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Rev. 132, 2314 (1963), and earlier work cited therein.
22T test this statement, we carried out a trial phase-
shift analysis wherein the Harwell do/d? data were
deleted, and two hypothetical do/d2 points were in-
serted at 10° and 20° c.m. falling on curve O [see Fig.
3(b)] with absolute accuracy +1%. This resulted in a
continuum of solutions as before, with x* vs €, nearly

flat in the range —10°<¢€;<+3° also as before. Thus
the hypothetical data left €; as poorly determined as
ever. However, they pinned down (’Pl)to avaluewhich
was nearly constant throughout the allowed range of ;.
This value was 6(!P;) =—8°+1°, Thus it is possible to
experimentally determine 6(1P1), and compare it with
theory, even though €; remains undetermined.
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A quantitative measure of clustering effects in many-particle final states is defined and its
significance discussed. The results consist of a single curve and a number, {(w,?), which
may be extracted from inclusive or exclusive data where the longitudinal momenta (or some
other variable) have been measured for # particles in each event. The curve is a measure
of the average fluctuation of each event away from the over-all distribution, and is defined
strictly in terms of experimental quantities. The results appear to provide a sensitive test
for models of hadron production. Comparison with Monte Carlo calculations, or with a
statistical reference model which is described, allow one to interpret the results in a fairly
model-independent manner. The analysis is then applied to some 13-GeV/c K™p data.

I. INTRODUCTION

One of the most important issues concerning
multiparticle production in high-energy hadron
collisions is the character of the clustering of
final-state particles within the allowed phase
space. The depopulation of phase space at large
transverse momenta is a well-known and apparent-
ly universal signature of high~energy collision
processes. However, the identification and de-
tailed study of clustering effects in the longitudinal
variables has been carried out only for specific
low-multiplicity final states where exclusive anal-
yses are feasible.!'? Attempts to gain more glob-
al information regarding the importance and char-
acter of clustering in the longitudinal variables
have proved to be inconclusive for two reasons:

(i) The averaging inherent in measurements of
inclusive cross sections appears fc obscure the
longitudinal clustering behavior to such a degree
that models based on very different pictures of
particle production are able to account equally
well for much of the observed behavior of the
data.

(ii) For events of high final-state multiplicity,
it is difficult to make a precise operational def-
inition of clustering. The interpretation of the
longitudinal behavior is strongly colored by as-
sumptions about the clustering effects in the trans-

verse-momentum variables, and by the constraints
imposed by energy and momentum conservation.

In this paper we recast the problem into a form
which suggests a method for analyzing clustering
effects in a general and model-independent manner.
We analyze here some particular low-multiplicity
(n < 8) data at low energy (E <30 GeV), and point
out the ease with which this analysis can be extend-
ed to the highest available energies and multipli-
cities.

Presently, experimental evidence for longitudi-
nal clustering in #-body hadronic final states is
obtained from studies of correlations among two
or more of the 3n- 4 independent kinematic vari-
ables. Specifically, one examines a Dalitz plot,
or a longitudinal phase-space plot (or prism
plot),! or employs some other device for deter-
mining whether or not the final-state particles
tend to bunch in isolated regions of the allowed
phase space for some subset of the available kine-
matic variables.? An example from the class of
4-body final states for which such analyses have
been carried out is K™p~Kpn'n~. (See Ref. 3.)
Two nearly incoherent mechanisms contribute to
the final state, with each resulting in a clustering
of events in separated regions of phase space.
This clustering may be examined by projecting
the data onto a two-dimensional plot, provided the
right variables are chosen (Fig. 1). Dissociation
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of the K~ beam gives rise to events with small
Kurm effective mass and large p7m mass, while
target dissociation populates a region correspond-
ing to small prm mass and large Krm mass. If we
had no a priovi knowledge of the nature of the
clustering effects which might be present, a plot
of higher dimensionality might be required to
discover this behavior.

As the multiplicity grows, the techniques for
choosing revealing kinematic variables and iso-
lating such effects necessarily becomes more
complex and difficult. In general the determina-
tion of whether the final state exhibits clustering
of this sort requires simultaneous examination
of all 3zn-4 independent variables. For large val-

ues of #z this kind of examination becomes intract-
able to carry out in detail. Nevertheless we take
as our definition of clustering the existence of two
or move components in the final-state amplitude
which add incohevently (ov vevy nearly so) by
virtue of the fact that they occupy distinct popula-
tion centers of the (3n —4)-dimensional phase
space. Thus each event corresponds to a point in
phase space, and the question of clustering con-
cerns the structure of the population density of
phase space by a large number of events. This
definition is useful if it is still possible to detect
the presence of different population centers when
the (3n - 4)-dimensional phase space is projected
onto some smaller set of variables.
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FIG. 1. Effective mass of K “n*71~ vs effective mass of pa* 7~ for the reaction K » —~K pn*n~ at 12.6-GeV/c incident
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The procedure followed in this paper is to choose
a kinematic variable, such as the longitudinal mo-
mentum or rapidity, which is measured for # par-
ticles of each event of a class of final states such
as an n-body exclusive channel or n-charged-prong
topological cross-section data. This set of # num-
bers partially defines the event point in phase
space, and provides a means of projecting the sin-
gle phase-space point onto 7z points along the axis
of this variable. With a proper choice of variable,
the distribution on this axis from different regions
of phase space will differ. Therefore, one can
obtain some information about the clustering in
phase space by studying the event-to-event fluc-
tuations about the averaged distribution in this
variable.

