, in practice,
essentially equivalent re'suits. ) We refer to this
procedure for choosing v~ as the minimum slope
criterion. We have not succeeded in giving a con-
vincing proof of the equivalence of the two pro-
cedures for choosing the optimum v~, although we
illustrate this equivalence in Figs. 2 and 3, dis-

cussed below. The minimum slope criterion is
considerably simpler to use since the optimum
matching point is determined simultaneously with

v~ without the need to evaluate the nth derivatives
which appear in P, (n, v~). Furthermore, the above
form of the WE criterion shows that, in general,
when there is a need to make a choice among the
different values of v~ a choice can be made. The
minimum slope criterion fails in two special cases:
when dv„/de is a constant different from zero
and also when the curve v„(v~) has more than one
stationary point. In both of the above cases re-
course needs to be had to the normal form of the
WE criterion as expressed by Eq. (46).

IV. RESULTS

A reasonably self-consistent p Regge trajectory',
shown in Fig. 1, is obtained by using the central
set of parameters given in Sec. III, with only the p
term as given by Eq. (38a) retained in A, ~ ~(v).
For the p mass and width we use the experimental
values as given in Table II. These correspond tG

(vz) =6.18 and (I'z),„=0.267, and lead, in the
7-pole approximation, to output values of (v~),„,
= 6.02, and (I"z),„,= 0.111,where (I'~),„, is given
by Eq. (36). The input intercept is [up(0)],„=0.58;
the input slope (e~);„=0.058." The output values
are [a~(0)],„,=0.63, and (e~),„,=0.061. The dif-
ference between input and output is about 5% for
the slopes and about 8% for the intercepts. In
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TABLE II. Values used for the input, or experimental p and f masses and widths. v& and
vf are in units of I=m ~=c=l, I'& and I& are dimensionless, m& and m& are the masses in
MeV, and Am& and Amf are the full widths in MeV. I'& is computed with v& =-25 in Eq. (25).

vp mp Fp Amp Vg mf Fg 6 my
[(m„) ] (MeV) (dimensionless) (MeV) [(m ) ] (MeV) (dimensionless) (MeV)

618 750 0.167 100 10.02 1253 0.279 140

evaluating (ez),„„heaviest weight is given for the
section of the trajectory in between l = 0.5 and
l = 2.0. Although for all practical purposes this
constitutes a bootstrap of the p trajectory, we will
still attempt an exact bootstrap of the slope. The
results of this bootstrap are shown in Fig. 8 and
will be discussed later on.

In doing a bootstrap of the p meson, closer
agreement than that obtained above would normally
be required between the input and output values
of the mass and width before the p is considered
as bootstrapped. ' ' Qn the other hand, the above
discrepancy between input and output values of
the p mass and width is negligible when a trajec-
tory, rather than a single resonance, is to be
bootstrapped, as is clear from Fig. 1. Further-
more, as will be shown later on, small variations
in the input p mass and width have a modest effect

on the parameters of the output trajectory. Hence
we can safely use the experimental values of v~

and I"~ throughout and consider them as boot-
str apped values. '4

The zeros vs of D', (v) as a function of / and vz
are given in Fig. 2. The zeros v, =(vs), , corre-
spond to the optimum value of v~. The values of
v, of Fig. 1 as well as the corresponding values of
(vz), , are given in columns 8 a.nd 9 of Table III.
As seen from Fig. 3, the WE criterion leads to
the same choice of v, as does the minimum slope
cr iter ion.

A. The Slope and Intercept

The variation of the p trajectory with the value
of the intercept az(0) is shown in Fig. 4. Experi-
mentally the intercept of the p trajectory lies in
the range" 0.46 ~ o.~(0) ~0.58, which corresponds
to 0.0752 ~ a~~0.0585. For this range of values

-0.5
I

2.5-

0 0.5
s~ in (GeV)

I.O l.5 2.0 2.5 3.0

56-

Re Dq(

2.0-
40-

l.5-

I.O-

0.5-

0 8 I 6 24 32 40

Pg in {m~) 2
0-

FIG. 1. The input and output p Regge trajectories
corresponding to the central set of parameters n= 7,
R, =3, v = —25, v =v =25, v& =6.18, I'& =0.167,
0.', (0) =0.58 and only a p term retained in A, ~ (v). v, is
the optimum root of ReD& (v); that is, for v~ = (vz)opt,
HeDi{v&) =0; st =4( t+1) ~

