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The multi-Regge model is studied, with particular emphasis on the predicted slope of the elastic diffraction
peak, and the average transverse momentum of the produced particles. The slope of the diffraction peak is
proportional to the mean-square impact parameter, and in the multi-Regge model the total impact
parameter is built up in a random walk, with each link in the multiperipheral chain corresponding to a step
in the walk. A simple Chew-Pignotti model is incapable of fitting the inclusive production data at high
energies: It predicts too slow an increase in the multiplicity of produced pions, and too rapid a shrinkage of
the diffraction peak, To cure this problem, one must introduce "clustering" effects such as to reduce the
over-all spread in impact parameter, and increase the density of produced pions in longitudinal-momentum
space. Such effects were to be expected, in fact, because of resonance formation. A multiperipheral cluster
model is introduced, in which the decay of the clusters is described via the statistical bootstrap model of
Hagedorn and Frautschi. A crude fit to the high-energy data, in which all the clusters are given a common
mass, shows that the average cluster mass is at least a couple of GeV, a surprisingly large figure. This
provides some a posteriori justification for Hagedorn's thermodynamic model. The calculations are carried
out using both approximate analytical methods and a Monte Carlo numerical program.

I. INTRODUCTION

It is well-known that the multi-Regge model' of
high-energy production processes, as it is usually
formulated, incorporates the idea that at high en-
ergies the average transverse momentum of the
produced particles will approach a finite limit. It
also predicts that the width of the diffraction peak
will shrink logarithmically with energy. These
two results are related in a quite simple way, and
it is our object to explore this relationship in
quantitative terms. Comparisons can then be made
with experimental data.

Roughly speaking, the model predicts that at
high energies the production amplitude factorizes
into a product cf functions, each depending on the
transverse momentum of a single exchanged Reg-
geon. As is shown in Sec. II, each of these factors
makes an independent, additive contribution to the
slope of the diffraction peak, i.e., to the mean-
square absorption radius. This can be interpreted
as the mean-square impact parameter correspond-
ing to the exchange of that particular Reggeon.
Thus the total mean-square impact parameter sep-
arating the initial particles is proportional to the
average number of exchanged Reggeons. Since
this number is growing logarithmically, the width
of the diffraction peak will shrink in the same way.

As an order-of-magnitude estimate, one finds
in fact,

(n),~„2o.~'( q, ') lns,
where (n) is the average number of exchanged
Reggeons, o~' is the "Pomeron slope, "

( q~') is
the mean-square transverse momentum of the pro-

duced particles, and s, as usual, is the center-of-
mass energy squared.

Experimentally, one finds that the diffraction
peak is shrinking rather slowly. ' This means that
the average number of factorizable Reggeon links
is rising slowly with energy. The multiplicity of
produced pions, on the other hand, is increasing
relatively rapidly with energy. ' Therefore several
pions must be produced per exchanged Reggeon.
And this, in turn, implies that the final-state pions
emerge from "clusters" (i.e., localized groups in
configuration space, resulting for instance from
resonance formation), and that single-Reggeon ex-
change takes place only between clusters. The
average number of pions per cluster needs to be
quite large.

The rest of this paper is devoted to putting these
arguments on a quantitative footing. In Sec. II we
outline the connection between multiparticle am-
plitudes and the diffraction peak, in a general
multiperipheral model. In Sec. III we analytically
investigate a simple multi-Regge model in the
"strong ordering" approximation where one eval-
uates the partial cross sections v„(s) and the over-
lap functions E„(P,8) using approximations valid
in the limit s- ~. In Sec. IV we carry out the sum
over n, to find the inclusive behavior of the theory;
this summation is only valid in a "weak coupling"
approximation. The conclusions outlined above can
then be explicitly demonstrated.

Since the "weak coupling" approximation is un-
likely to be valid in the real world, we check the
analytic results at each stage of the work against
more exact Monte Carlo calculations. In Sec. IV
we also discuss the likely effect of including more
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sophisticated and correct vertex functions. It is
argued that modifications of this sort will not
change our conclusions.

Finally, in Sec. V we discuss the physical effects
which lead to clustering, and endeavor to make
rough estimates of the parameters required in a
multiperipheral cluster model in order to fit the
experimental data. Our results and conclusions
are summarized in Sec. VI.

Recently Hwa' has carried out a calculation
which is similar in spirit to our Secs. II and III.
His explicit multi-Regge amplitude is slightly
different from ours and he does not carry out nu-
merical calculations, but his conclusions are con-
sistent with those reached here.

II. THE OVERLAP FUNCTION

The overlap function and its relation to elastic
diffraction scattering has been extensively dis-
cussed. ' We give here a derivation of some known
results in a more transparent form particularly
suitable for the discussion of multiperipheral
models.

We define the overlap function for the elastic
scattering of two spinless particles a and b as

q~ = q~- -P

qp =Pa p

qn = &o ~

i=1, 2, ..., n-1

The reaction specified by P,', Pb will have a differ-
ent set of q's, qp, .. ., q„', satisfying the require-
ment

q&
—

q& =P —P (6)

where we have introduced the real part since time-
reversal and rotational invariance require F(P, 8)
to be real and so only the real parts of the individ-
ual terms need be considered. Now we choose a
coordinate system in the center-of-mass frame
so that the momentum transfer in the elastic scat-
tering lies along the x axis, and p„p, lie in the
x-z plane [Fig. 2] .

Then we can write

The phase-space volume element depends only on
differences between the q& and is therefore invari-
ant under such a uniform translation. The kine-
matics are illustrated in Fig. 1.