For this purpose we propose a statistical anal-
ysis which is a direct measure of these event-to-
event fluctuations, and is computed directly from
the data. For exclusive channels, it provides a
concise statement of the clustering properties.
Inclusively, it provides new information not direct-
ly manifested in the one- and two-particle distribu-
tions. It can also be computed from models and
should be a serious challenge to models committed
to a specific pattern of clustering.

Consider a set of N events where, for each
event, n longitudinal variables are measured.

This could be, for example, the lab momenta or
7=~ In(tan 36) values of the z charged tracks in
the n-prong topological cross-section data, or it
could be the rapidities of the = final particles (or
some subset of particles) in a specific exclusive
final state. The distribution of these nN numbers
(we shall call them rapidities for definiteness) is
p»), where p(y)Ay is the fraction of the nN rapidi-
ties which fall between y~ 3Ay and y + 3Ay. This
average distribution (averaged over the N events)
provides an unambiguous and model-independent
reference to which a clustering measure may be
defined. The analysis is designed to answer the
question, does each event produce a set of # rapid~
ities which follow p(y)? We construct a quantita-
tive measure of the average event-to-event fluc-
tuations which can be easily compared with the
random statistical fluctuations which would result
if every event followed p(y).

With the aid of a simple example, it is easy to
see how such a fluctuation measure can shed light
on the question of clustering and why a statistical
analysis is necessary. Consider the problem of
discriminating between two general pictures of
particie production. In the shert-range order
picture, the presence of a particle with a given
value of y =3, does not affect the probability of
finding cther particles at values of y far from y,.
Then, to a good approximation, each event follows
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p (), and the fluctuations will be mainly statisti-
cal. This leads to the same fluctuation results as
found in multiperipheral models which are charac-
terized by secondaries which tend to be uniformly
spaced in rapidity. Again, the event-to-event
fluctuations will be small. This should be con-
trasted with models which view particle production
as the decay of massive states. Then many of the
secondaries would appear in a region narrower
than p(y), if several such mechanisms are pres-
ent. An extreme example is a sample in which
some events proceed by beam excitation, and others
by target excitation. This would give rise to

large fluctuations, since the distribution of beam
or target excitation by itself differs from the
averaged distribution, at least for some choices
of the projection variable.

The need for a statistical analysis can be seen
from an extreme fragmentation model. Suppose
particle production proceeds by the formation of
massive objects whose “decay” distributions are
isotropic in the object’s rest frame. The require-
ment that the decay distribution be consistent with
the experimentally observed transverse momentum
behavior implies that the full width at half maxi-
mum of its distribution is from 2 to 2.5 units of
rapidity. Of course, it is easy to imagine distri-
butions which are wider in rapidity, say, due to
polarization effects. But this value is already
close to the width of the pion rapidity distributions
for E_, <30 GeV, and to the width of the high-mul-
tiplicity semi~inclusive distributions observed at
very high energies. Thus, if several mechanisms
are present, even if they are well separated in the
(37 — 4)-dimensional phase space, the contributions
to p(y) are expected to overlap. Therefore, it is
impossible from the rapidity distribution to assign
a mechanism to each event (assuming that several
exist), but it is still possible to use a statistical
measure to detect their existence. It should be~
come intuitively clear that such a fluctuation mea-
sure is more sensitive to clustering than to short-
range correlations.

In Sec. II, we proceed directly to the definition
and computation of the fluctuations. Then we
compare the analysis with some techniques of
“distribution-free” statistics, discuss the effect
of energy-momentum conservation, and outline a
statistical reference model with which to compare
the data. The details of the reference model are
included in the Appendix.

In Sec. III, we return to the problem of inter-
preting the results of the analysis, and explicitly
study some 13 GeV/c K™p data.® Applications are
given to both inclusive and exclusive reactions.

The results of the analysis are summarized in
Sec. IV.
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II. EXPERIMENTAL DETERMINATION

In the Introduction, we defined clustering in
terms of the existence of distinct population cen-
ters in the full phase space of an #-body final
state. We now describe a statistical analysis for
clustering which involves studying the fluctuations
of the distribution of rapidities of each event about
the average distribution.

Consider again a data sample of N events, where
n rapidities (or other kinematic variables) are
measured in each event. The distribution density
is denoted by p(y), and the cumulative distribution
function is defined by

F)= [ ayp), )

where F(—«)=0and F(+~)=1. A convenient mea-
sure of the fluctuation of the distribution of event
i (¢=1,..., N)is based on the quantity

(9 =[S, () = F()]*p (9). @)

F(y) and p(y) are average distributions obtained
from the entire sample of N events. The empirical
distribution function, S, ;(y), is defined for each
event:

S,.,,-(y)=£ (G=1,...,N), 3)

if in the 7th event there are # particles with rap-
idities less than or equal to y, and consequently

n — v particles with rapidities greater than y.

S, () is a step function with # steps of height 1/z
at each of the rapidities. Thus, theaverage of
the empirical distribution function over the N
events is

i,—?;lsn,i(y)s (S, (9))=F(y), ()

where (- ) in this paper means “average over the
sample of N events.” Equation (4) is just the
experimental definition of F(y).

Two important quantities may be defined from
Eq. (2). The first is the average fluctuation den-
sity

M(y)=([S,(»)=F(3)]2)p(y)
=[(Su(9)2) =<Sa(»)) 2p(y) . (5)

M (y) is the average fluctuation of the empirical
distribution function away from the average cumu-
lative distribution weighted by p(y). The choice of
this combination of factors is discussed below.
The second quantity is the statistic*

wn,sz=fdyu.~(y), i=1,...,N (6)

which can be calculated for each event. The aver-

age of w,? is related to M(y) by
(wn2>=fdy M(y). (7)

We found the first moment of the w,? distribution
to be the most useful.

