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On the basis of analyticity and the soft-pion theorem, various exact bounds for the scalar
E» form factor D (t) have been obtained, assuming that D(t) satisfies at most a once-sub-
tracted dispersion relation, and that Ima (t +io) can change its sign atmost only once on the cut.
These bounds do not contain any arbitrary free parameters. Neither do we use any explicit
IIamiltonian nor any approximation such as the pole-dominance model for its derivation.
The results obtained disagree with present experiment. A connection of this method with
the phase representation of D(t) is also discussed, and we find that under some simple con-
ditions, the xesult is at variance with present experiment.

I. INTRODUCTION AND SUMMARY
OF PRINCIPAL RESULTS

where the soft-pion point 4 is taken' to be

The Z» decay problem is interesting theoretical-
ly as well as experimentally. In this paper we wi.ll
specifically consider the scalar form factor D(t)
defined by

Second, D(t) is a real analytic function of t with a
cut on the real axis at

D(t ) = (m ' -m, ') f (t) + tf (t), t, =(mi+m, )' «t &~ .

where f, (t) is the standard form factor. "' lt is
convenient to set

D(t)
d(t) =—

(

m, ' «t «(m„-m, )', (1.3)

Experimentally, we can measure values of D(t) in
the physical range:

Here by reality, we imply validity of

D*(t")=D(t),

so that D(t) is real below threshold t, . We note
that the soft-pion point 6 lies nearly in the middle
between the threshold t, of the cut and the ex-
treme end of the physical region specified by (1.3),
i.e., we have

where m, is the lepton mass. So far, the majority
of experimental data suggests" thai we have

(m» -m~) & 6 & to (1.10)

d(t) & 1, d (0) & 0,

although a recent preliminary datum' appears to
give a result contradictory to this. Note that the
derivative d'(0) is related to the conventional K»
parameters A, and t' by

m, 'd (0) =~, + t-(m, 2-m, 2)-'m, 2 .

The result (1.4) is very difficult for us to explain
theoretically2 because of the following facts:
First, the soft-pion theorem' demands

Now, if we assume temporarily that d(t) can be
approximated by a linear function of t in the range
0 ~ t & 6, then we must have

d(t) ~ 1, d (0) &0

in that range because of the soft-pion theorem
(1.6). This contradicts the experimental result
(1.4). Although the linear interpolating procedure
may look very suspicious at this point, the analy-
ticity property of D(t) is so stringent that we can
actually justify the final answer (1.11) on the basis
of exact inequalities, ' ' if the chiral SW(3) theory'
of Gell-Mann et al, is assumed in addition to some
unspecified technical assumptions. However, the
validity of the chiral SW(3) theory is very far from
being established and it is desirable to consider
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d(a) &1, (1.12)

unless it is otherwise stated. Also, we note that
we must have the normalization condition

the problem from other angles.
In a previous paper, "a new simpler approach,

which is based upon a purely dispersion-theoret-
ical technique, has been suggested to obtain vari-
ous exact inequalities for D(t), which do not con-
tain any arbitrary free parameters. An additional
advantage of the method is the fact that we need
not assume any explicit form for the strong-inter-
action Hamiltonian. In this paper, we will inves-
tigate the same method in greater detail and show
that the same difficulty with the experimental re-
sult (1.4) persists.

Anticipating a possible error of the soft-pion
theorem up to 20/g, we shall relax it by a weaker
one,

0 &A,(t) &-[d(t) —1] &B,(t),1
(1.18)

B|(t)= ' —.—[d(~) -I]+ 2 ~

(t, -n.}' 1 6-t
1 (t t)2 (to-t)' ' (1.19)

Again, this leads to a result contradicting (1.4).
Moreover, if d(t) is super-convergent, i.e., if it
satisfies a stronger condition

lim td(t) =0
g ~oo

(1.20)

as the electromagnetic form factors of the nucleon,
then we can derive stronger results. Now allowing
Imd(t'+i 0) to change its sign up to twice on the
cut, we find

whose explicit form slightly varies according to
numerical values assumed for d(L) [see Eqs. (2.14)
and (2.15)] . If we accept the exact soft-pion value
of d(tI, ) = 1.28, then it is given by

d(0) =1 (1.13) 0 &A,(t) - —
[ d(t) -1]- Max(B, (t), B,(t)], (1.21)