If we write f(qf for f(q„..., q„), then we can
write the contribution to the overlap function as

E„'(P,e)=Ref T{q) {Tq'{dn„{q},

F(p, 8) =Q T(p„p, ; c) T~(p,', p,'; c) dg, , (2) ]
q&

=
q& + ~ Ax —cz,

(6)
where c is any possible inelastic channel for inter-
actions of a and b; P, , P, and p,', P,' are the initial
and final 4-momenta of particles a and b; P, 8 are
the center-of-mass momentum and scattering
angle corresponding to this particular elastic scat-
tering; T(P„P,; c) is the matrix element for the
inelastic reaction a+ b-c, while dQ, is the phase-
space volume element associated with the final
state c. Unitarity then implies that the imaginary
part of the elastic scattering amplitude is given by

] ] A A

q~ =q& —2 bx- ez,
where x, z are unit spacelike vectors along the x
and z axes, 6=2Psin —,'8, e=P(1 —cos—,'8), and the
q; are independent of 0. For small b, e we can
expand about the origin:

gy
+ ~ ~ ~

~qsg

x dfl, (p,",p,")+F(p,8) .
Let us fix our attention on a particular state c

consisting of n particles, i.e., we consider the
contribution coming from the reaction

a+b-c, +c, + ~ ~ ~ +c„. (4)

The kinematics of this process are usually spec-
ified by giving, in addition to P, and Pb, the 4-mo-
menta P„P„.. . , P„of particles cy c2 ., c„. The
phase-space volume element then includes the n
mass-shell constraints and 4 over-all energy-
momentum conservation constraints. An alterna-
tive procedure is to specify the (n —1) 4-momenta
q». . . , q„, defined by

C(

Pa =q

C

](
P~

q

Pn-i

Cn-i Cq

b= q

FIG. 1. Diagram illustrating the kinematic variables
used. Note that variables can be defined in this way
regardless of whether the production process is multi-
peripheral.

through terms second order in 0. Making the cor-
responding expansion of T*(q') and using the fact
that dQ„(q) =dQ„(q$, we have
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—2e Be T* dg„q +0 0
&T

~q~z i
(10)

Q2 a BTTT*+—T g T* —2@Re T*g dQ„(q)+O(e'),
8 . ~q;„ Bq;

where T, T~ and their derivatives are all evaluated at q; =
q& or 0 =0. Now writing 6 =Pe, e= 8P6)', we

find

~:(p, e) =
2 g2 2 02 9

I Tl + T Q T*— ReT Q T* dn„(q)+O(e')8, &q;„4,&q;,

where we have written q for q.
Thus

z'„(p, e) = z'„(p,o)(1- -',p'8' r'„) + o(e'),
where

T(g, 8/aq )' T+ .1 ~ a ln
I
T

I

I
TI'

(14)

(the diagonal bra, ces indicating averages over
phase space, with weight function equal to the ma-
trix element squared).

The full overlap function is therefore given by

&(P, ~{)= &(P,0)(1- 'P'~' 1'), -

a{b{= exp s r, 5; j,,) r{p,{
f=p

defining p«= —p, ~, p„+, ~
———p, ~. Using (5), this

can be written in terms of the (q~):

hfb) =J exp i g q;& (b{„-b{)TLq&j]. ,

(17)

A similar transformation can be written for the
final-state amplitude:

,,o'I „'
C

C,ll

(15) hjb')= exp

iraq;,

(b,'„-b,') T{q,) [ X

(17')

where &„' is the total cross section for the n-body
inelastic channel c.

Now the second term in Eq. (14) turns out to be
small in multiperipheral models, and we shall
neglect it for the moment. The remaining term
can be given a direct physical interpretation in
terms of impact parameters. Suppressing all but
the transverse momentum variables, and carrying
out a two-dimensional Fourier transform of the
reaction amplitude, one obtains

Now under the Fourier transformation the oper-
ator g"; o &/&q;„ transforms as follows:

—iZ I(f', -&~„,.)+(f '.-f '.i..)1.=0 'q'"
= i [(b,„—b„„„)+ (5,'„—f{„'„„)j .

In most models of interest the transverse impact
parameters will come out equal for the initial and
final states at high energies, so that

—2i (b,„—5„„„),~~9

)=0 ~Ax

and the first term in Eq. (14) will give

»(Z s/sq;. )'T*

- X =((t..—5.„,.)')
=-.' &(b, —b.„)'), (18)

FIG. 2. Diagram illustrating the center-of-mass frame
used for discussion of the overlap function.

that is, the slope I'„' of the overlap function is
simply one-half the mean-square impact param-
eter between the incoming particles. The second
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term of Eq. (14) can be given a similar interpre-
tation in terms of the longitudinal collision coor-
dinates, but is of negligible importance for our
present purposes, as previously remarked.

Let us now consider a multiperipheral-type model.
In this case, if one orders the produced particles
according to their longitudinal momenta, takes
the limit s-~ ("strong-ordering approximation" ),
and ignores correlations between the transverse
momenta of the exchanged particles, then the re-
action amplitude at fixed s can be written in a
factorized form:

The amplitude for this process can be taken as
n J,

7{q) =g " ' Q (s;"' ' e"' e""Q ~ 2) (22)

where

2
Qi e

The cross section is then

(23)

g 2 )).-2 y) dp
y„(y) = ' ll ' d'y;, t' r y; (t. —y,)—S @i i=y

(19) (e 2(d(tt ) e2(tt( ) (24)

[see Eq. (42), below]. Its Fourier transform then
must factorize also; from Eqs. (17) and (19)

h{b) = 5(b —b, ) g P ((5, —b, „,) ) 5(b„—b„„).
i=1.