The experimental determination of M(y), p(y),
and (w,?) can easily be done with a single pass
through the data. Given the values of the # rapidi-
ties (or other variables) for the event, accumulate
bin by bin the averages (S,(y)), p(»), and (S, (y)?).
As discussed below, it is sometimes useful to
accumulate the distribution of the sum of the y’s
for each event. We call this distribution p(z),
where z is computed for each event:

z=i} ¥ . (8)

i=1

(For example, in an exclusive reaction where y is
the longitudinal momentum, p(z) is a 6 function.)
Finally, evaluate M(y) and {w,?)according to Egs.
(5) and (7).

Formally, w,? in Eq. (6) is identical to the
Cramér-von Mises® statistic, which can be ap-
plied to goodness-of-fit problems in a way similar
to the y? test. The Cramér test possesses some
very nice properties.*® Suppose #z independent
random rapidities are generated, each following
a probability density p (y) with cumulative distribu-
tion F(y). Then the distribution function of w,?
does nof depend on p(vy), i.e., it is distribution
free. Thus, (w,2)also does not depend on p(y),
and, as shown in the Appendix, (w,?)=1/6%. In
the case where the # independent rapidities are
generated by one of a sum of different distributions
which average out to p(y), the fluctuations are
larger on the average, and {w,?)>1/6xn. Then
{w,?) would be a measure of the difference of these
distributions from the over-all distribution, and
the reference value {w,?) =1/6 % would provide a
model~-independent reference with which to com-
pare the data.

Unfortunately, the statistical independence of the
n rapidities is a crucial assumption in the Cramér
test, whereas the rapidities in both exclusive and
inclusive final states are strongly constrained by
energy-momentum conservation. Even in the case
of a single population center in phase space, (w,?)
is no longer distribution-free, but depends on the
effectiveness of these constraints and the shape
of p(y). In order to conserve momentum and
energy, the rapidities are spaced out over the
p(y) distribution in such a way that the fluctuations
are smaller than obtained for a truly random
sample. In exclusive final states analyzed in
terms of longitudinal momentum, the numerical
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value (w,?) is reduced to about 1/2 the 1/6#
value.

The most direct way of incorporating energy-
momentum conservation is to perform Monte Carlo
simulations, compute M(y) and {w,’), and then
compare with the data. The requirement for such
a reference calculation is that the y; for each
event follow the same probability distribution,
subject, of course, to the constraints of energy-
momentum conservation.

The dependence of {(w,?) on the shape of p(y) is
rather weak, so an accurate fit to p(y) is not need-
ed. It therefore proves possible to define an
accurate reference value for {w,?) which repre-
sents no clustering, but in which energy-momen-
tum conservation effects are accounted for, and
{w,?) is still sensitive to more interesting cluster-
ing effects. (Short-range correlation effects con-
tribute very little to {w,?).) Thus, in practice it
is possible to regain the elegance and power of
the Cramér test. With the new advances in event
generation techniques,® it is quite simple to ap-
ply this procedure up to the highest experimentally
accessible energies and multiplicities.

We have found that a second technique for obtain-
ing reference values for (w,? is also useful. This
is a statistical model in which the constraints are
approximately imposed. The model described
here is the simplest in a class of models, and it
will be clear that generalizations and modifications
are possible.

The idea behind the analytic model is to use the
data for p(z) [p(z) is the distribution of the sum of
rapidities defined in Eq. (8)] to define the con-
straint. In the statistically-independent (Cramér)
case, p(z) is an n~fold convolution of p(y). For
exclusive reactions where y is the longitudinal
momentum, p(z) is a 6 function. With this con-
straint, longitudinal momentum conservation is
exactly accounted for, but energy conservation is
ignored. The effects of energy conservation some-
times further decrease (w,?) by as much as 10%.
For other longitudinal variables, and in inclusive
reactions, p(z) will be some distribution which
measures the effectiveness of energy-momentum
conservation in constraining the rapidities. In this
simple model we do not include the second con-
straint. Moreover, if several mechanisms are
present and a variable like rapidity or -~ In(tan$6)
is used, p(z) may be broadened over that required
by energy-momentum conservation. This will
artificially increase the reference value for (w,?).
For this reason, this model only gives an upper
limit for the no-clustering value of (w,?). In de-
tailed analysis of data we have found the Monte
Carlo technique for obtaining a precise value of
the statistical reference to be essential. The

analytic model does, however, provide useful
insights into the analysis. The details are includ-
ed in the Appendix, and one solution to the model
is presented in Table I. In this case, p(y)is a
Gaussian with standard deviation ¢,, and p(z) is
also a Gaussian of standard deviation ¢,. Then
(w,?) depends on 7 and 7 =0,/5,. When =7, the
Cramér limit is recovered. Table I gives (w,?) as
a function of » and #.

III. INTERPRETATION OF M(y)—A STUDY
OF SOME 13-GeV/c K'p DATA

A. Exclusive Four-Body Final States

The fluctuation analysis is appropriate for detect-
ing clustering from projections of the (3z—4)-di-
mensional phase space. For a good choice of
variable, the distributions projected from different
mechanisms will be different, even though they are
expected to overlap. The advantage of the fluctua-
tion analysis is that one can test for the presence
of overlapping distributions without assigning a
specific mechanism for each event. Thus, to a
degree, the difficulties of a complete multidimen~
sional phase-space analysis are avoided.