-8-, 'I I I I I I I I

-6 -5 4 -2 -I 0
Matching Point VF

FIG. 2. The roots vz of ReD', (v) as a function of E

and vz. The parametrization is the same as in Fig. 1.
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FIG. 3. P, (7, v&) as given by Eq. (46) is plotted as a function of l and vz. The parametriz ation is the same as in
Fig. 1. P, (n, vz) is the percentage difference between the values of the input and output partial -wave scattering ampli-
tudes at v~.

of [n
& (0}],„, the input and output values of the

slope and intercept of the trajectory are in good
agreement as can be seen from Figs. 5 and 6
respectively. %e see however f rom Fig. 7 that
the output values of the p mass and width are
most nearly self-consistent for values of [nz(0)]
lying in the high end of this range . The s lope
seems to be boot strapped most accurately for
(e~ },„=( e~ ),„,= 0.055, which corresponds to [n~ (0)],„ s~ in(GeV)2

IW 2.0 2.5 3.0 3S-.5 0 .5 I.O 4IO 4.5 5,0 SP

0.605. From Figs. 6 and 7 we then find that
[nz(0)],„, =0.608, (vz),„,=6.12, and(1~);„=0.167.
The results are summarized in Table IV, and Fig.
8. Self -consistency is obviously excellent except
for the p width. This can be improved somewhat by
taking [nz(0)],„=0.68, although there are then

TABLE III ~ The optimum roots of ReD
&
(v), v&

= (v&),&„
corresponding to the optimum values of the matching
point, (vz) ppt as a function of the intercept a

p (0) and
the angular momentum l . The other parameters are the
same as in Fig. 1 and only a p term is retained in A & (v)

Fore&(0)=0.58 these values can beobtained from Fig.
2 by the minimum slope criterion, or equivalently, from
Figs. 2 and 3 by the WE criterion. All quantities are in
units with h =e =m ~ = 1

2.5-

2.0-

I 5
V)

4
I .0

0.5

0.0 -6.00
0.5 -1.75
1.0-3.00
1~ 5 —2.25
2 ~ 0 -I ~ 75
2 ~5-1.25

7
-0 ~ 724

5.68
11~ 73
18.19
24.45

np(0)=0. 48
(vy )ppf vg

6.00
2.75

-3.25
2 .50
1 ~ 75
1,35

7
2 + 37
6 .02

14.37
22.41
35,64

n(0)=0.58
( vE) ppt

-6.25
—4.50
-3 ~ 50
-2 ~ 75
—2 ~ 25

1 ~ 70

7
5.04
6.51

18.94
37 ~ 10
69.35

p(0)068(vs)v
0
-8 0

~ I I ~ I 1 'I I I ~ I 1 I

l6 24 32 40 48 56 64 72

pp in (m ~) 2

FIG. 4. The pRegge trajectory as a function of the
input value of the intercept ep(0). Theotherparame-
ters are the same as in Fig. 1, ReD

& ( v& ) = 0 for v&

(vp )ppt I and s t
=4 (vr + 1
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TABLE IV. Input and output values of the parameters that bootstrap the p Regge trajectory.
(E'p)~ (E'p),„, is obtained from Fig. 5. [ep(0)]~ is then calculated through Eq. (42). Subse-
quently [np(0)]0&tp (vp)0+t and (I'p)ppt are Pead off from Figs. 6 and 7. The other inyut Param-
eters are n=7, 8& ——3, vE ——-25, va= vDR

-—25, vp 6 18 I'p 0 167. The pole positions zo; are
given in Table I and only a p term is retained in A,~ (v). mp and Amp are the p mass and full
width in MeV, and np=dnp(s)/ds is given in (GeV)

E'
p

[(m,)-']
in out

0-'p (0)
(6)

ln out

P P
m

p Amp cL
p

[(m ~)~] (dimensionles s) (Me V) (Me V) [(GeV) 2]

in out in out in out in out in out

0.055 0.055 0.605 0.608 6.18 6.12 0.167 0.119 750 747 100 71 0.701 0.701

slightly larger discrepancies in the input and out-
put values of the other quantities, as well as
poorer agreement with the experimental value.
The bootstrapped value of the slope is somewhat
small compared to the value obtained from fitting
scattering data."