(20)

This equation implies that the impact parameter
between the incoming particles is the same as that
between the outermost produced particles in the
multiperipheral chain, and that each link in the
multiperipheral chain makes an independent con-
tribution to the over-all mean-square impact pa-
rameter, after the fashion of a random walk. This
fact seems to have been first noticed by Gribov. '

We turn now to a more detailed treatment of the
multi-Regge model.

III. THE "ASYMPTOTIC" THEORY
FOR EXCLUSIVE STATES

An exact analytic solution of the multi-Regge
model has not yet been derived. But useful results
can be obtained by means of various approximations
when the subenergy of every pair of produced
particles is large, as we shall demonstrate below.
This treatment is patterned after one given by
DeTar."

Consider again the process shown in Fig. 1,
where n particles are produced in the final state.
For simplicity we shall ignore all spins and inter-
nal quantum numbers, and assume that there is
only one type of external particle with mass m, .
Consider a multi-Regge exchange reaction with
each exchanged Heggeon having the same (linear)
trajectory

y; = sinh ' (p;~/g;) . (25)

In the lab frame, in which the target a is at rest
and the projectile b moves with large rapidity F,
we have

s —szo e ~ (26)

We can then apply the "strong ordering approxi-
mation, "' appropriate when all subenergies are
large:

Ei )&)E &&mo ~

This allows the replacements

Sysg'''Sn j —Py P2 ' ' ' Pn y S

(27)

5 p -p 5 E —E —E

2= —5(y, —in(p, , /mo)) 5( Y—y„—ln(i1„/m, )) .

The factor 1/s is a flux factor, s being the total
squared center-of-mass energy, g is an internal
vertex coupling constant (the external vertex con-
stants are arbitrarily chosen to be unity), s;, f;
are the ith-pair subenergy squared and. momentum
transfer squared, andP«, p;~, and E; are the
longitudinal momentum, transverse momentum,
and energy of the 2th particle. Equation (22) is the
simplest possible multi-Regge expression for the
amplitude; more realistic expressions will be
briefly discussed in Sec. IV.

Let us now introduce the "transverse mass" and
"rapidity" variables

(m 2 +p~ 2)1/2

n(t)=n, +n't . (21)
I

The cross section then becomes

n n ny„=ad't" 'is'm ' n dyd(y, . —y, ,)dy tt(y, —tn(tt /m ))i)(y —y„—tn(d /m )) n d y tt' Q)t; )i=2 i=1.

n-1 n-1
x Q(p, )Dexp Q 2t, (b+ lns;n) (29)
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Now since p; =q; —q; „and q, l=0, then

n n-1
g d'P;i 6' Z 5(. = P d'q« .
5=1 5=1 5=1

tween those of two Beggeons:

Pi l —qf l —qi-l, l ~ (38)

We also note that in the strong-ordering approxi. -
mation

2 2 ~ 2

If there are no correlations between the transverse
momenta of the Reggeons, then

&p„') =1/c„(s), i=2, 3, . . . , (n —1)

= —Q&l =PEG +=~ =1 .
c„(s) (40)

To proceed further we replace lnp. ,2, lns, by their
average values:

1in' '- — Q in p,
'

n-2 =2

=ln p.',
1

b + ss')ss,.-——Q (b+ ts' tss,.))n —1

=c„(s) .
The replacements (32} remain approximate even
in the limit s- ~, n fixed. A simple approximate
expression is then obtained for v„:

%e shall take these as the results of the asymp-
totic theory. In general, however, there are
correlations between the transverse momenta: they
may enter through the factors (((,,' in Eq. (29), for
instance, or through the internal vertex functions
(see Sec. IV). The resulting effects will have to
be calculated numerically, and they are unlikely
to affect the average transverse momentum squar-
ed by more than a factor of two, so we shall ignore
them for the moment.

To calculate the effect of this multi-Regge con-
tribution to the diffraction scattering, we can
directly apply the results of Sec. III. Rewriting
(22) using (21), we have

T{q'f=g, " ' g exp([a'(-,'i7(+lns, )+f)] t, j
2(n.-2) s2b(0-2 [Y- ln(P, !)„/mo, }1" / 253()(o(r) 2) y S cxo gn~ vl 00/2

n-1
2

&& g d2q. s 2~))(8)(((~
5=1

7( 2~-2[g. (s) ln(s/p) p )]"'
c„(s) (n —2)!

(33)

(34)

Tjqj = ((((,'g, )" ' g exp/- [c„(s)+-,' iso. ']q„'j

~ Scfo~n(7! uo/2 (42)

Uslllg Eqs. (28), (31}, and (32), this equation he-
comes

~&f10~
g.'(s) = go'2, (,)

~

(35)
s'(Ei'=. s/sa. )*s')

I
&I'

Now it remains to find the average transverse
mass. To deduce this we note that in the approx-
imation of Eq. (33), the average transverse mo-
mentum squared of each of the exchanged Reggeons
is

= —4 n —1 c„s+ e" q&„

(43)

&qg '&=
2c„(s)

' (36)
while (Q; &lnj TI/&q;, ) vanishes in the limit s- ~.
Now

It follows immediately that for the outermost par-
ticles on the chain

(p, ') =(p„') 1=(n —1)4
( ), (44)

2+ 1
2c„(s)

' (37)

For the internally produced particles, however,
their transverse momentum is the difference be-

if we ignore correlations among the Reggeon trans-
verse momenta, and use Eq. (36).