1-

from the definition (1.2).
Now, suppose first that d(t) satisfies an unsub-

tracted dispersion relation (hereafter referred to
as USDR)

where BJ (t ) j(= 2, 3) are defined by

B,(t) =—[d(cX) -1],1 (1.22a)

d(t) =—
~ dt', Imd(t'+i 0) .1, 1

~g
(1.14)

Moreover, if Imd(t'+ i 0) does not change its sign
on the entire cut t')t„ then we can derive an in-
equality

0 &A, (t) &
t [d(t) -1] &Min/A, (t), As(t)] (1.15)
1

In this derivation we have assumed

& d(t ) o-1,
t, -a

(1.22b)

for the values of t satisfying

0&t&~ (1.16)

which is numerically satisfied by (1.6).
Next, consider the case that d(t) satisfies a

once-subtracted dispersion relation (hereafter re-
ferred to as OS:DR}:

which includes especially the physical range (1.3).
In the above, A~ (t) (j =1,2, 3) are given by

t ", 1
d(t) = 1+— dt' , , Imd(t'+—i 0) .

v ~, t'(t'-t) (1.23)

A, (t)= ' —[d(t)-I],

d(a}-1
(a-t) d(a)+ t

A,(t) =
0

(1.17a)

(1.1Vb)

(1.17c)

First, if Imd(t'+i 0) does not change its sign on
the cut, then the following inequality can be ob-
tained:

0 &A, (t) & —[d(t) -1] &—(d(tI) -1)=B, . (1.24)
1 1

Hereafter, the range of t inside any inequality for
d(t) is automatically understood to satisfy the con-
dition (1.16) .

Note that (1.15) gives a result contradicting (1.4).
Even if Imd(t '+ i 0) does change its sign only once
on the cut, we can still derive a weaker inequality

1.
0&A,(t)- —[d(t) -1) .

t (1.25)

It is interesting to note that all inequalities de-
rived so far have a common lower bound. Explic-
itly, inequalities (1.15), (1.18), (1.21), and (1.24)
give
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Setting t=0 in the above, we find also a common
lower bound for d'(0),

0&A, (0) & d'(0) .

Using the soft-pion value d(i).) = 1.28, bounds for
d'(0) are estimated to be

0.01 &m, 'd'(0) & f0.018, 0.03, 0.066, 0.023],
(1.26)

corresponding to (1.15), (1.18), (1.21), or (1.24),
respectively.

These values are comparable to the bounds found
in Ref. 7. These bounds are in conflict with (1.4).
Hence if the experimental result (1.4) is correct,
then Imd(t'+i 0) must change its sign either three
times, or twice, or once, according to whether
d(t) satisfies a, superconvergent, unsubtracted, or
once-subtracted dispersion relation, respectively.
In terms of pole models, this implies that either
four, three, or two ~ poles must exist to account
for the behavior of d(t), respectively.

The case when D(t) has a zero point on the cut
itself is interesting. Assuming that ImD(t'+i 0)
changes its sign only at that zero point and that
D(t) satisfies a once-subtracted or twice-sub-
tracted dispersion relation, we find

(1.27)

under the same conditions for 1/D(t).
Note that the inequality (1.29) can be compatible

with (1.4). However, as we see from Fig. 2, the
deviation of d(t) from the unity is rather small to
be compatible with the experimental data of Ref.2.
The inequality (1.29) is not compatible with the
preliminary data, of Ref. 4 either.

Finally, we have investigated the connections of
our method with the pha, se representation:

d(t) =P(t) exp —t dt' 6(t')
t

(1.31)

where P(t) is a real polynomial of t, and 5(t) is
the I= 2, S -wave pion-kaon scattering phase shift.
We have also studied Eq. (1.31) for cases where
P(t) is at most a linear function of t. Again, we
find that it leads to a result incompatible with
(1.4), suggesting P(t) to be at least quadratic in t.

