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Starting from the exact multiparticle unitarity relation, we derive the derivative extension of the
optical theorem. The slope of the forward peak is then related in a model-independent way to the
rotational properties of production amplitudes. A sequential representation is developed for treating an
n-particle state. The formalism is then applied to the multiperipheral and diffractive models. The
analysis makes clear the mechanisms in which the. forward slope is built up in those models. In the case of
the multiperipheral model the slope is proportional to the number of links in the multiperipheral chain.
Quantitatively, the slope of the Pomeranchuk trajectory at t =-0 is too large. In an oversimplified
version of the diffractive model, the predicted slope of the elastic forward peak is one-half the mean

slope, the average being taken over all two-cluster production processes; consequently, it is too small.
The realistic high-energy model is somewhere between the two extremes considered.

I. INTRODUCTION

Various models have been suggested for the de-
scription of multiparticle production processes
at very high energies. Among them the multipe-
ripheral' and the diffractive' models have almost
opposite points of views, and yet their predictions
on measurable quantities are so similar that to
this date no experiment has been accurate enough
to rule out either one of the two basic views. Be-
sides, both models can be and have been modified
to accommodate new empirical features, so an
experimental selection of the realistic model is
likely to be a long and indecisive procedure.

There is, however, one feature on which the two
models make drastically different claims. That is
the slope of the forward peak. In the multiperiph-
eral model (MPM) the slope increases at least as
fast as lns, whereas in the diffractive excitation
model (DEM) it is limiting, i.e., approaches a
constant as s -~. Experimentally, ' the derivative
of the slope with respect to lns is becoming small-
er and smaller as s increases, although the exper-
imental errors again do not preclude either possi-
bility. Nevertheless, the divergence of the theo-
retical assertions on this matter makes it a worth-
while subject for a close examination. It should be
possible to calculate either the slope b or its de-
rivative db(s)/dlns from the parameters of the
models. As we shall show in this paper, the cal-
culations in two simple versions of the two mod-
els yield results that are on two opposite sides of
what may be regarded as acceptable. Thus, we
foresee the slope calculation as an effective guide-
post for the modification and improvement of high-
energy models.

The slope of the forward peak has been investi-
gated in the past mainly in the t channel. In the

MPM the slope of the Pomeranchuk trajectory
at t=0 is related to the slope parameter of the
average multiplicity (n) and the eigenfunction of
the multiperipheral integral equation. 4 In the
DEM the slope of the diffraction peak is calculated
in the t channel assuming a weak, fixed branch
point for the Pomeranchukon, ' and the results are
reasonable for a variety of processes. ' But none
of these calculations provide a good insight on
what really builds up the slope, a. question which
can be satisfactorily answered only if we analyze
directly in the s channel. An s-channel approach
has recently been undertaken by Tiktopoulos and
Treiman, ' but they used the Schwarz inequality
and therefore obtained only a lower bound.

In this paper we start from the complete s-chan-
nel unitarity relation. We derive a "derivative
optical theorem" which relates the slope of the
forward peak to "matrix elements" of a product
of rotation operators. To illustrate how this re-
lation can be used as a diagnostic tool for examin-
ing high-energy models, we apply it to two simple
versions of the MPM and DEM. It is found that in
the case of the MPM the slope of the forward peak
shrinks too fast, and that in the case of the DEM
the limiting slope is too small. Evidently, this
result reflects the extremities of the two views.
The realistic situation must lie somewhere in be-
tween.