Therefore, from Eqs. (13), (14), (43), and (44)
one obtains
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F„{P,e) = F„(P,0) [1--,'P'e' I"„(s)]+O(e'), (45)

where

x'o." tI'„(s)=(n-1) c„(s)+4c„s
To test the validity of the asymptotic theory out-

lined so far, we have done some numerical calcu-
lations. The Monte Carlo procedure used was an
adaptation of one previously developed to calcu-
late transverse damped phase space. ' For a de-
tailed discussion, see Chen and Peierls. Here we
outline the procedure. First, using Van Hove's
method, ' a set of n transverse momenta was gen-
erated, distributed Qaussianly with sum zero.
Then a. rapidity was generated for each particle,
Gaussianly distributed about ——,

' F+(j—1)Y'/(n -1)
for the jth particle (we work in the center-of-mass
system). The Gaussian widths were adjustable in
both cases. The resulting events, which did not,
in general, satisfy the longitudinal momentum or
energy constraints, were Lorentz-transformed
and rescaled so as to satisfy these constraints,
and reweighted according to the transformation
Jacobian. By adjusting the Gaussian widths and
appropriately choosing the relative weights for
different scale factors, good convergence is ob-
tained. For the final runs, the number of events
generated was about 1000 per final-state particle
for each value of s.

We have considered two cases:
Examjle 1. o.o = 0, a' = 0, b = 5 (GeV/c) ',

go' = Sb/v, m o' =m, '.
For these values of the parameters, Eqs. (34),

(39), and (46) lead to the following results: For
the cross section,

7T 2 gP P S " 1"-b' . 3b
'"

m, +1/3b (n 3)!

the average transverse momentum squared of all
the produced particles is

(48)

and the slope of the overlap function is

I'„(s)= (n —1) b .
Furthermore, no correlations among the trans-
verse momenta are present in this special case,
so that these predictions should hold exactly in the
limit of high energies.

The numerically calculated values for these
quantities, for n=2, 3 and 4, are displayed in Figs.
3(a), 3(b), and 3(c), along with the predictions of
the asymptotic theory. " It can be seen that the
Monte Carlo results do approach those of the as-
ymptotic theory as the center-of-mass energy E

IV. INCLUSIVE BEHAVIOR

In this section, we shall consider the results
obtained by summing over n, the number of pro-
duced particles. We shall first discuss the pre-
dictions of the asymptotic theory, and then make
comparisons with results calculated numerical). y.

It is well-known that multiperipheral models
embody Feynman scaling, "and lead to a logarith-
mically rising number of produced particles":

( n),~„contsx inc (50)

so that for the quantities defined by Eqs. (32) and

(35) of Sec. UI, one finds

c,„,{s),~„c, a constant

g,„,' (s),~„g', a constant.
(51)

Since the multiplicity distribution is approximately
Poisson, and sharply peaked at n= (n), c„(s) and

g„'(s) can be replaced by c and g' in the formulas
of Sec. III, for the purpose of summing over n.

So, assuming that the asymptotic theory can be
used for n= (n) (which is equivalent to the assump-
tion that the coupling is weak), it follows that

(), .~-. [g-'»(&/so)]" '
(53)

o;..)(s) =g&. (&)

2 -2+ 2

,~„const & s'"o "g, (53)

( n&, „g'lns .
These results are all familiar from the work of
Chew and Pignotti. ' Also, one finds that

(pi') ~—
C

(55)

becomes large, but the rate of approach is rather
slow. Note that the asymptotic limits are all
approached from below.

Example Z. oo = -,', u' = 1(GeV/c) ', b = 5 (GeV/c) ',
g„' —-32.5, m '=m„'.

The numerical calculat, ions are compared with
the asymptotic theory for this case in Figs. 3(d),
3(e), and 3(f). Here, there are correlations among
the transverse momenta of the exchanged Reggeons,
which lead to values of (p~') about 50%%ua above those
predicted by our asymptotic theory at energies of
order 10' QeV." At very much higher energies
still, when (p~') «m02, the Monte Carlo results
should approach those of the asymptotic theory
again, because the correlations will become un-
important. But such huge energies are clearly
not of practical interest.
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EXAMPLE 1

T
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FIG. 3. Comparison of Monte Carlo results (solid lines)
discussed in Sec. III. Figs. 3(a)-3(c) show log&0 o„, (p~ ),
the same quantities for Example 2.~o

with the asymptotic theory (dashed lines) for the examples
and l„versus log~o E for Example 1; Figures 3(d)—3(f) show

I'(s) =(I",(s))
~2 p2

„g lns c+--

The fact that the average transverse momentum
squared is predicted to approach a constant in the
high-energy limit is, of course, another well-
known result of multiperipheral models. "'"

Note, finally, that the quantity I'(s) is predicted
to rise logarithmically with s. Now assuming
that the unitarity sum (3) is dominated by the in-
elastic intermediate states, "and that near the

forward direction the elastic scattering amplitude
is mainly imaginary, then I (s) determines the
rate of shrinkage of the diffraction peak, measured
by the "Pomeron slope" n&".

d(inc„) s~„2ea' lns
,
t=o

,~„I'(s) .
These arguments, leading to a logarithmic shrink-
age of the diffraction peak, are also familiar from
multiper ipheral bootstrap models. '~'

This behavior can be given a simple physical
interpretation, as outlined in Sec. II. Each link
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in the multiperipheral chain corresponds to a step
in impact-parameter space, whose mean-square
length goes to a constant at high energy:

g2 I2

(&b,*), 2(c+, ~'=l, 2, .. . , (n —))4c

TABLE I. The predictions of a multi-Regge model
(computed in the weak coupling approximation) compared
with experimental data on inclusive production of pions
at high energies.