We now apply the fluctuation analysis to two
exclusive channels®

Kp-~Kpn'n, 9)
Kp-K°pn°n~ (10)

at 12.6 GeV/c. Our analysis here is intended to
show how the fluctuation analysis works in some
channels which are well understood on the basis
of previous analyses.

The mass scatter plots in Figs. 1 and 2 already
indicate the general structure of phase space for
these reactions. In reaction (9) the Kpn*7~ final
state presents two well-separated components

TABLE I. Gaussian reference values for (wnz) . ris
the ratio of the standard deviation of p(z) to the stan-
dard deviation of p(y), n is the number of measured
tracks. See the Appendix for the derivation of the
Gaussian reference. The table entries are 1000 {(w,? .

rAn
n 0 0.2 0.4 0.6 0.8 1.0
3 26.8 27.9 31.2 36.8 44.8 55.6
4 19.7 20.6 23.1 27.4 33.5 41.2
5 15.6 16.3 18.4 21.9 26.8 33.3
6 12.9 13.5 15.2 18.2 22.3 27.8
8 9.60 10.0 11.4 13.6 16.7 20.8

10 7.64 7.99 9.06 10.8 13.4 16.7
12 6.34 6.64 7.54 9.03 11.1 13.9
14 5.42 5.68 6.45 7.74 9.565 11.9
16 4.74 4.96 5.64 6.77 8.36  10.4
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corresponding to diffractive excitation of either may be contributing to each of the final-state
the beam or the target particle. The former is components which we have just described. Thus
characterized by a low-mass enhancement in the the Dalitz plot for the low-mass K77 enhancement
Knrm invariant mass (the @ “meson”) and the latter in both reactions (9) and (10) is composed of over-
by a similar enhancement near threshold in the lapping bands of K*(890)7 and Kp. These, how~
pwm invariant mass. As seen in Fig. 1, little over- ever, are highly coherent. They do not populate
lap occurs between these two components. This isolated regions of phase space. In our language
is apparently a two-mechanism case, satisfying they constitute short-range correlations and do not
the definition of clustering given above. In reaction contribute separately to the clustering content of
(10) (Fig. 2), only one of these components is ob- these two reactions.
served (here the prm system cannot be produced In Figs. 3 and 4 we compare the distributions
by the exchange of vacuum quantum numbers). p(v) and M(y) for the reactions (9) and (10) with
This, to a good approximation, is a single-mecha- one-mechanism Monte Carlo calculations. Here
nism, or no-clustering case, and these two reac- we choose as our variable the longitudinal momen-
tions should offer an excellent laboratory for tum in the c.m. frame: y =k;™ . The purpose of
testing the ideas outlined in Sec. II. They are the Monte Carlo calculations is to provide a ref-
characteristic of (but not necessarily identical to) erence in which the fluctuations are purely sta-
the kinds of effects one would like to be able to tistical, but in which energy and momentum are
recognize in more complicated final states. conserved.

We point out that several different amplitudes As we have discussed above, the effect of ener-

S
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FIG. 2. Effective mass of K 7m0 vs effective mass of pr~7° for the reaction K p —K %7~ 7" at 12.6-GeV/c incident
beam momentum.
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gy-momentum conservation is to reduce the ref-
erence value of {w,?) by about a factor of 2 from
the distribution-free value of 1/6 n obtained if the
constraints are not present. When the constraints
are imposed, it is not mathematically true that
(w,?) continues to be a distribution-free quantity.
However, the great convenience of this measure
of clustering is that, for a given reaction and
choice of y, the reference value of {w,?) is very
nearly independent of the shape of p(y). The only
reason to reproduce the data is to compare the
reference curves for M(y) with the data in order
to see where the fluctuations are largest. No
attempt need be made to fit p(y) in detail. In every
case shown here, the reference value of (w,?)
differs by less than 2% from that obtained simply
from events distributed according to Lorentz-in-
variant phase space with transverse-momentum
dependence exp(—3%,%) on all final-state particles.
The fake data for comparison with reaction (9)
were obtained by modifying Lorentz-invariant
phase space with exponential cutoffs in the trans-
verse momenta of each of the mesons ~exp(—3k;%),
and a similar cutoff on the proton-to-proton mo-

Kp—Kp m*m-

data
4487 Events
--—= 1-Mech. Fake

>
a
15
> 10
>
X
8
3 5

y =k{"™(GeV/c)
(a)
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mentum transfer ~exp(3¢,,). In the case of reac-
tion (10), we achieved an adequate fake representa-
tion of p(y) with a single multiperipheral diagram
involving Pomeranchuk exchange at the proton
vertex.

For reaction (9) (Fig. 3) the value {w,?) for the
data is appreciably larger than for the fake: 0.0172
compared with 0.0143. The errors on these num-
bers are much less than 1%.” Referring to Fig.3(a),
it can be seen from the M(y) distributions that
the larger value of {(w,?) in the data is due to fluc-
tuations which are significantly greater than the
statistical case for k5™- near zero. [Recall that
{w,?) is the area under the curve M(y).] This is,
in fact, the region in which comparatively large
fluctuations are expected in this two-mechanism
example. The produced pions are almost always
slow in the c.m. frame, and it is here that the two
population centers, corresponding to beam and
target excitation, overlap when projected onto the
k3™ axis. In contrast with this result, the fluc~
tuation density M(y) for reaction (10) [Fig. 4(a)],
which we have described as a single-mechanism
case, is only slightly above the reference value,

Kp—=Kp ¥

Ignore Proton
data
4487 Events
----1-Mech. Fake
B
| |
| I
| |
A= | |
> |
et |
|
.2 f
|
-2 Val O N 2
\
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/ \
/ \
/ \
v \
3 40 —]
>
x /‘\\
o 20— /’ N —
o /
o / <L
~ N
~
= | |
-1 -5 0 5 1

y= kcL'm'(GeV/c)
(b)

FIG. 3. Fluctuation analysis for Kp —K pnt7™ at 12.6 GeV/c. The histograms are the distributions p (y) and M(y)
for the data, and the smooth curves are the results of the analysis applied to the single-mechanism model described
in the text. In Fig. 3(a), all four final-state particles are included in the analysis, while in Fig. 3(b), the final-state
proton is ignored. Note the expanded horizontal scale for the M(y) distribution in Fig. 3(b).
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which reflects the dominance of beam excitation.
Note that the strong peaking seen in Fig. 3 of M(y)
at k$™- = 0 is absent in this case.