Summarizing, we conclude that it is very diffi-
cult to explain the experimental result (1.4), un-
less either we give up the soft-pion theorem (1.6)
or d(t) requires at least two subtractions for its
dispersion relation. However, it must be kept in
mind that the present experimental situation is
perhaps by no means final. Hence, we have plot-
ted our inequalities in Figs. 1 and 2 (see Refs. 2

and 4) and compared them with experimental data
available, assuming the exact soft-pion value of
d(b, ) = 1.28.

(1.28a) II. DERIVATION OF INEQUALITIES

(1.28I3)

(1.28c)

1 1 (1.29)

where we have assumed @&1, which is numerically
satisfied by (1.6).

When D(t) has no zero point, we can also make
the following predictions: Assuming that the in-
verse function 1/D(t) satisfies USDR, then we can
:show first that Imd(t'+i 0) must change its sign at
least once, since otherwise it will lead to a result
incompatible with (1.12). Hence, assuming now
that Imd(t'+i 0) changes its sign only once on the
cut, we find

(2.1)

Moreover, we assume that its imaginary part
never changes its sign on the entire cut, i.e., we
have

cImf(t'+i 0) )0, c=+ 1 (2.2)

for all t' ~t, , where e is a constant sign function
independent of t' with values c =+1. Then, in ac-
cordance with the terminology of Ref. 10, we
shall call such a function f (t) semimonotonic. We
remark that its inverse [f(t)] ' is also semimono-
tonic, if f(t) has no zero point in the cut plane.

First suppose that f(t) satisfies OSDR (once-
subtraeted dispersion relation):

Let f(t) always represent a real holomorphic
function of t in a cut t plane with a cut on the real
positive axis at t, ~ t&~. The reality property of
f(t) means

1 1
B,(t) = — 1-

)
(1.30b) f (t) =f (0) + — dt', , Imf (t'+i 0). (2.3)

1
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t

(2 4)

with a) 0 and p(t') )0.
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FIG. 2. Theoretical bounds for d(t) corresponding to (1.27) and (1.29). Dashed lines: bounds for d(t) determined
from (1.27). Solid lines: bounds for d(t) determined from (1.29). Symbol a represents a predicted value due to the
soft-pion theorem. Experimental data are plotted for comparison. Closed circles represent data compiled in Ref. 2.
Open circles represent preliminary data of Ref. 4.

where for simplicity we have assumed (2.7), and (2.10) for the unsubtracted case are now
combined into a single inequality

f(0)f(&) )0 (2.8)

Next, let us suppose that f(t) satisfies USDR
(unsubtracted dispersion relation):

f(t) = — dt', Imf(t'+i 0) .1 " 1
(2.9)

—[f(&) -f (o)]
t, -a 1

t, -t
1
t

& e —[f(t) -f(0)]

& Min(M, (t), M,(t)}, (2.11a)

0&a ' f(t) &sf(0) &sf(t) &sf(a) .tp

to
(2.10)

Note that the condition (2.8) is automatically sat-
isfied because of (2.10). All inequalities (2.4),

Then, it also satisfies OSDR (2.8), so that we
must have (2.4) automatically, if f(t) is semi-
monotonic. Moreover, from (2.9) and from the
semimonotonicity condition (2.2), f(t) has no zero
point in the cut plane. Hence, it must satisfy in-
equality (2.7), also. In addition, a further inspec-
tion of (2.9) leads to

f (0) [f(6) f (0)]
(b -t) f(a)+tf(0) '

M, (t) = e ~(
jfo- I'

(2.11b)

(2.11c)

f(t) =(ti -t) d(t)

When we identify f(t) = d(t), then we must have
e =+1 again and Eq. (2.11) gives (1.15) with (1.17).

