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A theory of spontaneous T violation is presented. The total Lagrangian is assumed to be
invariant under the time reversal T and a gauge transformation (e.g. , the hypercharge
gauge), but the physical solutions are not. In addition to the spin-1 gauge field and the
known matter fields, in its simplest form the theory consists of two complex spin-0 fields.
Through the spontaneous symmetry-breaking mechanism of Goldstone and Higgs, the
vacuum expectation values of these bvo spin-0 fields can be characterized by the shape of a
triangle and their quantum fluctuations by its vibrational modes, just like a triangular
molecule. T violations can be produced among the known particles through virtual excita-
tions of the vibrational modes of the triangle which has a built-in T-violating phase angle.
Examples of both Abelian and non-Abelian gauge groups are discussed. For renormalizable
theories, all spontaneously T-violating effects are finite. It is found that at low energy,
below the threshold of producing these vibrational quanta, T violation is always quite small.

I. INTRODUCTION

In this paper we discuss a theory of spontaneous
T violation. To illustrate the theory, we shall
first discuss a simple model in which the weak-
interaction Lagrangian, as well as the strong- and
electromagnetic-interaction Lagrangians, is as-
sumed to be invariant under (1) the time reversal
T and (2) a gauge transformation, e.g. , that of the
hypercharge T. Yet the physical solutions are re-
quired to exhibit both T violation and F nonconser-
vation. In its construction, the model is similar
to those gauge-group spontaneous symmetry-vio-
lating theories' ' that have been extensively dis-
cussed in the literature. The only difference is
that one now has, in addition, the spontaneous vio-
lation of a discrete symmetry. ' As we shall see,
there exists a general class of such spontaneously
'I'-violating theories. (¹teadded in Proof There.
actually exist two general classes of such sponta-
neously T-violating theories, depending on whether
the spin-0 fields belong to a complex representa-
tion or a real representation of the gauge group.
In this paper, except in Appendix D, only the class
of complex representation is discussed. For real
representation, such as that in the Georgi-Glashow
model, one may follow the method developed in
Appendix D. The details will be given in a sepa. —

rate paper. ) The simple model serves only as a
prototype which nevertheless embodies most of
the essential features.

In addition to the known matter fields, the model
consists of two independent spin-6 Y = I complex
fields P„g, and a, neutral spin-1 gauge field B
Under the hypercharge gauge transformation
e'~A, we have

B -B+f '

This gives then a well-defined difference between
T and either CT or CPT. Since T is an antiunitary
operator, we can always choose the phase of P,
such that

(3)

To avoid irrelevant complications, we assume the
theory not to be symmetric under any linear trans-
formation which mixes P, and Q„so that the
right-hand side of (3) must remain p„.

As will be discussed in the next section, the
spontaneous T-violation mechanism can be intro-
duced by assuming a T-invariant potential energy
V(P) between P, and P, which has a minimum at
the c-number point

(y„y,) =2-"'(p,e",p, ), (4)

where p, & 0, p, & 0, and 6W t 0 or m. This minimum
point therefore defines a triangle where p, and p,
form two sides and 6 the angle in between. Be-
cause of quantum effects there must be fluctuations
of P, and Q, around their average values. These
fluctuations can be shown to correspond to the vi-
brations of the triangle. The entire P„p, system
can then be visualized as a triangular molecule

where f is the hypercharge coupling constant and
the subscript k=1 and 2. As usual, T is assumed
to commute with Y,

TYT ' =F.
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which is defined by both its shape and its three vi-
brational modes of oscillation in the plane of the
triangle. For convenience of nomenclature, we
shall refer to this p„Q, complex simply as the
t'ai angle.

In the absence of the gauge field B„, there would
be a zero-mass boson, in accordance with the
Goldstone theorem. ' In the present case, this
Goldstone boson corresponds simply to the rota-
tional degree of freedom of the triangle. Because
of the Higgs mechanism, ' the presence of the
gauge field B„eliminates the zero-mass boson.
As a result, B„acquires a mass, and the would-
be Goldstone boson becomes, as usual, the longi-
tudinal mode of B„. The detailed description of
the triangle and its interaction with the gauge field
is given in Sec. II.

While the Lagrangian is assumed to be T-invari-
ant, its solution, as characterized by the triangle,
carries a phase angle Oc 0 or 71. Therefore, it has
a built-in T violation, somewhat analogous to the
two-component neutrino theory which carries a
built-in screw direction. We recall that just on
the basis of the two-component neutrino theory
alone, but without any appropriate interaction, one
cannot distinguish' between P and CP, and conse-
quently there is no observable parity-violation ef-
fect. Here, one has a similar situation. Both the
gauge field and the vibrational levels of this trian-
gular molecule are of zero average hypercharge,
( Y) =0. Thus, although these vibrational levels
are not invariant under T, there is no violation of
the reciprocity relations, since for states with

( Y) =0 reciprocity relations can be derived by us-
ing CT invariance alone. In order that violations
of the reciprocity relations be observed, there
must be states with(Y)o0, such as K', K', etc.