In both reactions (9) and (10) the proton distribu-
tion is strongly peaked in the backward direction
regardless of the production mechanism. The
proton contributes very little to the enhanced fluc-
tuations above statistics in reaction (9). Thus it
is of interest to carry out the analysis ignoring the
proton in each event—examining only the fluctua-
tions due to the meson distributions. The results
are shown in Figs. 3(b) and 4(b). The relative val-
ues of the M(y) and their respective references are
essentially unchanged, but the sensitivity of (w,?)
to the clustering in reaction (9) is greatly in-
creased. This is simply because the proton con-
tributes only statistical fluctuations to (w,,"’). Again,
the value of {w,?) for reaction (10) indicates little
clustering when compared with the reference
calculation.

We conclude that the analysis in terms of (w,?)
and M (y) is adequately sensitive to the known
clustering content of these two 4-body channels,

Kp—=K°p 7 1°

data (888 Events)
B --——1-Mech. Fake

ply)

15r

1000 x M(y)

y=ki™ (Gev/c)

(a)

and that this sensitivity is not diluted by the pres-
ence of contributions due to various forms of
2-body resonance production (i.e., short-range
correlations). Our hope, of course, is to be able
to apply this analysis to more complicated situa-
tions with meaningful results. In the remainder of
this section, we investigate its sensitivity to clus-
tering in events of higher multiplicity, including
the case in which the final states are not fully
identified (inclusive data).

The values for {w,2) from the exclusive data and
various model calculations are summarized in
Table II.

B. Kp>Kpn'nn°

When one is confronted with an 11-dimensional
phase space, it is not obvious which projections of
the data to study. Because of its success in the
four-body analysis, we show the scattergram of
the K~ r~n° vs pn*7~n° invariant masses in Fig. 5.
There is no clear separation like that observed in
Fig. 1, but the uniform K~7*7~7° mass distribution
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FIG. 4. Fluctuation analysis for Kp —K% 7™#%, at 12.6 GeV/c.  The data are histogrammed. The single-mechanism
model, described in the text, gives the smooth curves. In Fig. 4(a) all four final-state particles are included in the
analysis, and in Fig. 4(b) the proton is ignored. The horizontal scale for M(y) is expanded in Fig. 4(b).
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could be due to the overlap of several mechanisms. TABLE II. Values for (w,%: exclusive analyses of
If there is clustering in this reaction, Fig. 5 does 12.6-GeV/c K p final states. The model calculations
not prove it. are described in Secs, IIL A and IIIB., The one-mecha-
We begin by applying the fluctuation analysis to nism reference model results are given immediately
! s ps below the experimental data.
two model calculations for this final state. The

first is a single-mechanism model where the p and

K~ spectra are generated with the distributions All ;ﬂizi

exp(37,,) and exp (3#4,), respectively, and the pion

distributions are all generated with exp(—3%&;%). K- prtn 0.0172 0.0351

This is a typical one-mechanism reference model, Model 0.0143 0.0276

and the result, {w,2?)=0.0121, is quite insensitive

to changes of details. The second model is a frag- Rpnn~ 0.0147 0.0295

mentation picture where half of the events corre- Model 0.0143 0.0277

spond to beam fragmentation, and the other half o

to target fragmentation. The contributions of each K pm 0.0154 0.0290
: i Model 0.0121 0.0210

of these mechanisms to p(y) are shown in Fig. 6,

where it is seen that the beam and target excitation Two-mechanism 0.0158 0.0305

distributions strongly overlap when projected on model

kf™-, But the difference is enough to give a size-

-
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M(Kwww) vs. M(prmm) Q
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No. per .04 Gev

FIG. 5. The Knnm effective mass plotted vs pnnm effective mass for the reaction K p —K pr*r~n at 12.6 GeV/c.
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able increase in the fluctuations, and (w,?) =0.0158
for this two~mechanism model. The distributions
p(v) and M(y) for these two models are shown in
Fig. 7(a). Just as in the four-body reactions, the
M (y) curves are essentially identical except near
k§m-~ 0, where the fluctuations are greatly en-
hanced in the two-mechanism case. The analysis
of these two models is repeated in Fig. 7(b) ignor-
ing the proton. Again, the fluctuations become
more obvious because the clustering effects are
reflected mainly in the meson distributions.

In Fig. 8, the data for this 5-body final state are
compared with the single-mechanism Monte Carlo
model. See Table II for the values of (w,?) .
Although the mass scattergram in Fig. 5 is not
conclusive, the fluctuation analysis shows that
this final state is strongly clustered. Detailed
examination of this final state by more convention-
al techniques reveals the presence of several very
different production mechanisms which contribute
to the observed fluctuations in this channel.! For
practical reasons these more differential analyses

Kp—Kp+ 31

—— 1-Mech. Fake
-———2-Mech. Fake
>
a
30—
~ 20k
>
3
x
o 10
o
)

y=K™GeV/c)

(a)
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p(y)
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Kp + 31
2-Mech. Fake

--—- Target Fragmentation
— Projectile Fragmentation

ply)

y= kCL'm'(GeV/c )

FIG. 6. Contributions of beam and target excitation to
the distribution p (#¢™) in the two-component model for
Kp—Kp + 3m.