If d(t) satisfies USDR and if imd(t'+i 0) changes
its sign only once at t'=t, & to, then the function
defined by
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is easily seen to be semimonotonic. Moreover, it
obviously satisfies OSDR. Hence, applying (2.4),
we obtain

f(t) =(ti-t)(t. -t) d(t)

will satisfy OSDR and it is, moreover, semimono-
tonic. Thus, the inequality (2.4) gives

(e d(t)

d(a)
d(a) -1 (2.13) , (t, -a){t,-t)d(a)+ — t, t, .

(i) a=+1; t, »Max(P, t,).

1 » —[d(t) -1]»Ming. , (t), B,(t)), (2.14)

(ii) e = -1; I3» t, » to .

B,(t)»- [d(t) -1]o-A,(t)»0,1
(2.iS)

where A,{t) and B,(t) are given by Eq. (1.17a) and
(1.19), respectively. It is obvious that we have

and noting that t, is larger than t„we find (2.12)
leads to the following inequalities according to the
two cases:

We have to optimize both sides of this inequality
with respect to t, and t, under the condition t, ~to
and t, ~tp for two cases e =~1. Although the cal-
culation is elementary, it is a bit tedious. We
discover the result (1.21) with (1.22) after some
calculations, assuming

»-d(a) o-1 .
to -&

If d(t) has a real zero point at t = X, we can say
more. Suppose first that it lies below the thresh-
old. Then, if d(t) satisfies USDR and if Imd(t'+i 0)
changes its sign once at t'= t,~t„ the function

B,(t) (»A, (t)

according to whether we have Ji(» to Moreov. er, we
find

B,(t)» —»A~(t)
1

1

f(t)=-t'
~ d(t)

1

also satisfies USDR and it is again semimonotonic.
Hence, we can apply our inequalities (2.11a) for
this function, from which we can prove that if
X &i, then it must satisfy a stronger condition

if P is larger than 2t, Assum. ing the exact soft-
pion value of d(h) = 1.28, we compute P = 2.6 to & 2t„
and hence it is sufficient to consider only the sec-
ond alternative (2.15), which is nothing but the in-
equality (1.18).

Next, suppose that d(t) satisfies a superconver-
gent dispersion relation, i.e., we have

lim t d(t) = 0 .

In that case, we must have a super-convergent
sum rule

OO

dt' Imd(t'+i 0) =0 .
t

x ~- — —=-2t„.
d(a) -1

On the other hand, if d(t) satisfies OSDR instead
of USDR, then we can only apply a weaker inequal-
ity (2.4) for f(t). Nevertheless, we can still prove
that for negative A., we must have (1.11) against
the experimental result (1.4).

The case in which d(t) has a zero point at t= t,
&to on the cut itself ls lllterestlng Assuming that
Imd(t'+i 0) changes its sign only once exactly on
that zero point and that the dispersion relation for
d(t) requires subtractions up to twice, the function
defined by

As a result, d(t) cannot be semimonotonic. Now
allowing Imd(t'+i 0) to change its sign twice on the
cut at t' = t, and t' = t„ then the function

is semimonotonic and satisfies OSDR. Applying
(2.4) for this function, we get
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f -a 1 d(a) 10~a~
t -t

d{6,) 1 1

III. PHASE REPRESENTATION

Let 5(t) be the phase of d(t) on the cut, i.e.,

5(t) =Arg d(t+i 0), t&to . (3.1)

Using t, ~tp, and considering two cases & =+I sep-
arately, we obtain (1.27) and (1.28) after some cal-
culations.