II. DERIVATIVE OPTICAL THEOREM

The relation to be proven follows only from uni-
tarity. Define the S matrix in the usual way

Sy, =by, +i(2m) 5 (K~ -K,)T~, ,

where E,. and Kz are the total four-momenta of the
initial and final states; we shall use E to denote
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both. The imaginary part of the elastic amplitude
is given by

A(~, 8) -=(») '(Tg; —TP;)

The cot8 term in (9) diverges as 8-0, so we must
expand BT/Bcosy to first order in sin8:

Bcosy Bcosg B(cosg)'

where Q„represents the sum over all intermedi-
ate states, each of which has n particles. For
simplicity, we consider only scalar particles here.
In (2) we have used the abbreviation

Upon substitution of (10) into (9) the remaining
cot8 term does not contribute after integration
over Q, sowekeeponly

BT(cosy) BT(cosg)
lcm =cos

Bz Bcosg

The normalization of & is such that the optical
theorem is

A(s, 0) =2k~s or, (4)

+T(cosg)-sin'(cos'Q
B(cos

Using the symbol f=cosg, we obtain for the deriv-
ative of (6}

where k is the incident c.m. momentum, and that
the differential cross section for two-body reac-
tion is

—= —(64m s) 'i Ti
dQ

A (s 0)= f d(p'(()

BT(&) k . B'T(&)"

where P is the final c.m. momentum.

A. Two-Body States

We want to take the derivative of (2) with respect
to cos8. Let us first consider the contribution
from any two-body intermediate state and denote
it by A, (s, 8}. With P designating the intermediate
c.m. momentum, and e =-,' (or 1) if the intermedi-
ate particles are identical (or not), we have

where

k, ="„(8)k,

Here B,(8) represents a rotation about the y axis
by an angle 8, and k,. is along the s axis. The de-
rivative of (6) with respect to z -=cos8 can be car-
ried inside the integral and acts only on the sec-
ond T, giving rise to the quantity BT(kz, p)/Bz. To
evaluate this quantity in the limit z-1, let us use
(g, Q) to denote the polar and azimutha1 angles of
p, and g the angle between kz and p. Then

B. Multiparticle States: BA/80

For the multiparticle intermediate states, let us
first consider the simpler problem of the deriva-
tive with respect to 8, not cos8. The result is
trivial if we make use of the fact that the eigen-
functions of the rotation operator for a two-body
state are the spherical harmonics, which in the
spinless case are functions only of cos8. Thus,
A{s, 8) contains only even powers of 8, and BA/B8
at 8=0 must necessarily vanish.

The question that we address ourselves to here
is whether that implies any constraint on the pro-
duction amplitudes through unitarity. In answer-
ing this question we set up the formalism useful
in Sec. IIC. If we move the differential operator
B/B8 through the unitarity integral, it acts on T(kz,
p, ~ .p„). By rotational invariance we express
T(kz, p,.) in terms of k,. and q,. where

q;=A, '(8)p, , j=1, . . . , n.
We then obtain

cosy =cos8cosg+sin8singcosp,

hence,

(6)

BT cosy BT cosy
(cosp —cot8sinpcosp) .

Bz Bcosy

(9) which implies in the 8-0 limit

(14)
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lim —A„„(s,8) =-,' P d4„+ T,*.„T,„9 8

e-o ~~
pl

a cross section which we denote by o{„)(dp,.). Letnt
us further define

xlim

(1s)

o„(g,)(p, ) = Q Q o{„)(P,.) .
t& t~

t nt

Then clearly we have

(22)

where dC„ is the phase-space density in (2). Since
A(s, 8) is real, the quantity in the square bracket
in (15) is equivalent to its complex conjugate, and
consequently also to

I T;.(k;, p
Bp.

From (13) we have

o =Q f (dd)(r„(2),
n

(24)

(2s)f,(P) =p n, o„(p),
nt

where f,(p) is the inclusive cross section for de-
tecting a particle of type t at p in the phase vol-
ume (dP). We now see that the right-hand side of
(18}can be written as

q, = u„(P„' cos8-P', sin8) + u,P',

+ u, (p„' sin8+p'. cos8), (17)

ikW-s g Q g (dP, )J",o{„)(.P~)
t nt, j

so

iim —, A„„(s,8) = --,' Q de„Q iJ,' ~
T,„~',

e-o ~~

ikWs Q-Q n(tq) (dPq) J,' o„(, )(P'q)
t& n(t~)

=-idds P f (dd)d, f,(2) . (26)
t

where

i 8 8
y Pz

gpss
Px gpjx z

The right-hand side of (18) can be expressed in
terms of the inclusive cross section, as we now
show.