B. The Left-Hand Poles

As was pointed out previously, the Balfzs meth-
od should be used with a large number n of poles
approximating the l.eft-hand cut. In bootstrapping
a resonance this is advisable, but in bootstrapping
a trajectory it is absolutely necessary. From Fig.
9 it can be seen that the effect of increasing n is to

lQ ].
,„ in (Gev)

0.8
I

-L5

"straighten out" the trajectory. As n was varied,
the input mass and width of the p meson were kept
fixed at their experimental values. Although this
is justified for n= 7, as discussed above, it is not
justified for low n values where the bootstrapped
p width is several times larger than the experi-
menta, l value. '' On the other hand, using the boot-
strapped values of the mass and width of the p
meson as input improves the low-n trajectories
only in the vicinity of 1 = I but further distorts
these trajectories as a whole. Although, a priori,
there are no objections to nonlinear trajectories,
nevertheless, since the input trajectory is a linear
one, we cannot even start to hope for a bootstrap
before the output trajectory is also linear.

It is interesting to note that the variation of vp
with n appreciably levels off to the experimental

-I.4

.IO .7-

.09
.6-

.08-

4.
& .07-

.06-

C)-0.9 o
I

-0.8

.5-
0

O
~ .4-

,05-
0.7

0.6

i2-

.04;.04 .05 .06 .07 .08 .09 .IO
.6 .7 .8

(6 );„

FIG. 5. The inpnt vs output values of the slope, & p,
of the p Regge trajectory. (e p)' is obtained through
Eq. (42) and (&p) &

is obtained from Fig. 4. Other than
[~p(0)]. , the input parameters are the same as in Fig. 1.

FIG. 6. The input vs output values of the intercept
n p(0) of the p Regge trajectory. [n

p (0)] „,= [& (& =—1)]
can be obtained from Fig. 4. Other than [~p(0)];„. Other
than [0.'P(0)];„, the input parameters are the same as in
Fig. 1.
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0.18 -6, 8 -0.5
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0 0$ I.O 1.5 2.0 2.5 3.0 K5 4.0 4S
I I I I I I I I I
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1

0.16- -6.6
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0.02-
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FIG. 9. The p Regge trajectory as a function of n, the
number of poles approximating the left-hand cut. The
pole positions corresponding to the different values- of
n are those given in Table I. The other input parameters
are the same as in Fig. 1, ReD, (v&) =0 for v~=(vg)ppt.

0-
0.1 0.2 0.5 04 05

[(Z, (oi],„
0.6

-5.0
0.7

2.5-

- 0.5 0 0.5
sp in (GeV)

lg) 1.5 2Q 2.5 5.0 M

2D-

l.5-

I.O-

0.5-

FIG. 7. The output values (vp),„, and (I p),„t as a
function of the value of the input intercept [n p(0)]. .
Other than [~p(0)]. the input parameters are the same
as in Fig. 1.

value at n= 7. For l =0, the form of the function
D', (v) suggests that vz (—7 for n= 7 and n 6. =

This would indicate a possible linear decrease of
the n = 6 and n= 7 trajectories below l = 0.5. Un-
fortunately the range of validity of the N/D equa-
tions in the present calculation is v) —(v~+1)
= -7.18, and thus vJ 0 cannot be determined in this
case. For n =2 and n =4, v, , is large and positive,
and hence we did not venture to extrapolate these
trajectories in between l =0.5 and l =0. For n =5
and l = 0, the optimum matching point is v„= -5.10,
and there is no corresponding zero of the denomi-
nator function; instead D,'(v) has a minimum at about
v = 25. For n = 3 and l =0 the situation is even
worse, and it is not at all clear what is the opti-
mum value of v„or the corresponding value of v, 0.