Asymptotic
theory (s ~) Experiment 8

(58}

and these steps add in random walk fashion to give
an over-all impact parameter

~2 l2

(b„,*), 2(n —l)(c+ 4c

(1) O~ei

{2) (n ~)/lns
{3) (v&') ({«v/c)']
(4) o.&' t(GeV/c) ]

~ S2n0-2 +g 2

g
1/c

1 g 2 c +2 4c

-const
2.3
0.16

0.28

~2~J2
2g*()ns)(c+ 4c (59}

This logar ithmically-increasing impact parameter
then implies a logarithmically-shrinking diffrac-
tion peak.

Now let us confront this model with experiment,
identifying the produced particles with the exper-
imentally observed pions. According to recent
observations, it seems that the total inelastic
cross section is roughly constant as a function of
energy; the average multiplicity rises like'

(n,),~„2.3 lns,

the average transverse momentum squared is
about"

(p '), „0.16 (GeV/c)',

(6o)

(61)

and the rate of shrinkage of the diffraction peak is
given by'

o~' =0.28 (GeV/c) ' .
The predictions of the theory are compared with
experiment in Table I.

A very little calculation shows that our naive
model is incapable of fitting the data. Even sup-
posing that n'=0, for instance, to satisfy rela-
tions (1), (3), and (4) of Table I simultaneously
would require

c= [0.16 (GeV/c)'] ',
g' = 0.09,
uo= 0 95 ~

(63}

That is, the low value of z~' implies that the num-
ber of links in the multiperipheral chain can rise
only very slowly with lns, so that the "input"
intercept ao must be close to 1. But then relation
(2) of Table I cannot be satisfied: The number of
produced pions is predicted to rise much too
slowly.

The cure for this problem is to introduce a new
ingredient into the model, namely "clustering".
If we suppose that the objects produced at the ver-
tices of the multiperipheral chain each give rise

to severa/ final-state pions, on the average, then
relation (2} of Table I can also be satisfied along
with the others. This idea will be discussed more
fully in Sec. V.

Before accepting this conclusion, one must ask
whether the asymptotic theory is at all realistic.
For the remainder of this section we shall address
ourselves to this question.

First let us consider how the asymptotic theory
compares with numerical calculations of the in-
elastic cross sections. To do this, we have taken
Examples 1 and 2 of Sec. III, and adjusted the free
parameters g,' and b so that a constant total pro-
duction cross section was obtained, and the mean-
square transverse momentum of the produced par-
ticles wa. s the same as that given by E(I. (61). The
Monte Carlo results are compared with those of the
asymptotic theory in Table II."

It can be seen that the asymptotic theory is
grossly inaccurate, in quantitative terms, at pre-
dicting the inclusive behavior. The reason for this
is obvious (but we shall state it anyway): The
underlying "strong ordering" assumption, or equiv-
alently, the weak-coupling approximation, is in-
applicable to the cases in question, and at a given
energy the individual cross sections with n= (n)
have not yet approached their asymptotic forms.

Nevertheless, the qualitative conclusions obt:ain-
ed using the asymptotic theory still apply. In both
the examples considered, the numerical results
give too high a value for o~', and too low a multi-
plicity. The only way in which both these defects
can be simultaneously corrected is to introduce
"cluster ing. "

Finally, it remains to discuss how the naive
model given by E(I. (22) compares with more gen-
eral multi-Regge forms. It is clear that our re-
sults depend to some extent on the analytic forms
assumed for the dependence of the amplitude on

s, and t;, but it is hard to think of sensible alter-
native forms which might change our qualitative
conclusions. In particular, let us look at more
realistic vertex functions. Reggeon-particle-
Reggeon vertex functions have been treated by
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TABLE II. Analytic results obtained via the weak-coupling approximation compared with numerical results obtained
via a Monte Carlo program, for the inclusive behavior of the two examples discussed in Sec. IV. All parameters in
units of GeV/c.

Example 1.

Asymptotic
theory

(g~ =2, c =6.3)

(co=0, n' =0)

Monte Carlo
results

(g,'=6.5, b =1.5)

Example 2.

Asymptotic
theory

(g~ =1, c=6.3)

«o —2 n' =1

Monte Carlo
results

(g,' =13.5, b =2.6) Experiment

0'inc)

(2) (n )/lns
(3) (p 2)

const
2.0
0.16
6.3

const
1.0
0.16
0.8

const
1.0
0.16
3.3

const
0.7
0.16
1.3

const
2.3
0.16
0.28

several authors over the past few years. ' They
concluded that the 2- 3 particle amplitude, for
instance, can be written

A(s„s„t„ t„z), ~s, 5 s, "2 ],$,p(f~)

x z(t„ t„~)p(t, ) . (64)

Here the t dependence of the trajectories n„n, and
the signature factors g„g, has been suppressed.
The variable z=s,s, /s is linearly related" to
cosset, the Toiler angle at the internal vertex, and
is approximately equal to p.,j', the transverse
mass squared of the produced particle. The vertex
function can then be written

+(-~) ~ v,(t„t„~). (66)

The functions V, and V, are now real, with no cuts
in K, and tend to constant values as ~-0. They
obey certain symmetry relations which we shall
not write down.