Let us first be a little more explicit in the de-
scription of the phase-space integration:

The last expression vanishes upon integration over
Q because f,(P) can have no azimuthal dependence
in a problem involving only scalar particles. Note
that this azimuthal independence applies only to
the inclusive cross section but not to the amp1. i-
tude, which involves other momentaP„ lcj, that
are held fixed in (15) or (18). Hence, we conclude
that the vanishing of &A/&8 at 8=0 puts no con-
straint on the production amplitudes. It is inter-
esting to see the intricate consistency among rota-
tional symmetry, multiparticle unitarity, and the
analyticity of A(s, t) at t =0.

x5' p,.-K (20) C. Multiparticle States: BA/bz

where t denotes the type of particle produced, nt
the number of particles of type t, and n =g, n, .
The total production cross section is

Let us now consider the derivative of (2) with
respect to cos8. Instead of (14) we have

(21)op=EX o.,"'," =-ZZ '&.,&
t nt t nt

where the summand is the cross section for pro-
ducing nt particles of type I; with t ranging over
all types, i.e.,

T(k„p, p„)= g - T(k, , q, .q„)
j=l

where

(2V}

nt

o(„,)=(424 ) 'f, II (dP, ) (2 )'
t

=u„(P„+P,cot8)+u, (P, -P„cot8) . (28)
d(42 P

xs'( )I T({~)I . (22)

If in the above integral there is no integration over
(dP&), where j labels a particle of type t~, we get

The singularity at 8=0 due to the cot8 terms re-
quires an expansion of BT/&q in sin8, just as in
the two-body case. We have to the first order in
sing
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BT( ~ ~ q. ~ ~ ) BT( p . .)j
89j 8pj

+ g (q, -p,),-,-
8pk Bp .

(~.l T8& =-'Z f d+. T:(((&».((~&&
n

=A(s, 8) .
The norm of these vectors is (for any 8)

(38)

xT( ~ p. p )

It is straightforward to establish for small 8

(29)

8 8 ' 8
(q, —p„) ~ = sing p„' „-p', „. (30)

(Tel Te& =A(s, o),
which exists for every finite s by virtue of the
optical theorem (4). We can define a representa-
tion of the rotation operator in this linear vector
space by the homomorphism

We thus obtain using the definition in (19}
BT kf, p =P i cotgJ,~ T(k, , p)88

+ P cos 8J,' J,' T(k, , p) .
j,k

(31)

The first term on the right-hand side is the same
as the right-hand side of (14), apart from the cotg
factor. Since we perform the integration over the
phase space first, and then let 6-0, that term
does not contribute to BA/Bz at z =1 for the same
reason that BA/B8=0 at 8=0. We are therefore
left with the regular term in (31), which yields
the final result

fl(ng)- V(fi) =exp(-ign J),
where

J = Q J',

J J z J J8 . 8
x Py 8PJ Pg 8PJ8

and cyclic permutations. We thus have

T.HR) = T.((~, -'(8}p))

=em(-i«, )T.((p)) .
From (36) we then obtain

A(s, 8) =(T, l
exp(-ig J,)l T,&

=(T.l T.& -ig(T01 J,l T.&

-0 8'&T0I J, 'I T.&+ "

(38)

(39)

(40)

D. A Formal Derivation

The result obtained above suggests an alterna-
tive method for its derivation. We have used ro-
tational invariance to write

T(k„(R)= T(k, , (q)), (»)
where (p} -=p, p„, and q is defined in (13). To
generalize this to a problem that involves spinning
particles is a standard procedure which we will
not consider here. Since k,. points along the z
axis, let us omit the dependence of T on it, and
write

T;.(k;, {p))= T.((p)) =
I T.&,

T .(k;, (B)= T.(Lq) ) =-
I

T &-

(34)

Now, let
I Te& be vectors in a linear vector space

in which the scalar product is defined as follows:

8
A'(s, 0) =lim —A(s, z)

z

r f dd„T,„d,'d„T, .
n j,k

It is possible to verify (as we shall indicate later)
that when n = 2, (32) reduces to our earlier result
(12). Equation (32) may be regarded as the deriv-
ative optical theorem.