Another interesting case is that d(t) has no zero
point and that d(&) requires more than one sub-
traction for its dispersion relation. More specif-
ically, let us assume the asymptotic form

d(t)= contsxt" (t-~) (2.16)

which in turn leads to d(b, }&1 in contradiction to
our ansatz (1.12). Therefore, we have to conclude
that either d(t) has at least one zero point or d(t)
is not semimonotonic. Suppose now that Imd(t'+f0)
changes its sign only once at t'= t,&tp Then under
the same conditions that d(f) has no zero point
with n &0, the function

at infinity. If we have u &0, then d(t) needs at
least one subtraction. Further, if d(t) has no zero
point in the entlre cut plane, then the inverse func-
tion I/d(t} will satisfy USDR for this case. Espe-
cially, the inequality (2.10) gives

1 10~&-
d(0} d(a) '

Then, assuming that 5(~) is bounded and that d(f )
is polynomially bounded at infinity, we can write"

OO

d(t) =P(t) exp-' (3.2)

where P(t) is a polynomial of f with real coeffi-
cients. We have assumed that d(t} has no poles
superimposed on the cut. The familiar final-state
interaction theorem asserts' that 5(t) coincides
with the I= —,', S -wave pion-kaon scattering phase
shift in the elastic interval

t o(mr +m „)'~ t ~ (mr+ 3m ~)' = t (3.3)

if we assume the so-called h, I= —,
' rule for E„de-

cay. Especially, near the threshold, it will be-
have as

6{t)= const (f -f,)'i' (t-to), {3.4)

so that we have

5(to) =0 . (3.6)

) 5(t) -5(t')[ ~ const I f f' I" (y &0)

Now, assuming 6(t) to be continuous with Lipschitz
condition

ls semlmonotonlc and satlsf les OSDR. Applying
again the inequality (2.4) for this function, we
discover (1.29) with (1.30).

The total number of zero points of d(t) is inti-
mately related to the phase representation of d(t).
In general, suppose that d(t) satisfies at most an
n-times subtracted dispersion relation, and that
Imd(t'+i 0) changes its sign exactly m times on the
cut. Then, the total number of zero points N of
d(t) must be restricted by

(2.17)

then the exponential function

G(t) = exp — dt' (3.6)

(3.7)

is continuous even on the cut without any zero
point. Thus, the total number N of the zero points
of D(t) is precisely the degree of the polynomial
P(t). Moreover, letting t ~ in (3.2) and compar-
ing the result" with the Hegge-like asymptotic
behavior (2.16), we find

if d(t) has no zero points on the cut. The proof for
this statement is essentially analogous to that
proved by Creutz' and we will not repeat it here
since we shall rederive it by another method in
Sec. Ill. Finally, if d'(0) is known in addition to
d(b, ), further inequalities can be derived. This
will be briefly discussed in an appendix.

which is essentially an analog of the familiar Lev-
inson's theorem. Supposing that sin 5(t) changes
its sign m times on the cut, we find

so that (3.7) leads to
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z -m -1 «N « ~+m+1 . (3.8)

Further, if P(t) has mo zero points of odd degree
on the cut, then Imd(t'+i 0) can change its sign
only on the points where either it passes through
one of such zeros or sin 5(t') changes its sign, as
we see from (3.2). Therefore, we obtain

m m +m w m (3.9)

barring an accidental situation that a zero point of
P(t) on the cut coincides with the point at which
sin 5(t) changes its sign. Excluding such a case,
(3.8) and (3.9) give

contributions from t'&1 GeV' for G(t) is very
small, of the order of at most 'I% for physical val-
ues of t. The choice b =-a= 2 is perhaps justifi-
able for the so-called down solution for the phase
shift. Even for the up solution where 5(t) crosses
a resonant point g near t=0.75 GeV', an explicit
numerical calculation indicates essentially the
same numerical values for G(t). The remaining
task is to determine the polynomial P(t). This is
of course not g Priori known. However, for the
case X=1, the soft-pion theorem enables us to
give

(3.15)

Q —Nl 1 % pf ~«Q +Ng+ 1 (3.10) The case H =0 can be obtained by requiring

If 0. is negative or nonintegral, then we must have
e&n so that we find

(3.16)

N «n+m . (3.1 1)
Our numerical calculation indicated above gives

G(h) =1.06, (3.11)

g &—5(t) & 5, t &t, &1 GeV'
r (3.12)

for some constants a, b, and t, . Then, setting

t2 5(ti)
G(t) = exp — dt',

t0

it is easy to prove

(3.13)

If n is a non-negative integer, then cv+1=n follows
and again we find (3.11). This is again (2.17) of
Sec. II.