Once this triangle is allowed to interact with
known particles with ( I') e0, T violation becomes
a natural consequence. However, the existence of
the triangle does not determine the exact form of
its interactions (just as the interaction of a neu-
trino is not specified by the two-component theo-
ry). As a pure illustration, we consider in Sec. III
a particularly simple form in which the usual T-
invariant b,Y = +1 weak-interaction Lagrangian I,
is replaced by

g;„,= (g, P, +g, g,)L + H.

Because of the transformation property (1), this
new Lagrangian clearly conserves F. It is also
T-invariant, provided g, and g, are relatively real.
Through the virtual emission and absorption of the
triangle, violations of reciprocity relations can
occur among the known particles. As we shall see,
this can give rise to K0~-2v, and (if we assume
the threshold energy for producing these triangles

is ~ a few GeV) the resulting CP violation in Ko~-

K~ decays is of the superweak form.
As will also be discussed in the subsequent sec-

tions, in addition to the direct exchange of the tri-
angle between the matter fields there is still an-
other important mechanism which can violate the
reciprocity relations via the coupling between the
matter field and the gauge field. In this mecha-
nism, the triangle propagates only in a loop dia-
gram, and as a result one may have violations of
the Furry theorem, i.e., the loop diagram con-
necting an odd number of the gauge-field quanta
may now be nonzero. Such a loop diagram can in
turn produce T violations among the matter fields.

In Sec. IV, we examine some generalizations of
the model to other gauge groups, either Abelian
or non-Abelian, but we restrict our discussion
only to renormalizable theories. In all these
cases, the general mechanism of T violation re-
mains the same, and the basic structure of the
triangle remains intact, though its interaction with
the known matter fields can be quite different. Be-
cause in these cases the spontaneous T violation is
tied to the spontaneous gauge-symmetry violations'
of the weak and electromagnetic interactions, at
low energy the magnitude of T violation among
known particles always turns out to be very small,
either milliweak or superweak. Furthermore,
since such theories are renormalizable, all spon-
taneously T-violating effects are finite and com-
putable, at least in principle. In any case, one
feels that whatever the eventual gauge theory may
be for the weak and electromagnetic interactions,
it should contain T violation as an integral part.
The mechanism of spontaneous T violation dis-
cussed in this paper may provide just such a
needed possibility.

II. THE TRIANGLE AND THE GAUGE FIELD

In this section we consider the simple system of
spontaneous T violation mentioned in the Introduc-
tion. The system consists of two complex spin-0
fields p„P, and a gauge field B,. The most gen-
eral form of a gauge-invariant, T-invariant, and
renormalizable Lagrangian density is

(6)

where the dagger denotes the Hermitian conjugate,
and the potential energy V(P) is given by



i228 T. D. LEE

X, and/or X, &0. (8)

As we shall see, the spontaneous T violation can
be induced by imposing

D&0.

In addition, in order for V(P) to have a lower
bound, we require

E 2

A. ——&0
8D

V(y) = ~-, y,'y, -X,y,'y, +A(y,'y, )'

+B(y,'4, )'+C (y,'4, )(4,'4, )

+ ,'[(Q-, Q, )(DP, P,+EP, P, +FP, Q, ) +H.c.],
(i)

where the eight constants A.„A.„A, . . . , E are all
real so that T invariance holds.

In the spirit of renormalization, the renormal-
ized values of these constants can be arbitrarily
assigned. Following the standard treatment of
spontaneous symmetry-breaking mechanism for
the gauge group, ' we assume

and

y, = 2 "'(p, +Zt, +iZ, ),
(12)

where p» p„and &are, as before, c-numbers,
but R» R„ I» andI, are Hermitian fields. If the
coupling constant f between the gauge field B„adn
p„p, were zero, then the Goldstone theorem
would apply and there should be one normal mode,
called the Goldstone boson G, that has a zero
mass. It can be easily verified that in the tree ap-
proximation G is given by

G =(P,'+P.') "'(P, , +P. .)
(This can also be established by using the geomet-
rical considerations given below. ) The remaining
three normal modes, which will be referred to as
t„ t„and t„are linear combinations of the fields

Lagrangian ensures that both solutions exist, and
that they transform into each other under T.

The normal modes of this system can be derived
by expanding the operators P, and P, around their
vacuum expectation values. We write

y, = 2-"'(p, +zt, +i z, )e"

g2—&0
8D z=(pg +PQ ) (Pgzg Plzg)

This linear relation may be written as

(14)

A. — B —
~ C-D— (10) (t,)

E2

As usual, all the above conditions refer to the re-
normalized constants.