(41)

The second term on the right-hand side corre-
sponds to (18) and has been shown to vanish.
Evidently, we get

A'(s, 0) = ( T, l J, 'I T,&, (42)

—IInA(s, z)]dz 0 0
z=1

(43)

The operator J, is not a priori Hermitian; such
properties are determined by the nature of the
inner-product space. It follows directly from

(Tel Te& =
& Tol T0& (44)

and (40} that 4, is indeed Hermitian. Thus, the
slope as defined by (43) must be positive. More-
over, the Hermiticity of J, implies that
(T, l

O',
I T,&

must be real and therefore must van-
ish in order to maintain the reality of A(s, 8) in
(41). The same argument applies to all higher
odd-power terms of J, in (41). We thus obtain

which agrees with (32) because of (39). Combining
this expression with (3V) enables us to relate the
logarithmic derivative of A to the forward expecta-
tion value of J,'.
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~

~

8(g~)~ ' (2 )t (T ~ T)
(45)

Since the left-hand side is measurable, this rela-
tion may be utilized to constrain the possible
forms of T„((p)) in the construction of realistic
models.

III. A SEQUENTIAL REPRESENTATION

The n vectors in the set (p j describe the mo-
menta of the n particles in the intermediate state;
they are constrained by the energy-momentum
conservation: 5'(Q,.P,. —K). When the operator
j,' acts on T„((pj), all the other momenta p, , i fj,
are held fixed. This is as required by the chain
rule in the differentiation in (27) in spite of the
energy-momentum conservation, which is guaran-
teed by the 5 function in dC„. If in a model this
representation in terms of jp) is cumbersome be-
cause of the conservation constraint, we suggest
a different representation which has the constraint
already built in. We call it the sequential repre-
sentation; it seems particularly suitable for the
MPM.

Let us order the momenta in (p) in some way
and define

Formally, the representation in terms of (P} is
unsatisfatory because the phase-space density dC„,
when expressed in terms of II,d'P, , involves
some awkward kinematical factors. It is more
convenient to replace the momenta magnitudes by
sj as independent variables, and to use the set

(51)

where P j is the unit vector, specified by two an-
gles. This set fs~, P,)has .Sn —4 variables, the
required independent number for an n-particle
state. Let us consider one fixed Lorentz frame
for all j; for definiteness, let it be the over-all
s-channel c.m. system. Then we have for the in-
variant mass of the (j+ 1)th particle

m,.„'= (P,"„-P~~)'.

(52)

From this we see that P; (the magnitude of the 2-
momentum), is determined by s,, s, ,„P.P,
and Pj„, where by recursion Pj„depends on all
s, and P, for /& j. It is useful to introduce the
variable s,'., defined by

~l

(PIP�)2

j j

(46) (53)

Then, clearly P„"=K". We can define the invari-
ants

(47)

Its value is determined by s, sj, and. P,
We now establish the expression of dC„ in this

representation. Define

n-l
X=+ z', (49)

where k," is the 4-momentum of one of the initial
particles. The remaining set of independent vari-
ables may be taken to be the azimuthal angles of
P, Instead of the set (p), let us first choose to
express T,„ in terms of the set

(p)=p, (48)

By momentum conservation P„vanishes in the
c.m. frame. Energy conservation fixes the over-
all normalization of these vectors, which is un-
affected by rotation. Thus, insofar as the rotation
operator is concerned, these momenta may be re-
garded as independent. In this representation we
have

Multiplying d rf&„by

n-l
n-l n-l -l P ' n-l

f=l

and rearranging, we obtain

d&f&„= dQ„&ds„&dp„

where

dp„, = (dP„,)(dP„)(2m)'6'(P„", +P„"-K~)

(54)

(55)

(56)

Pg Pj (5O)

This expression will be used in Sec. IV in an appli-
cation to the MPM.