Kp—sKp+3m
Ignore Proton

—— 1-Mech. Fake

-—-—-2-Mech. Fake

B
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2
. 40
>
b3
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o

-1 -5 ¢} 5 1
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FIG. 7. Fluctuation analysis applied to models for Kp —Kp3m. The solid curves correspond to the one-mechanism
model, and the dashed curves to the two-mechanism model. In Fig. 7(a), all 5 final particles are analyzed, and in
Fig. 7(b) the proton is ignored. See Sec. III B for a description of the models. In Fig. 7(b) the horizontal scale for M(y)

is expanded.
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are limited to relatively small multiplicities.
However the fluctuation analysis can be used to
detect such behavior in a simple and straightfor-
ward way. Furthermore, it appears to gain in
sensitivity as the multiplicity is increased without
any additional practical complication.

C. Inclusive Analyses

The main requirement of a variable for the
analysis is that projections of different population
centers of phase space produce slightly different
distributions. Thus, 1=-In(tan36) and 2}® are
expected to be good variables for studying longitu-
dinal clustering. Since particle identification is
not necessary for evaluating these variables, fluc-
tuation analyses on topological cross-section data
are possible.

An inclusive analysis involves projecting phase-
space volumes of different dimensions onto the 7
(or B)*®) axis. A priovi, it is difficult to know
whether such a projection will wash out the fluc-
tuations due to clustering. As a preliminary step
in the inclusive analysis, we add together the data

Kp—=Kp mrmrm°

—— data (4106 Events)

-——-1-Mech. Fake

ply)

20

10—

1000 x M(y)

y=k[{™(Gev/c)
(a)

p(y)
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for the Kpn*r™ and Kp7*r~#° final states, ignor-
ing the 7° in the latter case. We also ignore the
fact that the particle identities are known here,
taking 7 as our projection variable (y=7, and 6 is
defined in the laboratory frame). These two chan-
nels together make up about 15% of the 4-prong
data in 13-GeV/c K collisions. Both have strong
clustering, although the patterns differ in these two
channels, and of course, the two channels have dif-
ferent multiplicities of final-~state particles. In
Fig. 9 we have compared the summed data for these
two channels to a similar sum made up from the
one-mechanism Monte Carlo reference calculations
shown in Figs. 3 and 8. An examination of the

M (y) curves shows that the clustering analysis is
still effective. The values of {w,?) for data and
reference are 0.0248 and 0.0204, respectively.

The values of {w,?) for the 4-, 6-, and 8-prong
K7p data are listed in Table III. The analyses were
done in terms of nl2b. The reference values for
the z-prong values of (w,?) were obtained from
Monte Carlo events with an exp(— 3k,;%) dependence
for each secondary. Events with multiplicities

Kp-—=K'p m*r m°
Ignore Proton
—— data(4106 Events)

Fay -———1-Mech. Fake
|
|
. I
\
A
2k
> 40— .
>
X /’ \\
O 20— / \ —
o 4 \
o / N
= v N
d N~
== l 1 ==
1 -5 O 5 1

y =k ™(Gev/c)
(b)

FIG. 8. Fluctuation analysis for Kp —K pntn~n  at 12.6 GeV/c. The data are histogrammed, the single-mechanism
model described in the text gives the solid curve. In Fig. 8(a), all 5 final particles are included in the analysis, and in
Fig. 8(b) the proton is ignored. Note the expanded horizontal scale for M(y) in Fig. 8(b).
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n, n+1, n+2,... were generated according to the
experimentally observed charged-particle multi-
plicity distribution. In each event, the fluctuation
analysis was applied to only # of the final-state
particles. This estimate for the multiplicity dis-
tribution at fixed charged multiplicity may not con-
tain enough neutral production. This introduces an
uncertainty in the reference value of about 20%.

The values of {w,?) for the topological cross-
section data are significantly larger than the cor-
responding reference values. This is also true for
the 8-prong data, which is high~-multiplicity for
this energy. It appears, then, that the large fluc-
tuations seen in the exclusive channels may be
characteristic of a large fraction of the inelastic
K~p cross section at these energies.

The Gaussian reference shown in Table III is,
in all cases, significantly larger than the true
reference values. We include this result to empha-
size that the Gaussian reference is only an upper
limit, and that Monte Carlo calculations are neces-
sary for a correct comparison with the data.

We conclude this section with some comments
on other approaches to the constraint problem.
Although the energy-momentum constraints do not
cause any difficulties in principle, one still might
attempt to define a new longitudinal variable in
which the conservation laws somehow “factor out”,
and only the clustering contributions are left. We
were unable to find such a variable. Several other
ideas for avoiding the constraint simply fail. If
only one particle is chosen per event [S,(y), a
simple 6 function], then the fluctuations are so
large that the most obvious clustering effects are
washed out. This much is obvious. But there is
a variant which runs into the same difficulty. This
is to apply the test to the 7th order statistic gen-
erated by p(v). Here again, the statistical fluc-
tuations overwhelm any clustering contributions.
Although it may prove possible to avoid the con-
straint problem altogether, we found it quite fea~
sible to confront it directly.