Let us first locate the minimum of the function
V(P) in its c-number form. In the tree approxi-
mation, this minimum determines the vacuum ex-
pectation values of Q, and Q~:

( y ) -2 &~&p e&~

and

( p.)„.=2 '"p. .

Because of (8) the minimum is not at the origin,
and because of the gauge invariance of the Lagran-
gian we can always transform one of the vacuum
expectation values, say ( p, )„„,to be real and not
negative. It is straightforward to obtain the neces-
sary and sufficient condition for both p, &0 and p,
&0. [See Appendix A for further details. ] Similar-
ly, one can readily verify that because of (9)

cos8 = -(4Dp, p, ) '(Ep, '+Fp, '),
in which the constants are chosen to satisfy -1
& cos 8&1. Equation (11) has two solutions: 8 and
-8. By using (3), one sees that either solution is
not invariant under T, and therefore one has a
spontaneous T violation. The T invariance of the

where U is a (3x 3) real orthogonal matrix.
As already mentioned in the Introduction, the

description of the system can be characterized by
a triangular molecule. For example, Fig. 1 gives
a schematic picture of such a triangular molecule
where the two sides are p, and p» respectively,
and the angle in between is 0. In the plane of the
triangle, a triangular molecule also has three
normal modes of vibration, each of which is a lin-
ear combination of the displacements 6p, =R» 5p2
=R2 and 5 8 = py Iy p2 I i.e.,

(p 2 +p 2)1/2
68= ' ' I

P,P2

(as illustrated in Fig. 1). Under the gauge trans-
formation e', the entire triangle rotates an angle
a. Thus, the Goldstone boson G corresponds sim-
ply to the rotational degree of freedom of the tri-
angle; this then leads to Eq. (13).

The configuration and vibration of a triangular
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molecule depend on nine real parameters: three
for the shape of the triangle, three for the Euler-
ian angles that specify the real orthogonal matrix
U, and three for the frequencies (or masses) of
the normal modes. In the present case, the func-
tion V(p) depends only on eight constants
X„A,„A, . . . , E. This imposes a constraint

3

Q(p, U,, +p, U, )U, ,m, '=0,
a=1

(16)

where m, is the mass of the normal mode I, Since
the coupling constant f o0, the zero-mass Gold-
stone boson is removed through the Higgs mecha-
nism. ' G now joins the two transverse components
of B„ to form a single massive neutral spin-1 bo-
son B. In the tree approximation, the mass of B is

The Lagrangian (6) is constructed to be invariant
under the gauge transformation (1). Therefore one
has the current conservation

Bgp 0
BXp

G:

FIG. 1. A sehematical drawing of the triangle; I
represents one of its vibrational degrees of freedom
defined by {14), and G represents its rotational degree
of freedom defined by {13).

and the spatial integral of its time component is Y.
The Lagrangian (6) is T-invariant; in addition, it
is symmetric under the particle-antiparticle con-
jugation C and the space inversion P. The parity
of B„ is -1; the parity of P, must be the same as
that of Q„but it can be either +1 or -1, since the
Lagrangian is an even function of P, . Under C,
one has

By using (1) and (12)-(15), one can readQy verify
that both the gauge field and the normal modes of
the triangle are of zero average hypercharge; i.e.,
( Y) =0. Thus, for the system of the triangle and
the gauge field alone, one can always introduce a
new "time-reversal" operator T„and a new "par-
ticle-antiparticle conjugation" operator C„such
that

CB~C~ = -B~,
and consequently

CYC = -Y.
[If one wishes, one may also set Cp~C ' =-yt for
both k =1 a,nd 2.]

The normal modes t„ t„and t, are not eigen-
states of C nor of T. As an example of C violation
or T violation, we may consider diagrams for

nB~ IB~, (16)

where n+ m is an odd number. Because of loop
diagrams in which the propagators are those of the
triangles, the amplitudes for these C-violating
processes can be nonzero. (However, see Appen-
dix A for a list of special circumstances under
which some of these amplitudes may happen to be
zero. )

C„t,C„'=t, ,

T„GT„=Q,
C„GC„'=6,
TnBPTn -Bp ~

CBC-'=B .

Since the Lagrangian S(8, Q) can be written as a
real function of these Hermitian fields, it must be
invariant under the new C„and T„Reaction (18).
does not violate either T„ invariance or C„ invari-
ance. The reciprocity relations are then main-
tained. However, under T„one now has p, - p~t

and Q, - /mt, and under C„p,- p, and p, - p, .
Thus, the hypercharge Y neither commutes with
T„nor anticommutes with C„. Nevertheless, this
is totally acceptable, since in this simple system



1230 T. D. LEE

all the eigenstates are of ( Y) =0. In order to ob-
serve violation of reciprocity relations, one should
enlarge the system to include some known parti-
cles with ( Y) nonzero.