Next, let us evaluate D(t) on the basis of the
phase representation (3.2). In order to compute
the integral, it is necessary to know values of
5(t }. Hereafter, we assume that contributions
for the phase 5(t) from inelastic channels are neg-
ligible and that we can identify 5(t) with the I= ~,
S -wave pion-kaon scattering phase shift on the en-
tire energy range t «t0. So far, experimentally, "
5(t) is measured up to 1 GeV'. Also, it is posi-
tive for that range with its magnitude less than g.
Thus, Imd(t'+i 0) does not change its sign up to
1 GeV', unless P(t) has a zero point on the real
axis at that interval. Unfortunately, there is no
information on 5(t) above 1 GeV' available. How-

ever, the precise behavior of 5(t} for t&1 GeV'

is practically immaterial, if it remains reason-
ably small. Suppose that 5(t) satisfies

which is a bit smaller than the left-hand side 1.28
in (3.16). This suggests' "that indeed P(t) can-
not be a constant.

If we take into account the error suggested by
(3.12), then (3.2) and (3.15) give

(3.18)

where M&(t) (j= 1, 2) are given by

P(t) =1+C,t+C, t' . (3.19)

Since the soft-pion theorem gives one constraint

For the choice t, =1 GeV' with b=-a= ~, the bound
(3.18) is plotted in Fig. 3.

If we choose b =-g =1, with t,=1 GeV' instead,
the lower bound becomes close to unity for the en-
tire range of t and the upper bound increases only
slightly compared with the previous case. We see
again that we have d(t) & 1.

Thus, perhaps we have to consider the possibil-
ity of P(t) being quadratic:

(3.14)

Thus, for instance, if we can choose b =-a = &,

with t, =1 GeV', the error induced by neglecting

1+C,a+C,a' = d(t(, )
Gs

(3.19) can be expressed in the form

(3.20)
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FIG. 3. A theoretical estimate of d(t) based on the phase representation. (—): A theoretical estimate for d(t)
=P (t)P(t). The cutoff energy t2 is chosen to be 1 GeV . [See (3.13) and (3.15).] (---): A better theoretical estimate
for d(t), taking also into account the contributions beyond the cutoff energy. ]See (3.18) and (3.19).) (---): A fit ad-
justing the free parameter C& in (3.21) suitably. Experimental data are again plotted for convenience. See the caption
of Fig. 2 about symbols.

P(t) =1+— —1 t+C, t(t —6) .1 d(a)
a G(n)

(3.21) 1 ~P(t) cP(a) .

This in turn leads to the inequality

(3.24)

If we choose C, to be around 0.018, it is possible
to fit the present experimental data, as is seen in

Fig. 3.
I.astly, let us briefly consider the general case

where P(t) has n zero points at t=X,.(j = 1,2, . . . ,n);

(3.22)

Re Xy ~0 (j = 1, 2, . . . , n) . (3.23)

Then it is easy to prove that for values of t sat-
isfying O~t&h, we have

If A.
&

is complex, then t = X& is also a zero point of
P(t) because of the reality condition.

Suppose now that all zero points lie in the left
half plane, i.e., all ~& satisfy

G(t) ~ d(t) ~ G(t) .d(a) (3.25)

Again, if we use the numerical estimate of G(t ),
this gives a result in contradiction with the exper-
imental result (1.4}, and we conclude that at least
one zero point of d(t) must lie in the right half
plane. This conclusion is valid even if we do not
assume the exact soft-pion value for d(A).