Comparing these forms with the na, ive model of
Eq. (22) where the vertex functions were taken to
be constants & exponentials in the momentum
transfers t;, it can be seen that the net effect is
two fold:

(i) Realistic vertex functions will introduce an
extra dependence on the transverse masses p.&'.
The factors (- a) in Eq. (66) will, in fact, tend
to cancel the factors (p )" in Eq. (29), and "damp
out" any transverse momentum correlations. It
is unlikely that there is any strong effect beyond
this, because comparisons of the multi-Regge
model with experiment' have not hitherto turned
up any strong dependence on the Toiler angles.

(ii) The realistic vertex functions will introduce

B(t„t„a)= V(t„ t„z+ie)- ' 'Disc„v(t„ t„~),i4
(65)

using the Regge-pole signatures v; and 7,, and a
function V which has a cut in the variable z:

v(t„ t„~)= (- ~)-"~ v, (t„ t„~)

additional phase factors, so that the phase of the
amplitude will not simply be determined by the
product of the signature factors of the exchanged
Reggeons. It appears that the vertex functions
tend to cancel the phase introduced by the signature
factors. It is possible to separate the slope I'„(s)
given by Eq. (46) into two terms:

r„'"(s) =(n —1) c„(s),
(67)

the first of which depends on the variation in mag-
nitude of the inelastic amplitude as the scattering
angle changes, and the second on the variation
in phase (see Koba and Namiki'). So the effect of
a realistic vertex function is likely to be a reduc-
tion in the phase-dependent term r~'~(s). But this
term is of minor importance in any case, in the
examples considered so far.

Neither of these effects is likely to have much
impact on the qualitative results given earlier in
this section. So we believe that the resulting con-
clusions should hold in any realistic multi-Regge
model. Some "clustering" effects will have to be
included before any agreement with experiment is
possible.

V. THE MULTIPERIPHERAL CLUSTER MODEL

In Secs. III and IV, it has been demonstrated
that a. naive model in which pions are produced
singly along a multi-Regge chain is incapable of
fitting the experimental data on inclusive pion
production at high energies. Some clustering ef-
fects must be incorporated into the model if it is
to achieve phenomenological success. A more
precise definition of a, cluster is given in the
Appendix.

Such effects have been discussed many times in
the past. " In fact, the classic ABFST (Amati,
Bertocchi, Fubini, Stanghellini, and Tonin) multi-
peripheral model" already contained a primitive
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form of clustering, in that the final-state pions
were supposed to emerge in pairs from each ver-
tex.

It can be seen that these effects must be impor-
tant, simply from the fact" that the average sub-
energies of adjacent pairs of the produced pions
in rapidity space remain fixed and small (less
than I GeV) as the total energy increases. At such
small subenergies, the approximation of dropping
all but the multi-Regge ladder diagrams involving
a single dominant exchanged Reggeon must inevi-
tably fail. Terms which are neglected, incor-
rectly, in such an approximation include:

(i) more complicated Regge exchange diagrams
involving lower-lying trajectories, multiple s-
channel exchanges, "crossed" ladders, etc.,"'4
and

(ii) resonance terms. The scattering amplitude
in any (nonexotic) two-particle exclusive reaction
is generally found to be dominated by resonances
at low energies. The same is presumably true of
many-particle production amplitudes when the
energy of any subset of those particles is low.

If one regards effects such as those mentioned in

(i) as contributing to the formation of resonances,
then the clustering effects can be said to be due
entirely to resonances. For simplicity, we shall
adopt this attitude for the remainder of this paper.

How can one include these resonance terms in
the model P In the past, the hypothesis was put
forward that "duality" m. ight enable one to de-
scribe the ave~age behavior in the resonance re-
gion in terms of the leading Regge pole exchange
terms. This would lead one back to the original
multi-Regge model of Chew and Pignotti, "for
instance, where the pions are emitted singly after
all and resonances are otherwise ignored. But it
was recently pointed out" that duality applies to
amPlitudes, not to cross sections, and that the
production cross sections are grossly underesti-
mated at low subenergies by such a prescription.
A more sensible strategy, in fact, on both phenom-
enological and aesthetic grounds, is to treat the
production and decay of all particles on an equal
footing, whether they be stable final-state particles
such as pions, or unstable resonances. This can
be done without any double counting" if one sepa-
rates the resonance cross sections into a piece
due to the dominant Regge-pole exchange ("coher-
ent" term), and a remainder ("incoherent" term).

At low energies where the resonances are sepa-
rable, they should really be dealt with individually.
At intermediate and high energies, however, where
they are densely spaced and strongly overlapping,
a collective description is desirable. There are
then alternative attitudes one may take to the "in-
coherent" terms defined above:

n, (m, ) =0.30 " + 0.6 .
mr

(68)

This formula is in accordance with the results of
i;he statistical bootstrap model, and also describes
the decay patterns of the observed low-mass res-
onances reasonably well. '~ The corresponding
value for the mean-square transverse momentum
of the produced pions, relative to the center of

(i) One may regard them as being largely de-
termined by a very small number of dynamical
parameters, as in a dual resonance model or a
quark model, perhaps. Such terms would then be
calculable dynamically. The label "incoherent"
is inappropriate in such a case.

(ii) One may regard them as being determined
by a large number of approximately independent
dynamical variables, and thus more amenable to a
statistical treatment. In Ref. 28, for instance, it
was proposed to treat these terms via the statis-
tical bootstrap model of Hagedorn and Frautschi. "
The "incoherent" terms would then be treated anal-
ogously to the compound nucleus cross sections'
and Ericson fluctuations" found in nuclear physics.
This viewpoint will again be adopted in the present
paper.