P„,
16m s

d P„ l. (57)

Evidently, dp„, is the phase-space .i nsity for a
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two-body state involving the nth particle and a "quasiparticle" of mass (s„,)'". More generally, we have

J j
d@„,= u (dP,.) (d9, „)(2 )'ll Q P",. +P,".„—P,"„d P,. d,. i! . P,"—p .P",. )i=1 i=1 i=1

n

xd(P,. —s}S(P, )d P,' ds,'2 (.P,'s —P P," ) S(P,' —s')S(P")

=dy, d'P, „d:,(.dP, )(dP,').(2~)'5'(P~+P~„-P~„)5'(P,~ P~„P,.~„)

=dQ -dss dp~ 2 (58)

where

dp, . = (dP, )(dP,')(2.w)'b'. (P('. +P,'" —K").
I',.

d I',
1671 Vs

(59)

of the two clusters; they should separately be ex-
pressed in two sequential representations, one
starting from i =1, the other starting from i =n,
both working towards the middle.

Since by the same procedure one can establish
that

dp2 =dp, ,

we have by recursive application of (58)

d(t}„=dp2ds's2dp2d8 2
' ' ' dp„ad 8„2dp„

(60)

dip d S d}d S~dp~~dgd}dcjbd) (63)

This is just what we need for the sequential set
(51) by virtue of (59a).

In this representation all the P,. are independent,
so the rotation operator is particularly simple. If
we choose the y axis to be the polar axis, with
reference to which the polar and azimuthal angles
of P„are denoted . by $,. and )l, , respectively, then
(50) becomes

8J'' = -i
v eg

Thus, using this in (49) and (43) we have formally
a very simple expression for the derivative opti-
cal theorem.

Because of the arrangement of P,. in a sequence,
this representation obviously should have useful
application in the MPM. It also can be applied to
the single-diffraction-dissociation processes if
P„ is identified with the undissociated particle.
For double diffraction dissociation, a+ b -A+ B,
we should use two sequences, i.e.,

IV. APPLICATIONS

, The foregoing consideration has been rather
formal; its implications ean best be made clear
by some examples. We give below two simple ex-
amples, which are chosen because they represent
two extreme views about high-energy collisions.
Clearly, in order to calculate the slope, what has
to be supplied is the production amplitude T„.
Among high-energy models the MPM is most ex-
plicit in the specification of the amplitude; it will
be considered first. The DEM, on the other hand,
is not as specific, but the simplicity of the model
permits an estimate of the result without detailed
information.

A. The Multiperipheral Model

We consider an extremely simple version of this
model. We assume

T„=h(s, s, , „)g exp(Zt, .), (65)

where s, ,„are the subenergies (P,. +P,.„)'; f,as.
defined in (47) are the momentum-transfer vari
ables, j running over all the links of the multipe=
ripheral chain; and h is some unspecified function
of the energy variables. The parameter X is
chosen such that the average transverse momen-
tum of the produced particles agrees with the ob-
served value of about 350 MeV/c. Thus, roughly
it is given by

2d(. = t, '-(P~') '-8 (GeV/c) —' . (66)
s =P = P".

~~ AB ~l

In (63) dP„and d(t)~ are the phase-space densities

The simplicity of this model lies in the factor-
izability of the energy and momentum-transfer
dependences, and in the fixed exponential form
for the latter. A more elaborate MPM might de-
viate quantitatively from (65), but not qualitatively,
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so the formula should represent the spirit of all
versions of the MPM, viz. , short-range correla-
tion and rapid P damping.