Figure 9 leads to the conclusion that the effect
of the various approximations in the Balfzs meth-
od can be smoothed out by the use of a large
number of poles to approximate the left-hand cut.
Furthermore it is seen that n=7 is a large enough
value to produce appreciable leveling off of the
variation of the results with n.

-8 0 8 16 24 32 40
in (m~)

2 C. Effect of Other Parameters

FIG. 8. The input and output p Regge trajectories
which give an optimum bootstrap in the angular momentum
range 0 (n p(s) ~2.5. The input parameters are n=7,
Ri =3, vz -—-25, vD -—vD&=25, (v ). =6.18, (I"p)~ =0.167
and [n p(0)]. =0.605. Only a p term is retained in Ai&( )(v)
The output values are (vp),„,=6.12, (I'p) „,=0.119, and
[&p (0)] pt 0 608 The slope is ex actly bootstrapped
with the value (& p);„=(ep), , =0.055, ReD&(v&) =0 for

F ( F)ppt '

We have studied the effect on the output trajec-
tories of varying the parameters v~, v~, and v~.
These chiefly affect the degree to which the tra-
jectories tend to depart from linearity and turn
over for l )1.5. In particular, there is almost
no sensitivity of the l = 0.5 intercept to any of the
variations. This is, in fact, easily understandable.
From Eq. (29), we note that the input form of the
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amplitude analytically continued in l has a pole
at o.(s) =/. For n = —,', the form of our input tra-
jectory assures us that this occurs for v= —2,
in the region in which the matching points are
chosen. Thus the matching procedure rather
directly forces the denominator function for + = —,

'

to have a zero for v=-2, i.e., the output trajec-
tory satisfies o(v=-2) = —,', regardless of the
values of the various parameters. For larger
values of l, the point at which n(s) =/ lies rela. —

tively far from the matching point, so that con-
sistency between the input and output trajectory
for larger l is not directly enforced by the match-
ing process, and may depend on the values of the
various parameters. Since, as is well known and
as we have seen in our earlier papers, the effect
of inelasticity tends to be attractive, it is not
surprising that one finds that reducing the effect
of inelasticity by either raising vD or lowering A f

causes the output trajectory to turn over more
quickly.

-0.5

2.5-

0 0.5 1.0 l.5 2.0 2.5 3.0 K5 4.0 4.4

sg in (GeV)

1& =D.e

2.0-

l.5-

1.0-

0.5-

FIG. 11. The p Regge trajectory as a function of I &.
The other input parameters are the same as in Fig. 1.
Re D t (vr) = 0 for vz = (vz) ppt

0 I I I I I I I I I

0 8 t6 24 32 40 48 56
in (m~)

2

D. Variation with the p Mass and Width

-0.5

2.5-

0 0.5 l)0 1,5 2,0 Q5 3„0 5P
sg in {GeV)2

2.0-

l.5-

As can be seen from Figs. 10 and 11, respec-
tively, the variation of the trajectory with the p
mass and width is rather small except near l =0.
This justifies using the experimental values of
the p mass and width as input rather than the boot-
strapped values which are slightly different. It
should nonetheless be noted that with the boot-
strapped value of the p mass corresponding to v&

= 5.49 as input, the trajectory is no longer straight
for l&0.5.

In Fig. 10 the p mass is varied while the reduced
half-width is fixed at the central value of Fp 0 167.
Thus, as can be seen from Eq. (26), the input p
midth does not remain constant as the input p mass
is varied. If F& is constrained to vary mith vz so
that the input p width is held constant, the result-
ing trajectories are hardly any different from
those of Fig. 10.

The strange and unphysical behavior near v=0
of the trajectories corresponding to vz = 5.6 and
5.8 is presumably to be attributed to the fact, dis-
cussed above, that the trajectories are essentially
constrained to pass through l = ~ near v= —2. If
it mere not for this constraint, these trajectories
would presumably pass through l =-,' farther to the
right, so that one would have the normal situation
of a trajectory with positive slope and negative
second derivative throughout the region of interest.
In any event, this difficulty is not present when vz
has its physical (and bootstrapped) value of 6.18.

0.5-

0-,
-8 0 8 l6 24 32 40

Pp in ( m~)2.