HL VIOLATIGNS OF RECIPROCITY RELATIONS

To illustrate how violations of reciprocity rela-
tions may occur, we discuss the example of a par-
ticular weak-interaction Lagrangian given by (5).
[Other forms will be discussed in Sec. IV.] For
clarity, let us consider first only the P =-1 part
of the usual 61' = +1 nonleptonic weak interaction
Lagrangian L, . The operator L, , is in general
rather complicated, not a single canonical field;
but so far as its transformation properties are
concerned, I, is the same as the appropriate Ko

or Eo meson field. Thus we may write

where - indicates that both sides have the same
transformation properties. According to (5}, with
the inclusion of the triangle the corresponding
weak interaction becomes

Z. , -(g, Q, +g, g, )K +H.c. , (19)

where g, and g, are both real so that T invariance
holds. It is clear that (19}is also invariant under
the hypercharge gauge transformation. By using
(12), one may rewrite (19}in the form

g. , - rKo+ g (K,'„,+ K,'X,),
where I' and g are both real and positive;

(20)

+g2 ~2 +2gj.g2PI.P2cos8 (21)

and g = (g,'+ g,')"'. The K,' and K,' meson fields
are defined by

Ko 2 1/o(Koe/e+Kot& /a)I

Ko '2 1/o(Ko $% Kog 1cc)2-

and e is given by

I e =g,P,e + g2P2.
fe

The X, and X2 fields are related to B„R2 and I„I,
by

X1 =g [g1 co(s-8)aIt1g1 s111(8- a) I1

+ g, coseB, + g, sinaI, ]

g X1(x)Xo(0). (24)

Kith this CP violation, there is automatically also
a violation of the reciprocity relation. Similarly,
one may phenomenologically include the P =+1
part of the usual hF =+1 nonleptonic weak interac-
tion and, if one wishes, also the usual AY =+1
semileptonic weak interaction in the Lagrangian
(5). The former gives, among other transitions,
the CP-conserving reaction K,'- 3~, and the latter
gives all the usual CP-conserving semileptonic
AF0 transitions. It is easy to show that in both
cases there is, in addition, a CP-violating transi-
tion amplitude which also depends linearly on (24).

The magnitude of the T-violating amplitude (24)
depends on the detailed characteristics of the tri-
angle: both its shape and its vibrational modes t, .
It is of interest to search for the maximum of (24).
As will be shown in Appendix 8, if the coupling
constants f, r, g„go and the masses mo, m„m„m,
are fixed, then by varying the shape and the vibra-
tional modes of the triangle, under the constraint
(16), the maximum value of the Fourier transform
of (24) at zero 4-momentum transfer, and for m,
& m2&m„ is found to be

—,'g[g' —(f r//mo}']"'(m, ' —m, '). (25)

The corresponding vibrational modes of the trian-
gle are given by (810) and (Bll) in Appendix 8,
and the shape is determined by (17), (21), and
(815). As an illustration, we may mention the
special case in which g, =g, and m, ' = —,'(m, '+m, ');
then the maximum T-violating amplitude (25) can
be realized if the triangle is isosceles. If in addi-
tion we assume a right-angle isosceles triangle,
then according to Eg. (820) in Appendix 8 the max-
imum T-violation amplitude is

g ms —m, (26)

Under a hypercharge gauge transformation, the
relative phase between K' and K meson states
changes; therefore, , we can always choose their
relative phase so that K', represents the usual
CP =+1 component, and K2' the usual CP =-1 com-
ponent. The first term IK', in (20) gives rise to
the CP-conserving transition K', - 2m. The second
term in (20) leads to the CP-violating transition

K, K;
its amplitude is determined by the Fourier trans-
form of the contraction'

Xo =g [g1 s111(8—a)R1+ g1 cos(8 —a) I1

-g, sinai, +g, cosa I,] .

(22) In any case, (25) or (26) is proportional to g'
and is therefore of second order in the weak inter-
action. For example, by using (17) and (26) one
finds the magnitude of the CP-violating amplitude



A THEORY OF SPONTANEOUS T VIOLATION

K', =K, to be of the order of

-I"f'm~ '(m, '- m, ').
r, ~ (x) = ~ (x)

r, l „(x)= -l „(x).
(27)

Since I" denotes the first-order weak interaction
constant, one expects this CP-violating amplitude
to be of the superweak strength. '

As discussed earlier, there is another mecha-
nism through which T violations can be produced,
and that is via the coupling between the matter
fields and the gauge field. Such T-violation effects
are at least proportional to f'; furthermore, such
a mechanism conserves Y. Thus, if f' is arbi-
trarily set to be -n, the fine-structure constant,
one expects it to generate a b, V =0 but C, T-vio-
lating weak (or milliweak) interaction among known

particles. For K~, K~ decays, it may add to the
above ~ F = a2 K', =K,' transition an amplitude-I'n'. Hence, the superweak character of CP
violation in K decay remains the same.