We are thus led to construct a multiperipheral
cluster model, " in which the usual multi-Regge
chain of exchanges occurs, but where particles
both stable and unstable are produced at each ver-
tex with a probability depending on their mass in
some unknown fashion, and subsequently decay
statistically into "clusters" of final-state particles.
This mill result in the following improvements
over the naive model of Sec. III:

(i) enhancements in the cross sections which
occur whenever a group of final state particles
emerge nearby each other in phase space are
included, if the model is correct, in diagrams
where the members of the group form a single
cluster.

(ii) If the final-state pions are grouped into
clusters in this way, then the average rapidity
gap between clusters is larger than that between
individual pions, and so both the "strong ordering"
approximation4 and the ladder approximation
should have more success. "

For the remainder of this section we shall en-
deavor to make rough estimates of the parameters
required in such a model in order to fit the data. .
The clusters will be treated as if they were ele-
mentary particles, and they will be given a unique
"average" mass mo, so that the same numerical
program as in Secs. III and IV can be employed.
We shall also suppose that the decay of each clus-
ter gives rise to an average number of pions equal
to
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mass of the cluster, can be deduced from the re-
suits of Frautschi and Hamer. " We shall mainly
be interested in the asymptotic value as m, tends
to infinity:

(p„'&„= lim &p~'(m, )&
0

d'P P'exp[- (m. '+ p')'/'/r„,
3 1' d'p exp[- (m„'+ p')'~'/T„, ]

'

(69)

If we put T,ff 128 MeV, which is consistent with
the parameters of Eq. (68), '4 then

& pi'& „=0.145 (GeV/c)' . (70)

Now the mean-square transverse momentum per
produced pion which is contributed by the ex-
changed Reggeons (whose correlations are again
neglected) is asymptotica, lly equal to 1/cn, '(m, )
Convoluting the momentum distribution due to the
exchanged Reggeons with that resulting from the

. decay of the cluster, it follows that the total mean-
square transverse momentum per pion is simply
the sum.

i.e., the observed average transverse momentum
comes purely from the decay of the cluster.
According to Eq. (lO) &~p&„=0.145 (GeV/c)' where-
as & p~'&, = 0.16 (GeV/c)'. Allowing for a certain
degree of error, these figures are not incompat-
ible with Eq. ('l2).

It was found in See. IV, however, that the asymp-
totic theory may be grossly inaccurate in pre-
dicting inclusive properties of the produced pion
spectrum. So we must check numerically whether
the exchange of lower-lying trajectories is really
excluded. In order to do this, we have chosen to
consider the example with o.o = 2, n' =1 (GeV/c) '
(p-like trajectory). The parameters g,', b, and
m, were adjusted by hand in an attempt to get a
rough fit to the experimental behaviors of 0;„,~,

&n, ), and o,~, as given in Table III; the corre-
sponding value of & p~'&„can then be compared
with data afterwards. With the parameters g,'
= 22, 5 = -4.2 (GeV/c) ', and m, = 4.6 GeV, for
instance, we find

o. „=const,

&n, & /lns =2.3,
I'

2 ins

(V3)

since the two distributions are symmetric and
unco rrelated.

The asymptotic theory for this crude form of
multiperipheral cluster model therefore leads to
the relations listed in Table III.

A few trials are enough to show that, according
to the asymptotic theory, only Pomeranchuk ex-
change (o., e 1) will suffice to fit the data. In this
case t7, (m, ) must be large; in fact, m, may even
diverge logarithmically as s-~, as in the dif-
fractive excitation models of Hwa, and Jacob and
Slansky. '6 This would also imply that

&pi'& =&pi'&. ,

=0.5 (GeV/c) 2.

These values are reasonably close to the experi-
mental numbers given in Table III. The result
for nI, is somewhat too high, and it is difficult
to get it any lower; but 30%%uo of this number is
contributed by the phase-dependent term F&'~,
and this fraction should perhaps be thrown away
(see Sec. IV). If I'(') is neglected, a, fit to the
data is certainly possible.

The corresponding transverse momentum
squared per cluster averaged approximately 0.4
(GeV/c)'. But since the number of pions emitted

TABLE III. The predictions of a multiperipheral cluster model (MCM), derived in a weak-
coupling approximation, compared with experimental data on inclusive production of pions at
high energies.

MCM asymptotic
theory Experiment

0 incr

(2) &n „)/1ns

(3) &p '), ((«v/~)')

(4} Q.z' [(GeV/e) 2]

S 02' 2+g

g n~(mo)

1
&pi ( 0)) +,„- 2( )

2g C+

const

2.3

0.16

0.28
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from each cluster is high,

yg, (m, ) = 10.5,
it follows that the average transverse momentum
squared per pim which is contributed by the ex-
changed Reggeons is only 0.004 (GeV/e)'. Thus
relation (3) of Table III can again be satisfied pro-
vided Eq. (72) is approximately true.

Similar conclusions hold for the exchange of
pion-like Reggeons. The value of m, needed in
this case is about 2.1 GeV.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have used the present experi-
mental data concerning the gross features of in-
clusive production in high-energy PP collisions,
and compared it with the predictions of multi-
Regge models. The calculations were made both
by approximate analytical methods, and more ex-
act numerical ones.

It was found that a naive model in which the final
state pions are produced singly at each vertex of
the multiperipheral chain cannot fit the data. The
rate of increase of the multiplicity comes out too
low, and the rate of shrinkage of the diffraction
peak comes out too high (except for Pomeron ex-
change). There is no possibility of remedying both
these defects together by adjusting parameters,
because the two quantities are proportional to each
other, with a scale set by the transverse momen-
tum of the produced particles. A physical reason
for this was discussed in terms of impact param-
eters in Sec. II.