FIG. 10. The p Regge trajectory as a function of v&.
The other input parameters are the same as in Fig. 1,
BeD, (v, ) = 0 for vz ——(vp) ppt .

E. The fo Term

Adding the fo term, as given by Eq. (38b), to
A& (v) produces a more complicated input ampli-
tude. That is, the f, term increases the informa-
tion content of the input. To store this extra input
information, more residues f',I are needed. Thus
the left-hand cut will have to be approximated by
a larger number of poles. As a working hypothesis
we assume that when the input information is prop-
erly transmitted to the N/D equations the resulting
output trajectory will be linear, at least in the
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range of v under consideration. If we now consider
Fig. 9, we find that according to the above assump-
tions, seven residues f',z are needed to properly
store the information contained in the input am-
plitude with only a p term included. Hence more
than seven residues are needed to handle the n.ore
complicated p —f' input.

We do not attempt such a calculation here, but
only note that if the f, term is added to the input,
then the central set of values combined with an
input intercept of 0.605, which with only a p term
produced a bootstrapped trajectory, now leads to
(v~),„,=7.90, and (I'z),„,=0.229. These values
correspond to a p mass and full width of 835 MeV
and 160 MeV, respectively. Both of these values
are expected to diminish with increasing n.

V. CONCLUSION

The present calculation gives considerable sup-
port to both the bootstrap approach to elementary
particles in general, and the N/D method in par-
ticular. In addition it is one more example' ' of
the utility of the Balazs method as a practical cal-
culational procedure. On the other hand, it is
clear that the more sophisticated the calculation,
that is, the more input information there is and
the more the output information required, the
larger will be the number of poles needed to ap-
proximate the left-hand cut. As has been dis-
cussed, the residues of these poles store the in-
put information and transmit it to the output ampli-
tude. With only the contribution of the p term in-
cluded in the low energy part of the input ampli-
tude, it is seen that the results level off as a func-
tion of n around n =7. Thus a 7-pole approxima-
tion to the left-hand cut is sufficient. On the other
hand, if an f' term is added to the input then larg-
er values of n are needed. A Balazs-type calcula-
tion with such a large number of poles may at
first sight look prohibitive. But with the calcula-
tional techniques developed in the Appendixes
and particularly the method of differentiation of
Appendix C, the computer program can be written
in a general form as a function of n, the number
of poles approximating the left-hand cut. Thus
in principle a calculation for a large value of n is
as easy to handle as one for a small value of n.
What needs to be supplied for a given calculation
are the pole positions corresponding to the value
of n desired.

Another conclusion of the present calculation is
that when the approximations are improved, the
method tends to underestimate particle widths
rather than overestimate them as in the case with
many bootstrap calculations. It is not clear wheth-
er this remains true if the f' is included.

Finally it is found that a linearly rising p Regge
trajectory in the angular momentum range 0 ( l
(2.5 can be bootstrapped, leading to a self-consis-
tent slope of 0.701 (GeV) ' and a corresponding
input and output intercept of [oz(0)], =0.605 and

[o.p (0)] =0.608, respectively. This is reasonably
consistent with the experimental evidence on the
intercept of the p trajectory, which allows a value
of o.~(0) a.s large as 0.58."'" The output values of
the p mass and full width are 747 MeV and 71 MeV,
respectively. These are to be compared with the
input experimental values of m~= 750 MeV and
Qmp=. 100 MeV.

It should nevertheless be admitted that although
the variation of the results with n levels off appre-
ciably atm =7, still the values of m and ~m con-
tinue to decrease, though slightly, with z beyond
n =7. On the other hand, and by the same mechan-
ism, the changes in m and ~m due to the contri-
bution of the f' term are expected to decrease
with increasing n and level off for large enough n
to a value that hopefully compensates for the major
part of the discrepancy between the input experi-
mental values and the output values due to an in-
put p term.
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APPENDIX A: THE KERNEL APPROXIMATION

=Q a~x (A1)

Furthermore, since G,(x&) = 50, we have

(A2)

According to the Balazs method, part of the pro-
cess of decoupling the N/D equations is accom-
plished by approximating the kernel (1+xv) ' of
the numerator function integral, by an interpolation
formula such as Eq. (9a). For a given value of n,
the interpolation points fx, , i =1, . . .n) are evalu-
ated by the requirement that approximation (Ba)
be as good as possible in the range of integration
0 (x ((1+v~) '.