This simple interaction Lagrangian (5) is not in-
tended to be a realistic theory of weak interactions
because it contains many defects. It leaves out all
b, Y=0 weak reactions, and, since (without intro-
ducing additional gauge fields) the usual weak in-
teraction Lagrangian L„ is not renormalizable, it
is also nonrenormalizable. Nevertheless, this
simple example does illustrate how, through vir-
tual emissions and absorptions of the triangle, T
violations, and consequently also reciprocity vio-
lations, can be observed among known particles.

IV. OTHER APPLICATIONS

The above theory of spontaneous T violation can
be applied to a large class of interactions, which
can be quite different from the simple model dis-
cussed in the previous section. To illustrate these
possibilities, we consider the following two exam-
ples of renormalizable theories.

A. An Abelian Example

We may identify the transformation (1) not with
the hypercharge, but with a different gauge, say
e'" where for the known particles N is the number
of left-handed charged leptons. So far as the de-
scriptions of the triangle and the gauge field are
concerned, the discussion given in Sec. II remains
intact, except that Q, and Q, are now considered
to be of M=1 (instead of Y=1). Of course, the dis-
cussion given in Sec. III has to be modified.

To study the interaction with matter fields in
this new case, let us introduce a left-handed
charged lepton field l~(x) and a right-handed
charged lepton field l ~(x) which satisfy

Throughout the paper, all Dirac matrices
r„r„.. . , r, are Hermitian. By definition, f~(x)
is of N = 1 and l „(x)of E= 0. The total Lagr angian
density of the system can be written as

z(l, a)+z(a, y}+a(y, l),

where Z(B, P) is given by (6),

Z(l, B)= lr,y„-—ifB„)i

(28)

and

Z(P, l}= -(g,Q, +g, Q, )l tr, l „+H.c. , (29)

g, (x) =l~(x)+e' l „(x), (31)

(32)

and therefore

mr =k(A px + ga p2 + gig2pxp2cos~) (33)

Since gt r,g, is of P =1, C =1, and T =1 while

ig, r4r, g, is of P =-1, C =1, and T =-1, through
the direct emission and absorption of the triangle,
there is a P-, T-violating effect in the (l+l) scat-
tering amplitude. To lowest order, the amplitude
is proportional to (24), exactly as before. Accord-
ing to (25}, and after replacing 1' by v 2 m„one
finds the maximum value of the Fourier transform
of (24), at the zero 4-momentum transfer, to be

g [g' —2(f m, /m ~)']"'m r r r (34)

where g, and g, are both real so that T invariance
holds. The total Lagrangian (28) is also invariant
under the gauge transformation e'" . In addition,
it is invariant under a second gauge transforma-
tion,

I~ —e El
fa

and

l„-e' l~.
By using (12}, we may rewrite (29) in the form

&(0 1}= mr4r -r~A

—(g/~&)(X~ki r,A - f X,kt r,r, p, ),
(30)

where X, and X, are exactly of the same expres-
sions given by (23) in the previous section,
g=(g, '+ g,')"' as before,
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g'm, a,
M2 (m, ' ——,'a, ')' ' (36)

Moreover, there can also be T-.violating effects
due to the direct coupling f between B„and l, just
as before. We emphasize that although in this ex-
ample both the gauge group and the interaction are
quite different from those in Sec. III, the basic
mechanism of T violation is identical.

B. A Non-Abelian Example

Let us first consider the Weinberg model of the
leptons. ' The group is SU, xU, . There are four
gauge fields A„and I3„. The usual l -neutrino field
v, and the right- and left-handed charged lepton
fields l ~ and li form an SU, doublet and an SU,
singlet:

where m ~ is the mean mass of the vibrational
modes of the triangle

mr = —,'(m, +m, )

and n=(m, —m, ) is the corresponding difference.
The other mass m, lies betweenm~+ —,'h~ and m~

If in addition we assume the triangle to be
a simple right-angle isosceles triangle and g, =g,
=2 '"g, then (26) holds; the maximum T-violation
amplitude (34) becomes

which contains nine constants; all these constants
are assumed to be real so that T invariance holds.
The only formal difference between (38) and (7) is
the C term. We assume that both (8) and (9) are
valldq Rnd 1n addltlon

D)C. (39)

which again defines a triangle. Both p, and p, are
assumed to be )0, and Gt 0 or w. So far as the
neutral (but complex) fields g and Q,

' are con-
cerned, the discussion is exactly the same as pre-
viously given in Sec. II, except that the constant C
in Sec. II is now replaced by C+C.