It is straightforward to apply the derivative op-
tical theorem to this problem. Since the function
h is invariant under rotation, the operator 4„acts
only on II~ exp(Xt~). Identifying k," in (4V) with the
incident particle that is connected to the multipe-
ripheral chain at the terminal labeled i =1, and
letting its 3-vector point in the z direction, we
have

ripheral chain from j =1 to n-1. Assuming sym-
metry of the chain, the sum is equivalent to twice
the sum over half the chain. At the jth link the
final state can be partitioned into two clusters of
mass-squared s,. and s~, which satisfy the inequali-

s.s~ & tos

where t, is approximately given in (66). Thus we
have

t,. =nz, +s,. —2k, I',. + 2k, I', (67)
s, & (t,s)'", for j& n/2 . (76)

From (50) we then obtain a form of J„' appropriate
for operating on a function of t,. only:

Now to determine P', we first note that (6V) may
be rewritten as

J' = i2M'~
8

y x8t
J

(68)
t, =~,.+s, —2k(P,' -P', ),

where
where k =k, . Using (50) to act from the left again
yields

7'
J

——m, ' —2(k' —k)PO

82 2 (78)

Since T„has no dependence on any azimuthal an-
gles, the off-diagonal terms in (32) vanish upon
integration because of (69). Thus, we need only
consider

(J') T =2k P' 8
z 8$

82
—k(P'„)2 2 T„, (VO)

where (P„')' has been replaced by (P~)'/2 in antici-
pation of the (t) integration to come. The suffix j
is supposed to run through all the links of the
multiperipheral chain. In the two-body case there
is only one link, and it is easy to show that (VO)

leads to the result in (12}, so that this serves as
a consistency check.

Substituting (65) in (VO), and then in (32), we
have

m, 2(s~ -s~)
4k

From (VV) we then obtain

Pi =k ——(s~+s,'. +2T, —2t,). .

I, 2
& k 1 ———a ——(7,. —t,).s s) s (79)

where (75) has been used in arriving at the lower
bound. Since t, «s& except possibly at j =1 (which
can be ignored in the sum over j when n is large),
we therefore may approximate P,' = k for all j& n/2
because of (76). By symmetry of the problem,
this approximation must be valid for all j. It then
follows from (V4) that

A'(s, 0) =-,'g g f d0„T„222(Ts —22(T' )']T„

(71)

A'(s, 0)= '22 g(s —))f ds„T T
n

=Xk'g (n —1}2k)ts v„. (80)
On the other hand, by the Hermiticity of J, we can
write (42) in the form

A'(s, 0) =(J,T
i J,T ),

so that upon the application of (65}and (68) we get

As usual we define the average multiplicity of the
pions (assuming only pions are produced in this
model) as follows:

A'(s, 0)=—', Qg f d0„2l ( ') 2T„TT„.
n j

Comparing (71) and (V3) yields

(V3)
(n) =P na„/P o„;

n n

then we obtain

A'(s, 0) = 2Xk'v s vr((n) —1) .

(81}

(82}

A'(s, 0) = —' AkQ Q d4„P', T„*T„
n f

The sum in j extends over all links of the multipe-

To relate this result to the slope of the forward
peak, we parametrize the t dependence of the dif-
ferential cross section by
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—=exp[a(s)+b(s)t+ c(s)t + ~ ] .do'
2

dt (83)
I. The Diffractive Excitation Model

Assuming that the elastic amplitude in the forward
direction becomes purely imaginary, we have

b(s) = [k'A(s, 0)] 'A'(s, 0)

=-(2k'v's o„) 'A'(s, 0) .
Hence, we conclude from (82) that in the MPM

(84)

b(s) =X((n) -1) . (85)

This result i,s based on the assumption that there
is only one particle in each rung of the MP ladder.
If a model specifies that there are on the average
no particles in each rung, then (85) should be mod-
ified to read

b(s) =X[(n}/n, - I] .
Parametrizing (n) by

(n) =co+c, lns,

(86)

(87)

n'=wc, /2n, . (88)

This result agrees in spirit with that of Goldberg-
er, who obtained a similar relation between n'
and c, in a t-channel consideration. Instead of A,

he has a mean inverse (mass)' that depends on the
eigenfunction solution of the multiperipheral inte-
gral equation.