Clearly the right side of Eq. (Ba) is a polynomial
of degree n —1 in x, and we designate it by T„,(x).
Thus
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It is then clear that the interpolating points {x,.}
are the roots of the polynomial S„(x), of degree n

in x, which is defined by

S„(x)= T„,(x)[1+xv] —1

n

=Q bkx».
rt= 0

The above considerations lead to the following
simple procedure for determining the set of values
{x,}and the corresponding pole positions {w;}:

(i) The coefficients {a„;k=1, . . . , n —1} of. the
polynomial T„,(x) are determined by a least-
squares fit of T„,(x) to (1+xv) ' in the range 0 ~ x
&(1+v() '.

(ii) The coefficients {b»; k=1, . . . , n} of S„(x)

can then be determined using the relation

ao —1,
~rt ah+ ~ah-j. ~

&a„

k=0
1&4=-n —1
A=n.

(iii) The n parameters {x,.}are then found as the
n roots of the equation S„(x)=0.

The pole positions w,. = I/x, are then seen to de-
pend on three parameters: n, v, and the range of
matching [0, (1+v~) ']. A priori, n should be
chosen as large as is practical, and the range of
matching is rather well defined by the mass of the

p meson. The variation of the pole positions with
the remaining parameter v turns out to be very
slight.

APPENDIX B: THE INTEGRAL OF THE DENOMINATOR FUNCTION

To evaluate the denominator function D, (v) we need to evaluate the integral

1/2 pll
d '

v'+)) (v' —v,)(L'-v)(v'+w, .)(v' —v )' '

For non-negative integer or half-integer values of l we show how this integral can be evaluated in closed
form; for other positive values of l a numerical integration is necessary.

By performing a partial-fraction expansion, this integral can be transformed to

jI(v, t) = p,'(v, N)G, (vo, a „b„c„t)+p,'(v, N)G, (v, a„b„c„t)

E-s
+P,'(v, N)G, (-w,t i a „b„c„t) + Q q„' (v, N)G (vx, a„b„c„t),

m= ].

where where

N=integer part of /, Z, (v) = a, v'+ b, v+ c„
with

pl( N) -&~( o» -
i

p,'(v, N) =E„(v, -w, , v„vx),

p3(v& N) E~( wi) vq vo) vz) )

ar &r cr
zero or integer 1 1 0
half-integer 1 (1 —vx) —v»

Furthermore,

with

Also

N l.

(x —y)(x —z)(x —u)" ' '

V

(n) a) ) b l & c) &
t)

( vI n) rn[Q (v) )] ) ~»

X+1

(vx —vo)(vz —v)(vz+w, )
'

I m

q'+2 (v, N) = Q q»+, (v, N)$»(v, N),m +

m=0, 1, 2, . . . , (810)

„(v,N) = (-1) X+1
(v )m k+1

1 1 1
(v —v )»)-k+). (v —v)m k+). (v +w )») k+

Finally G (n, a, b, c, t) is given recursively by

, —~a b, — pG, (n, a, b, c, t) -(m —2)aG, (n, a, b, c, t) for k eO,
1 [Z(t)]' ' (2m —3)

m —1k t —n

'[&(t)]"'„—(m —1)aG,(n, a, b, c, t) for k=0 and P 40;
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and G, (n, a, b, c, t) is given by

1 (y —v a)) t —ul iw~ ln
[

'(
)]
—„, +~6(n —t) for k&0, t). g0,

-, ~& —(t) tl-')"' -y (t —n)vt) -((t —n)'t) —[P(t-n)+2&]']"'
„ tan ' — -«n

(t ) 2b ~

for k&0, 6&0,

[&(t)]"'—— Wa —— for k=0, P10, &40
P (t —n)

2~a 2at+ b
ln - for 4=0,

p 2a(t —n)

where

t" = Z(n)

0 for e&t
1 for n&t'

= ae'+ be+ c,

=2an+5,

~ =)3/(2~~),

5 = (bn + 2c)/(2v b ),
~ =b' —4ac.