We may expand, as before in (12),

yo 2-1/2sse(p +B +f1 )

In the tree approximation, the minimum of the c-
number function V(Q) determines the vacuum ex-
pectation values of Q, and Q, . As will be shown in
Appendix C, the additional condition (39) ensures
that the minimum of V(Q) occurs at

(e,')...=(e;)...=o,

((f)0) 2 1/2p el 8

(40)

Rnd

g =2-"'(p, +B, +f1,).
(41)

A=lR ~

(36)

In order to have spontaneous T violation, we as-
sume that there are two SU, -doublet spin-0 fields

The three vibrational modes of the triangle t„ t„
and f, are given by (15), and they correspond re-
spectively to three neutral bosons of masses m„
m„and m, . There are now three Goldstone bo-
sons; besides the neutral one

G' = ( p, '+ p, ') "'(p, I, +p, I,), (42)

and (37)
which is identical to the 6 given by (13), there are
two charged ones:

where the superscript denotes the electric charge.
Both Q, and Q, are assumed to transform like the
product R L under the SU, &&U, group; therefore,
their coupling to the gauge fields is completely de-
termined by the requirements of gauge invariance.
The most general form of a renormalizable,
gauge-invariant, and T-invariant potential energy
V(Q) is now given by, instead of (7),

V(V) = ~,e',e, ~.-e'.e. +A(e', ~,)'+B(e'.e.)'

(43)

where Q„ =(&f&,') and k = 1 or 2. Through the Higgs
mechanism, these three Goldstone bosons (just as
in the usual Weinberg model) join the gauge fields
to form a set of three massive spin-1 intermediate
bosons W' and W'. In addition, there are also two
massive charged spin-0 bosons

(44)

and their masses are

m„'=-,'(D-C)(p, '+p, ').
+ c(y,y, )(y,y, ) +c(y', y, )(y,@,)

+~2 ((414'2)(D4142+&0'ill+&424'2) +H c i

(38)

For simplicity, we shall assume the mass m~ to
be much greater than the masses m„m„and m3
of the neutral spin-0 bosons. Therefore, allH'-
exchange processes will be ignored in the follow-
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ing discussions. So far as the mechanism of T
violation is concerned, one has then exactly the
same basic structure as before. The triangle is
again characterized by its shape and its vibration-
al modes, and with the same constraint (16).

The interaction between the lepton fields and the
gauge fields is determined by the requirement of
gauge invariance; it is exactly the same as in the
usual Weinberg model. The interaction between
the spin-0 fields P„(t), and the lepton fields is now

given by

&(~, 4)=-(Z (t) +g,4, )L r,&+H.c. , (45)

4Gpm)'m ~4~
(mr' —4b, r')' ' (46)

The electric dipole moment eD(l) of I' can then be
readily evaluated. By using (30), (24), and (46),
we find

G m'D(l)=,' [m, 'J(e,)-m, 'J(c,)], (47)

where m, = m~+ —,'&~ andm, = m ~ ——,'&~ denote re-
spectively, as before, the largest and the smallest
mass of the vibrational modes of the triangle, c,
=(m, /m, )', e, =(m, /m, )', and

Z(e)=e '+(2a') ' I(no+

1 + (1 —4e)"'
1 —(1 —4~)"' )'

For e «1,
J (e) =—In(1/e) ——,

' +O(e Inc) .

If m, and m, are arbitrarily set to be -15 GeV and
-10 GeV, respectively, then D(p, ) is -1.3x10 "cm
and D(e} is -3.6x10 "cm. At present, both are
too small to be detected.

where g, and g, are again assumed to be real so
that T invariance holds. This Lagrangian is clear-
ly also invariant under the SU, xUy gauge transfor-
mation; it describes an interaction between the
charged lepton I' and Qh which is exactly the same
as (29) and which can again be rewritten as (30).
Therefore there is a P-, T-violating amplitude in
I+I scattering that is proportional to (24).

The same P-, T-violating amplitude also leads
to an electric dipole moment for the charged lep-
ton. For definiteness, let us assume (35) holds;
one then has a simple right-angle isosceles trian-
gle. In this case, one finds

pi'= p.'=(2~~G~} '

g,'=g, ' =2W2G~m, ',
where GO=10 'm~ ' is the Fermi constant. The
P , T-violatin-g amplitude (35) becomes

The extension of the Weinberg model to hadrons
is not without arbitrariness. The direct coupling
between hadrons and the spin-0 fields P', and P,'
has the same form as that in (45), except that L
and 8 now refer to the appropriate hadron fields.
Such a coupling is usually assumed to conserve
the isospin. Thus, similar to (46), in the hadron-
hadron scattering there is a P-, T-violating, but

~
AI

~

= 0, amplitude which is given by

4G m„'m, a,
(m, ' —,-'~,')' (48)

and which can lead to an electric dipole eD(h) of
the order of

G 3g
D(I) F h

4~'m ' '
T

(49)

where m „denotes the corresponding hadronic
mass.