IV. SUMMARY

We have defined clustering in hadronic final
states as the existence of two or more population
centers in phase space, and shown that fluctuations
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K p—=Kp 7t (r°)
—K'p 7™
(4 -Prong Subsample)

—— data
-——-1-Mech. Fake

p(y)

1000 x M(y)

y=-In (tan 6/2)

FIG. 9. Application of fluctuation analysis to the sum
of the K pn*n~ and K prtn~n® data (n0 ignored). The
data are plotted in terms of 7=—1In(tan6'™), and com-
pared to the sum of the single-mechanism Monte Carlo
models for these final states.

about the projected distribution p(y) are large
enough in practical situations for this clustering
to be detected by a statistical analysis involving
only a single kinematic variable. This fluctuation
analysis may be applied to inclusive as well as
exclusive data, and becomes more sensitive as
the multiplicity of final-state particles increases,
with no additional practical complications. We
have applied the analysis to some 13-GeV/c Kp
data with the following results:

(@) The known differences in the clustering
behavior of the 4-body reactions

Kp—-Kprnin-

and

TABLE III. Inclusive analysis of 12.6-GeV/c K~ p final states. The reference calculation
is described in Sec. III C. The prejecticn variable is 7 =—1n(tan%0“‘b).

(W, % (W, Gaussian

Topology No. events data reference r=0,/0, reference
4-pr 23 990 0.0347 0.0235 1.61 0.0337
6-pr 5470 0.0232 0.0162 2.04 0.0231
8-pr 848 0.0168 0.0133 2.25 0.0167
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Kp~K%n~n°

are readily distinguished.

(b) Strong clustering is observed in the 5-body
final state resulting from K - K pn*n~n°.

(c) The data for Kp =K pn*n~ and Kp
~ K~pn*n~n° were combined, ignoring the 7° in the
latter case and performing the analysis in terms
of the variable n=-Intan3@ (i.e., ignoring all par-
ticle identification). The effects of clustering were
still in evidence in the statistical analysis. Thus
inclusive analysis on topological cross-section
data is feasible. For these analyses, a no-cluster-
ing reference must be obtained from Monte Carlo
calculations.

(d) The 4-, 6-, and 8-prong inclusive data sam-
ples all appear to show fluctuations which exceed
the no-clustering reference values by amounts
comparable to those observed in the most strongly
clustered exclusive channels. However, the ref-
erence value of (w,? is quite sensitive to the mul-
tiplicity distribution at fixed topology.

(e) The fluctuation density function M(y) and its
integral {w,?) are well-defined quantities which are
extremely sensitive to the clustering content of a
set of n-body (or »n-prong) data, and therefore
provide stringent tests for models for describing
these data.
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APPENDIX: STATISTICAL REFERE_NCE MODEL

Consider a distribution g(y), which may be dif-
ferent from the observed p(y), generated by a pro-
cess where energy-momentum conservation is
ignored, and let each of the % rapidities be a ran-
dom variable with distribution, g(y), as one would
assume in an independent-emission picture. The
rapidities in each event form a random sample,
and the distribution p(z) obtained from a large
number of such events is an #-fold convolution of
g(»). The Cramér test would apply to this sample,
and {w,2) would be 1/6#. The problem, then,
consists of constraining this sample space by
forming the appropriate conditional probability,
so that the z distribution is the observed p(z). If
g(y) is correctly chosen, then the distribution of
rapidities on this smaller sample space will be
p(y), the observed rapidity distribution. In other
words, we must evaluate the conditional proba-
bility

Q@)= [dzefs,(n)=r/nlz=z}oC),  (AD)

where p(z) is observed, and S,(y) is defined in
Eq. (3). We follow the usual convention that upper-
case letters denote random variables and lower-
case letters their values. ®{A=a|B=b} means the
probability that A=a, given that B=b. The prob-
lem is to evaluate Eq. (Al) and use it to obtain
F(y), p(y), and M(y).

We first review the case of no constraint. Let
G(y) be the cumulative distribution of g(y). Then
®{S,(y) =7/n} is given by the binomial distribution

Glyy [1=-G(y)]™.
(A2)

!
®{S,(y) =7/n}= ;T(nn_—,,),

A short calculation then gives

n

(5.7 = 2L el =r/n}

-[60)12 +2 601 - Cv)]. (A3)

From Eq. (7), (w,2) is:

W =L [Tace-e)

0

=1/6n, (A4)

as we had already stated. This also shows that the
first moment of the Cramér test is distribution
free. (The second moment can be gotten from a
lengthier calculation, (w,*) =(1 - $n)/20#%%.) For

a simpler proof that w,? is distribution free, see
Gibbons, Ref. 5.

Next, the conditional probability, Eq. (A1), must
be computed. Although ®{S,(y)=7/n|Z=2z}is dif-
ficult to compute directly, ®{Z=2z|S,(y)=7/n} is
easy, and is related to the former conditional
probability through Bayes theorem:

(P{sn (y)='r/n|Z=z}

_ ®{z=z15,@) =r/mje{S, @) =7/} s
e{z=z} :

(We use Bayes theorem in a non-Bayesian way.
Equation (A5) can be trivially derived from the
definition of conditional probability.) We empha-
size that ®{Z =z} and ®{S, (y)=7/n}are defined on
the full (unconstrained) sample space, so that
®{S,(y)=7/n} is given by Eq. (A2), and ®{Z=z} is
an n-fold convolution of g(y):
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®{z=2} =g"* (2)

Ef 5(2 -;Zp) H1 [g(y)dy,]. (A6)

®{Z=z|S,(y)=7/n} is defined on the subspace
where 7 rapidities are less than or equal to y, and
n —7 are greater than y. According to the inde-
pendent-particle-emission picture, the 7 rapidities
on the left of y follow the left tail of g(y), and the

n —v rapidities to the right of y follow the right
tail. The (unnormalized) left- and right-tail dis-
tributions are defined, respectively, by

gx), xsy
gL(x)=
0, x>y
(AT)
0, «x<y
gR(x)={
glx), =x>y.