Numerically, the average multiplicity of charged
particles is given by'

(nch) = c2+ c~ IM
(89)

c2 = -4.02 +0.22, c, = 1.99+0.03,

we obtain for the slope of the Pomeranchuk trajec-
tory at t =0

=tA, exp[ —bk'(1 —f)], (92)

where A, =A(s, 0) and f is as used in (12). Approx-
imating 1 —f in (12) by -t/k for g near +1, we
obtain

0

A,&'(s, 0) = dt 2b(1+ ~bt)T*T
16w s

kA02

64w&s

=(16m) 'k'v s cr'.
It then follows from (84) that the contribution to
the slope b from the elastic unitarity is

b„= (xr/32m . (94)

It is interesting to note that this result is indepen-
dent of the input (true) value of b. If the paramet-
rization of T is generalized to include a ct'/2
term in the exponent in (92), the result would only
differ by a term of order c/b', which is empirical-
ly very small, %e also note that by relating A,'
to bo„wq obtain another expression,

In the DEN the production process is viewed as
one in whigh the two incident particles are raised
diffractively to two excited states which subse-
quently decay into two clusters of particles. Thus,
in the unitarity relation if we integrate out the in-
ternal variables of the two clusters, we have es-
sentially a quasi-two-body problem, the kinemat-
ics of which is similar to the elastic case. Let us
therefore consider the elastic problem first.

Assuming the elastic amplitude T to be purely
imaginary near the forward direction, we write

T = iA, exp(-,'bt)

in a fit for momentum from 69 to 104 GeV/c. We
therefore take bg =b(rg/2&r . (95)

(90)

Using X=4 from (66), and setting no=2 as is cus-
tomary, we obtain

n'=3 (GeV/c) ' . (91)

We note that instead of estimating X as in (66), one
could use (65) with A, as a free parameter to fit the
transverse-momentum distribution. Amann has
done this using a model with single emission at
each vertex, i.e., n, =1, and he obtained a good
fit with A. =1. That leads to the result o. '=1.5
(GeV/c) '. The experimental value of u' as deter-
mined by the GERN Intersecting Storage Rings
(ISR) data is &0.3 (GeV/c) '. Evidently, the sim-
ple MPM considered here predicts a value of a'
which is an order of magnitude too large.

If one ignores the inelastic cross section, (95)
leads to the familiar result that the elastic unitar-
ity reduces the slope of the forward peak by half.

Numerically, if we take 0~ to be 38 mb for pp
scattering, then (94) yields b, ~

=0.9V (GeV/c) '.
This is only 7. 5%%uo of the observed value of b at the
ISR energies. If the DEM is meaningful, the ob-
served value of b sould be limiting, and the bal-
ance must be made up by two-cluster contribu-
tions.

In the multiparticle production case let us for
simplicity consider an extremely naive version of
the DEM. Our objective here is not on construct-
ing a realistic model, but on seeing what builds up
the slope. Suppose that the diffractive excitation
processes raise only the masses of the particles,
but not the spins, so that all the excite'd states are
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spinless. This is a tremendous simpbfi;cRtion
since the decay distributions of the clusters are
then independent of the initial momenta. Thus,
the only relevant momentum in the final state of
T„ that is sensitive to the rotation operator is
P, as defined in (64). It is juSt the c.m. momen-
tum of the two clusters. For every pair of fixed
values of the cluster mass-squares, s„and s~, we
have a quasi-two-body reaction which we label by

Intergration over all s~ and s~ implies a sum-
mation over all reaction charinels r. Thus, for a
given r the calculation is just as in the elastic
case; we have

do'„
A„'(s, 0) =p„k'v s " (forward), (96)

where p„-=~ P, ~, the c.m. momentum of the clus-
ters. For ease of comprehending the relative im-
portance of the contributions from different chan-
nels, let us assume that dv„/dt can be approxi-
mated by an exponential form for each r

d0'„d0'

exp[b„(t —t„)],

where t„ is the value of t in the forward direction
of channel r Denot. ing the integral of (9V) over
all physical values of t by o„, we get