The present experimental limit on the electric
dipole moment of the neutron'o is D(n) & 10 'h cm.
If we arbitrarily set m„- m„(m„ is the nucleon
mass), then (49) gives

m 'a ~ & 2x10-3,
mT' (50)

which implies that the P-, T-violating amplitude
(48) in a ~&I

~

= 0 hadronic scattering process is

s10 "~G~ . (51)

For the AY=+1 processes, the corresponding T-
violating amplitude should be at least smaller by
an additional factor G~m~'-n, i.e.,

~10-'G . (52)

For the AY=+2 processes, some special construc-
tions must be introduced to make the usual T-con-
serving amplitude in the Ki, K~ mass-difference
calculation -G~m„' (not -G~mh') times smaller
than the corresponding T-conserving 4 Y =+1 am-
plitude. It seems reasonable to expect that rela-
tive to (52}, a similar factor -Gzmh)' also applies
for the corresponding T-violating 6Y = +2 ampli-
tude, and that would lead to a T-violating ampli-
tude

(53)

in the mass matrix of the K'-K' complex. Since
(52} seems to be smaller than the milliweak
strength, one may expect the CP-violating phe-
nomena in the K decay to be dominated by (53);
the result would be of the observed superweak
character. '

For the ~61
~

=0 processes, the T-violating am-
plitude can be of the milliweak strength, and this
may have important experimental consequences.
As discussed earlier (and also in Appendix A),
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there exist other T-violating diagrams in which
the T violation is generated via the direct coupling
between the matter fields and the spin-1 interme-
diate bosons. In addition, T violation can also oc-
cur due to exchanges of the charged spin-0 bosons
II'. However, a full investigation lies outside the
scope of this paper.

Rnd

Pq&r

Since D&0, the minimum of V is at

cosL9 = 5,

(AS)

(A4)

ACKNOWLEDGMENTS
and since (A., and/or A. ,) &0, this minimum is not
at the origin but at

I am indebted to G. C. Wick for his valuable sug-
gestions, and I also wish to thank N. Christ and
A. Mueller for helpful discussions.

Rnd

p, '=(Pq-r') '(q~, rZ-, )

p,
' = (Pq r'-)-'(P~, r~-, ) .

(A6)

APPENDIX A

1. We first discuss the vacuum expectation val-
ues of Q, and P, :

&y, )„„-=2 "'p,e"

In order that 810 or m, Rnd both p, and p, are &0,
we require, in addition to (8) and (9),

f6/&1,

qA. , &rA, 2,

&4.)... -=2 "'p. .
(A1) Rnd

PA. & y'A,

(A6)

where

+ —,
' Dp, 'p, '(cos 8 —5)', (A2)

In the tree approximation, p„p„and 0 can be de-
termined by setting the minimum of the c-number
function V(Q) at (P„Q,) =2 '~'(p, e', p, ). Accord-
ing to (7),

V = -a(~,p, '+ &.p.') + l (Pp, '+ qp. '+ 2rp, 'p. ')

We note that if x &0, then both A., and A, , must be
&0; but if r &0, then at least one of them (either
A., or X,) must be &0, but the other one could be
&0, provided (A6) is satisfied.

2. The expansion of Q, and Q, around their vac-
uum expectation values

y, =2 "'(p, +R, +iI,)e'e

P =A —(8D) 'E',

q=B —(8D) 'Fu,

C-D—

Rnd

y, =2 "'(p, +R, +tI, )

leads to

V(Q) Vc-Nc. + Vquad + Vcub + Vquar& t

(A7)

(A8}

6 = (4Dp, p.) '-(Ep, '+Ep, ')

The function V must have a lower bound, and
therefore (10) holds; i.e.,

p&0,

where the subscripts refer to, respectively, a c-
number expression, a quadratic function of R„I&,
and corresponding cubic and quartic functions.
(The linear function is absent because of the mini-
mum condition. ) To obtain the normal modes t„
t„and t„we need only to diagonalize V&»d.