G (n, a, b, c, t) can be calculated recursively in m.

the residues, and implicitly incorporates the WE
criterion.

Although the matching procedure of Qibbons and
Dil. ley is a viable one, we would like to point out
that the original procedure of Balazs can be rather
easily handled by the following method of recursive
analytic differentiation. The utility of the method
is due to the fact that for a class of functions con-
sisting of products and quotients of polynomials
and exponentials, the general form of the nth de-
rivative of the logarithm of the function is very
easy to write down explicitly, while that of the
function itself may be hopelessly complicated.

The mathematics involved consists essentially of
using the Leibnitz rule for the differentiation of a
product,

APPENDIX C: RECURSIVE ANALYTIC
DIFFERENTIATION

n

[u(x)v(x)] " =g "
u " ' (x)v ' (x),

a=o
(C1)

When the Balazs method is used in an n-pole ap-
proximation, the first n —1 derivatives (n deriva-
tives if the WE criterion is used) of essentially
all functions entering into the calculation are need-
ed. For large values of n this can become a pro-
hibitive endeavor. To bypass this difficulty, at-
tempts have been made to modify the Balazs pro-
cedure of determining the residues of the left-hand
poles. Instead of matching the two forms of the
amplitude and n —1 of their derivatives at a match-
ing point v~ in the gap between the right- and left-
hand cuts, Bond" matched the two forms of the
amplitude at n points in the gap, while Qibbons and
Dilley' made a least-squares fit of the two forms of
the amplitude in the gap. The matching procedure
of Bond simplifies the Bala, zs method considerably,
and like the matching procedure of Balazs. leads
to n simultaneous linear equations in the n resi-
dues, but unlike the Balazs method it makes the
choice of an optimum set of matching points a pro-
hibitive job, especially for large values of n. On
the other hand, the least-squares fit of Gibbons and
Dilley is an accurate procedure for determining

d. lnF (x)
(C2)

We have used the following notation for differ-
entiation:

f " (x) = „ n = 0, 1, 2, . . . .(„) d "f(x)
dx

(c4)

prom E(ls. (Cl) and (C2) we obtain a recursive
analytic formula for the (n+ 1)th derivative of F(x),

n

o&" &(x) g(",)o& &(x)g& ~&(.=) o=o, &, o-.

k=0

(c5)

As an example, if F(x) is given by

F(x) =e'"g(x-a, )'(,

then

and the identity

F ' (x) =F(x)G(x),

where the logarithmic derivative G(x) is defined by
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G~ ~(x) =(- l)~At bb~, +Q-

and the derivatives of E(x) can be recursively ob-

tained through Eq. (C5) by using Eqs. (C6) and

(C7). Hence the problem of differentiation has
been reduced to an algebraic one of summation and
multiplication.
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The experimental consequences of an SU(2) U(1) model in which the intermediate-boson
mass m~ is bounded below by 13 GeV are discussed. For the special choice of mz, ——18 GeV
neutral-current effects essentially disappear. The model includes a heavy neutral lepton of
the muon type whose mass is bounded above and below by 1.2 GeV and 390 MeV, respec-
tively. The model is thus relatively more accessible to experimental tests than other gauge
models. Other aspects of the model are discussed.

I. INTRODUCTION

The construction of gauge models of weak and
electromagnetic interactions, initiated by Wein-
berg' and Salam, ' has now mushroomed into a
booming industry. ' The available models more
often than not contain intermediate bosons too mas-
sive to be produced easily with present-day ma-
chines and/or leptons with mass in the range of
several GeV. We have considered an SU(2) SU(1)
model4 which contains bosons and leptons of rela-

tively low mass and which thus may have the (dubi-
ous) distinction of being an early casualty in a con-
frontation of gauge theories with experiment. (Our
previous paper will be referred to as I.)

We list those features of this model that are rel-
evant for experimental investigations.

(a) The lower bound for m~, the mass of the
charged intermediate bosons„ is 13 GeV. This
may be contrasted with the value of 39 GeV for
Weinberg's modeV and a number of other models.
While 13 GeV is the sma, liest mass allowed in this