The model can only be salvaged if each vertex in
the multiperipheral chain gives rise to a cluster
of final-state pions. As shown in the Appendix,
even the simple multi-Regge model itself can for-
mally be treated as a multicluster model. Com-
pared with this case, however, we need clusters
whose particles are more closely spaced in longi-
tudinal momentum, to raise the multiplicity, and
more closely spaced in the transverse direction,
so as to reduce the shrinkage of the diffraction
peak. Such clusters are in fact a very natural
occurrence, and will result from enhancements of
the production cross sections whenever several
of the finaL-state particles emerge close to each
other in phase space. One expects such enhance-
ments to occur via resonance formation, in par-
ticular, and also due to nonplanar Flegge exchange
diagrams, etc.

A particular example was discussed" in which
the decay of a cluster was treated according to the
statistical bootstrap model of Hagedorn and Frau-
tschi. " Study of this example leads one to the
following conclusions:

(a) The inclusive-production data given in Table
III are in principle sufficient to determine n„ the
intercept of the input trajectory, as well as the
other major parameters involved in a multipe-
ripheral cluster model. The results of the weak-
coupling approximation, for instance, lead one to
expect that Pomeranchuk exchange must dominate
at high energies (a, =1). But in practice, this
conclusion cannot be maintained. In realistic nu-
merical calculations, models with e, equal to 2 or
0 (p, e, . .. or pion exchange) could be made to fit
the data also. The basic reason for this ambiguity
is that the two contributions to the transverse mo-
mentum of the produced pions (namely, that from
the decay of a cluster, and that from Beggeon ex-
change) cannot be separated in practice, and re-
lation (3) of Table Ill cannot be made into a useful
restriction. Thus the question of which exchanges
are dominant must be settled by other means.

(b) Regardless of which exchange is dominant,
the average number of exchanged Beggeons grows
much more slowly than one would expect from the
weak coupling approximation. So in order to ex-
plain the observed pion multiplicity, each cluster
must give rise to a surprisingly large number of
pions, of order five to ten on the average. The
average cluster mass must be correspondingly
high, of order a few GeV at least. These results
may depend to some extent on the specific para-
metrization of the model we have adopted. But
they are in accord with the indications from longi-
tudinal phase-space analyses of various exclusive
final states, "where only small numbers of multi-
Begge events are found.

(c) It follows from (b) that the mean-square
transverse momentum of the produced pions comes
mainly from the decay of the clusters, and the
contribution of the exchanged Beggeons is of order
a few percent only. " Under our assumption that
these decays follow statistical laws„ it therefore
follows that the transverse-momentum distribution
of the pions produced in the central region of ra-
pidity space ("pionization region") should be pre-
dominantly a statistical one, as in ihe thermody-
namic model. " This provides some a Posteriori
justification for Hagedorn's model.

APPENDIX: DEFINITION OF A CLUSTER

Consider the general n-particle production am-
plitude discussed in Sec. II, and illustrated in Fig.
4. Consider some subset of / final state particles
and choose a kinematic ordering so that they are
adjacent, i.e., their four-momenta are p„„,
p„+„.. . , p„+, . Suppose also that the T matrix
can be factorized as follows:



J. HAMER AND R. F. P EIERI 8

p
r+1 ~ I'+l

q

P r+)
]4

P~
I

I

I

I

I

qZ qr qr+II

I

$

/ / II II

I

~ r+X!

!

i&

!

!

!

I

qr+i i

qg» I

1

q ~g

/

qr+~
I

qn-]
gp =-q

FIG. 4. Choice of kinematic variables for discussion of clusters.

~n( q f = & (qo &
~ ~ ~ qr s qr+r &l

~ s qn) '

XD(qr i qr+ u .
~ qr+ i }. (Al)

II
Qi 0-r ~ s =r, y+ 1, . . . , y+ l

(so that q„' =q,", q„'„=qI'). Then

T.iq) =T(qo, , q.', 1 l )D(q.", ",qi') (A3)

and the phase-space volume element

dA„= 5((q„—q„,}'—m„')

xgd'q, . 6((q; —q;,) -m, ) (A4)

Then we can describe these l -particles as a clus-
ter. Let us label the q's as follows:

Qf qg p
l Op 1

p
II ~ ~

qg=qt )+~, s =r+ l, . . . , n

(A6)Pc L ( (P bi )2) L+( (5r t SIC )2)

where each average now also includes an average
over m„'+,» ——(Q,'-, p„+, ) . The generalization to
several clusters is obvious.

A multiperipheral cluster model is one in which
T is itself a multiperipheral amplitude: the con-
tribution of the first term becomes proportional
to n —l for a single cluster or n —1-Q (l —1) for
several clusters. The contribution of the second
term can in principle be anything. Two special
cases are simple to treat.

First, the pure multiperipheral model of Sec.
III is a trivial example. In this case the ampli-
tude D is itself multiperipheral and thus we re-
cover the results of Sec. II.

To reduce F we need clusters which do not
spread out in impact parameter to this extent.
The other extreme comes when we set

can be written
D(q." " ql') =D((io'-qf')'). (A7)

d@'+i s "~i"d

where the masses m', m" are defined corre-
sponding to (A2}. The kinematics is illustrated
in Fig. 4.

Now applying the arguments of Sec. II, we can
easily see that

In this case the Fourier transform becomes
5 ' (b,"-5,",) and the second term contributes
nothing. This corresponds to the case when aB
l particles in the cluster emerge with the same
impact parameter, and is the basis for the cal-
culations of Sec. V. A realistic cluster model
would lie between these extremes.
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