(9V)

A„'(s, 0) =p„k'Ws b„o„. (98)

Using (84) again, and including the elastic channel
in the sum over r, we obtain

p„(p,/k)b„v„
(99)

Since the diffractive process is significant only if
s„ss& t, s, just as in (V5), we can use' the same
argument as the one following (V9) to obtain P„=k
for all r. We therefore have

g „b„o„(b)
2+„&x„2 (100)

where (b) is the mean slope averaged over all
two-cluster diffractive processes. A more elabo-
rate derivation of this result with explicit integra-
tion over dC„can be given following the formalism
of Ref. 10, but it will be omitted here since it
sheds no further light on the issue at hand. Be-
cause each channel has only one momentum-trans-
fer link, the sum over r does not increase the val-
ue of b, but effects only an averaging.

The slopes of the forward peaks of diffractive
excitation processes are known experimentally to
be smaller than that of the elastic peak. " They
generally decrease with increasing cluster mass.
This is physically reasonable because for a given

amount of momentum transfer it should be more
likely to find a struck particle excited than being
left in an unperturbed state. Of course, an exci-
tation in mass is usually accompanied by an exci-
tation in spin, so there is no experimental infor-
mation on the slope parameters of our simplified
model. It is, however, reasonable to take (b) to
be no greater than the value of b for elastic scat-
tering. Then (100) is a contradiction. The impli-
cation is, of course, that the naive version of the
DEM is too unrealistic. The spin complication of
the excited states must be taken into account, and
by virtue of (43) it necessarily gives rise to an
additional positive contribution.

V. CONCLUSION

We have developed a model-independent formal-
ism for analyzing the slope of the forward peak.
It takes into account the multiparticle states ex-
actly. When applied to specific models of high-en-
ergy collisions, it enables one to see how the slope
is built up in an s-channel view. It therefore can
serve as a theoretical detector, useful in diagnos-
ing the unrealistic features of high-energy models.

We have seen that in a simple version of the
MPM considered, the slope of the Pomeranchuk
trajectory at t =0 is too large —by almost an order
of magnitude. This discrepancy could possibly be
reduced to a certain extent by an appropriate mod-
ification of the details of the model. However, the
qualitative feature of the model. brought out into
the open by our calculation is that the slope b of
the forward peak is proportional to the number of
links in the multiperipheral chain [cf. (86)]. That
is why in the MPM the slope increases with Ins,
assuming that the basic hypothesis common to" all
MPM's is that the number n, of particles emitted
at each vertex is fixed. Evidently, by increasing
no the value of n' can be reduced. Now, we note
that whereas the average multiplicity (n) in-
creases somewhat faster than lns as the beam
energy is increased from 20 to 4500 GeV, i.e.,
it is concave upward in the semilog plot, the slope
parameter b decreases with lns dramatically over
the same energy range, ' i.e., it is concave down-
ward. Thus n, must increase continuously with s.
That is a rather serious modification of the spirit
of the MPM. In any case the slope consideration
suggests the direction in which the model can be
improved.

In the DEM our example illustrates the possibil-
ity in the other extreme. By ignoring the spins of
the excited states, we have imposed essentially
only one momentum-transfer link per channel.
The predicted value of b naturally turns out to be
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too small. Obviously, to be realistic the angular
momentum states of the clusters must be taken
into account. It seems that the observed value of
b =12 (GeV/c)' is quite within reach of the DEM.

Shortcomings of the models aside, it is clear
that the slope analyses by the method suggested
here are very useful not only in testing high-ener-
gy models, but also as sum rules for constraining
parameters in a variety of problems at any energy.¹teadded in Proof. After this paper was sub-
mitted, it was pointed out to me that parts of this
work have already been considered by others. See,
in particular, L. Van Hove, Nuovo Cimento 28,

V98 (1963) and Z. Koba and M. Namiki, Nucl. Phys.
88, 413 (1968).
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