IV. INSCUSSION

In the previous sections, we have obtained var-
ious exact inequalities for d(t) under several as-
sumptions. Fspecially, we have seen that they
contradict the present experimental data indicated
by (1.4}. As we have emphasized in the Introduc-
tion, the main difficulty is due to the soft-pion the-
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orem, when implemented by the analyticity of d(t).
Suppose that d(t) satisfies once-subtracted dis-
persion relation (1.23). Since the physical values
of t lies quite far from the threshold t, of the cut,
we may approximate the integral in (1.23) to be
constant, unless the weight factor I md(t' +i 0)
changes quite rapidly with f'. Then, d(t) can be
roughly approximated by a linear function of t.
This fact together with the soft-pion theorem al-
ways leads to (1.11), i.e., d(t) ~1. Many condi-
tions assumed in the previous sections are needed
only to justify this simple picture more rigorous-
ly mathematically. Under this light, the result of
Refs. 'l and 8 can be perhaps understood also.
Conditions needed for results of these papers auto-
matically require d(t) to satisfy an unsubtracted
dispersion relation, as Li and Pagels" have orig-
inally pointed out.

At any rate, a likely alternative is to assume
that d(t) requires at least two subtractions. For
example, let us consider the twice-subtracted
dispersion relation,

t2 00 1
d(t) = I +at + — dt' . . . Imd(t'+i 0)

t 0

One possibility, as has been suggested" else-
where, is to modify the ordinary Cabibbo theory
so that the leptonic current responsible to the K,3
decay is now replaced for example by

for some scalar density S(' " (x). In that case,
the soft-pion theorem is no longer applicable.
Also, since we have

8„1„(x) = 8„V(» '5) (x) +0S (» ")(x)

it is likely that d(t) may require some subtraction
for its dispersion relation. Another advantage of
this modification is that the new term does not af-
fect electron-decay made of hadrons, say, A-B
+ 8+ v. Its effect. will be noticeable only for muon
decay such as K'-v'+ p++ v, A-P+p + p, and
Z ~s+p. +v.

Another possibility is to assume that the Cabibbo
angles 0~ and 8„ for vector and axial-vector cur-
rents are very different. In that ease, what we
measure experimentally from E„, and E„decay
are

By a similar reasoning, we can approximate the
integrand by a constant and this leads to a quad-
ratic expression

d(t) =1+at + bt '

f» sin 8„
f f (0)

=(1.30+0.03) . cos8„.

Therefore, if e~ is much smaller than 8» then we
could have d(b, ) &1 as we see from Eq. (1.6).

for d(t). Then, we can easily accommodate both
the soft-pion theorem and d(t) &I (see Ref. 2).
Analogously, in the phase-representation (3.2),
the polynomial P(t) must be at least quadratic.
Hence, d(t) must have at least two zero points.
Perhaps, this fact also explains failures of some
of our inequalities when d(t) requires two subtrac-
tions but has no zero point.

Summarizing, we have to assume that either
d(t) requires two subtractions or the soft-pion
theorem must be abandoned, if the present exper-
iment with (1.4) is correct. Both are difficult to
accept lightly. We may remark that D(t) is ob-
tained as a matrix element of
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APPENDIX

If d'(0) is known in addition to d(L), then we can
derive more inequalities. As an example, we
shall consider the case in which d(t) satisfies
OSDR and Imd(t'+i 0) changes its sign only once at
t'=t, &t0 on the cut. Then setting

f(f) satisfies a twice-subtracted dispersion rela-
tion

The success of the ordinary PCAC (partial con-
servation of axial-vector currents) might indicate
that d(t) is a smooth function of t. Moreover, the
electromagnetic form factor of the nucleon de-
creases in a dipole-like fashion for large t.

1 1

t

~

~

0
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Moreover, it is semimonotonic so that we have

0 e t' f(A) ~e g(t) ef(h)t,-g
0

where

y = —,[d(A)-1 -6 d'(0)],1

for values of t with t~A&tp. Considering two
cases a=+1 separately and optimizing the result
with respect to t, under the condition ty Ip we
find

c,(t) =y,',
0

2

Min{y, C,(t),C2(t)) ~
p [d(t)-1 -t d'(0)]
1

, Especially if we set t=0, this leads to

~Max {y,C,(t)], Min{A, C,(0), C,(0)f ~~ d" (0) ~ Max{y, C,(0)) .
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