Since Z is a sum of independent random variables,
and the order of the rapidities makes no differ-
ence, ®{Z=z|S,(y)=7/n} is simply a convolution
of the left- and right-tail distributions:

(-r) *
®{z=z|S,(y)=r/n} = [ng);]*[‘i“ G(y)(]z,,)_,- (A8)

With Egs. (A2), (A6), and (A8), Eq. (A5) becomes

gLt x g (2) |

®{s, ) =7/n| Z=2}= yl(n—y)l &™)

(A9)

The y dependence is implicitly contained in g and
8r-

When working with convolutions, it is often help-
ful to introduce Fourier transforms:

2= [ axglet, (A102)
&1(k)= f_ : dx g(x)e*™* (A10Db)
&r(k)= f, " ax gt (A10c)
8.(k)+2r(R)=2(k). (A11)

After Egs. (A10) are substituted into Eqs. (A6) and
(A9), the convolutions become

g"*(2)=2—17; f drg (k) e™i* (A12a)

gr* *g}e"-r)*(z)zi dkgL(k)'éR(k)""e‘““z
21 J_
(A12b)

This allows us to write the conditional probability-
for S,(v), Eq. (Al), in the form

Q)= | o)

1"(n r)'

X-/::dk gL(k)rgﬂ(k)n-re-ikz ,

where
y(2) =[ ) dk g(k)"e""“] -1, (A13)

Without a constraint, p(z) would be given by the
convolution Eq. (A12a), and @(y) in Eq. (A13) then
reduces to Eq. (A2). In general, though, the ex-
perimentally observed p(z) is much narrower than
g™(z), and Eq. (A13) is the basic equation for
computing p(y) and M(y) in terms of g(y) and p(z).
F(y) is the average of S,(v):

F(y)=(S,(»)

n

i;:‘ ( % >Q£’(y)
=1 -f_:dz p(2)y(z) f_ : dkgg(R)E (k)" et

(A14)

where we have used Eq. (A11).
simply dF(y)/dy :

The density p(y) is

p)= [ dzp@)ve) [ “drater-ig(yetcr
(A15)

We should emphasize that the observed distribu-
tions are p(y) and p(z). The distribution g(y) is
merely a construct used in formulating the problem
and is not observed.

To compute M(y), we must evaluate ¢S, (y)?)
which involves a sum similar to Eq. (A3). From
the definition of M(y), Eq. (5), the reference
curve, Mgp(y) can be written as

MR(y ) =(

L -FGN{[1=F()]

»p(y), (A16)

where
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A(y)=fmdzp(zz)y(z)feo dk 2 (k) 3(k)"2 ™ % |
(A17)

and F(y) and p(y) are computed from Eqgs. (A14)
and (A15), respectively. The reference value
(w,2). is gotten by integrating Eq. (A16) [See Eq.
(ml:

-1

@b =L [T () A o 3. (A18)

The reference problem is now reduced to that of
finding a g(y) which gives the observed p(y) through
Eq. (A15), and then computing a few Fourier trans-
forms. Unfortunately, (w,?) in Eq. (A18) is no
longer distribution free, so that, in principle, it
is necessary to find g(y) for every p(y). However,
{w,2)es is insensitive enough to the exact shape of
p () that this presents little difficulty. Moreover,
in practice, g(v) and p(y) are similar enough so
that g(y) is easily adjusted to give the desired
2(y).

Although Eq. (A15) is a complicated integral
equation for g(y) in terms of p(y), it is still pos-
sible to find many useful solutions. In working
with center-of-mass variables, one often has the
situation where p(y) and p(z) are both approxi-
mately Gaussian. Then g(y) is also a Gaussian
distribution and the equations are completely
soluble. This solution is presented below. In
working with 22° g(y) given by a Poisson distribu-
tion and p(z) arbitrary is also very manageable,
since most of the integrals can be done analytical-
ly. For the sake of brevity, we will not present the
Poisson solution here.

In the Gaussian model, we search for solutions
to Eq. (A15) where p(v) and p(z) are Gaussian
distributions centered at zero,

2

1
p(y)= o exp(— E%;), (A19a)

2

pz)= (z—n)}y% exp[— Zzﬁ] . (A19Db)

Then g(y) is also a Gaussian with zero mean and
variance y, where

2 2
2_ 2 =7

V= ) (A20a)
with
w
y=X
o
-9
o, , (A20Db)

where 7 is the ratio of the variances of p(z) and
p(v). The solution Eqs. (A20) can be checked by
substituting them into Eq. (A15). [If the mean of
p(z) is not zero, and the mean of p(y) is zero,
then g(y) is no longer Gaussian.] The Cramér
limit is recovered when *2=#. This solution can
now be substituted into Egs. (A16) and (A17), and
A(y) is given by

- 1 fm -x2 ¥y
A(y)~2\/—7—r- e dx e erfc(a T30 +Bx) ,
(A21)
where

a=nn-=1)[(n?=-r2)0? =2n+v2)]"V2,

B=(n=r?)[(n? =72)(n?=2n+7r?)]|™2,

and (A22)
F(y)=1 —%erfc<%>,

where erfc(x) is the complementary error function.
The reference value {w,?),; is then evaluated from
Eq. (A18). Table I contains some results for n=3
to 16.
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