Vquad = [A pi + a Cos8(Dpu Cos8+Epipu)] Ri +[Bpa + u COS8(Dpi COS8+Fpipu)] Ra

+[C —D(1+cos'8)]p,p, R, R, + —,
' D(p, '+ p, ') sinu8 I'

—(4p,p, ) '»n8(EP, ' Ep,')(p, '+P, ')—'"(P,R, —P, R, )I, (A9)

where p„p„and 8 are given by (A4) and (A5). It
is convenient to introduce I, G, R, and R', where
G and I are defined by (13) and (14}, respectively,
and

R-=(p,'+p. ') '"(P,R, - P, R, )

and

R =(p. +p. } (P»i+P. R.) ~

(A10)

The constraint (16) is derived by noting that the
product R'I is absent in V~„d, and the Goldstone
boson (13) is determined by observing that G is
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41 P (P241e P142)

p-'(p, A, e *'+p.A, )

where

p =(p; +p.')"'
From (Al) we find

(A11)

and (A12)

which are both real. In terms of hatt,
' and ttt2', (A7)

becomes

y,'=2 "'(R+il)

absent in Vquad.

3. %e shall now derive a set of conditions under
which certain C-, T-violating diagrams must be
zero if the system contains only Q» and B„(.As
explained before, even if such diagrams are not
zero there is no violation of reciprocity relations
without other fields. ) We define

and

P,P.(~l ~
2) +(P,' P—.')&.' = o,

p2Bl g /
2P

p'F' = 48.3.

(A16)

Vq„,d = —2[-A.,'+ —,'p'(C'+ReD')]R'+ —,'A. ,'R"
+-'2[-A.,'+-,'p2(C' —ReD')] I'+2K R2R'

+ —,
'
p '(Im D') IR . (A17)

The coupling between P»' and the gauge field B„
has the same covariant form as that between P»
and B„; e.g. , the current operator j„remains
given by

ff 8, y sk»
Bx ax

I

(A18)

These three equalities imply that among the eleven
new real parameters ~,', A. ,', ~,', A', B', C',
ReD', ImD', ReE', ImE', and F' only eight are
independent. In terms of these new fields, (A9)
becomes

and

$2' = 2 "'(p+ R'+iG) .
The function U(Q), defined by (7), can now be
written as

V=-X1$, $1 —A. 2/2 $2 —( 2$, tt2+H. c.)

(A13)
The corresponding interaction Lagrangian is

BA' BG 88
Bxp ~xp Bxp Bxp

—fmsBp R' —2f B2 (I +R +R' +G }.
(A19)

~ A t(y t1
@ )2 1+B(pit y )2 +Ct(yt ty )(y tyttt)

+-'.[N,'y,')(De e.'+E'e,'y, +F'e.'y.')+H'. ],
(A14)

In addition to this interaction, we also have V.,b

and Vquart in (A8). In a power-series expansion in

f, we regard all masses to be of the zeroth order,
and therefore

Vcub O(f )
where the new constants A.,', ~,', . . . , F' can be read-
ily expressed in terms of the original eight real
parameters A.„X„.. . , E; e.g. ,

and

Vqucrt O(f ) .
(A20)

X,
' = P '(A.,P2'+ A. 2Pt'),

A. 2 =P '(X,P,'+X»P, '),
A. 2

—P (A., —A, 2)PtP»

etc.

Im~3=0,

ImF' =0,
ImD'=-(2p, p, ) '(Ep, —Fp, ') sin8,

and

ImE' = 4p 'p, p, D sin20.

In addition, there are three equalities:

(A15)

Because of Hermiticity only A. ,', D', E', and F'
may have imaginary parts. By using (A4), (A5),
and (A11), we find

We note that because of (A12) and (A15), in order
to have C, T violations [e.g. , nB„=mB„when n
+m is an odd number] one must have ImD'e0 and/
or ImE'10. The following theorems can then be
easily established:

Theorem 2. If 8 = —,'m' and if I is a normal mode,
then (without other fields} there is no C, T viola-
tion.

Proof. If I is a normal mode, then the coeffi-
cient of IR in (A17) must be zero. Hence ImD' =0.
If 8 = —2tw, then according to (A15} ImE' =0. The
theorem is then established. Thus, for example,
the amplitude for nB„=mB„must be zero if n
+ mls an odd number.

The same theorem can also be proved by noting
that in this case, by using (A4) and (A9), one has
E =F =0. Hence, a new time-reversal operation
may be defined, under which Pt- -Q, and $2 —Q„
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instead of (3). The vacuum expectation values

(@,)„„=i2 "'p, and (Q, )„„=2 '~'p, are compatible
with this new time-reversal operation, and there-
fore without other matter fields there is no T vio-
lation.

Theorem 2. If the normal modes t„ t„and t,
are all degenerate (i.e., m, =m, = m, ), then there
is also no C, T violation.

Proof. Because of the degeneracy, we may
choose the normal modes to be t, =R, t, =I, and

t, =R'. From (A17), one sees that the absence of
RR' and IR coupling gives A. ,' =0 and ImD' = 0. The
degeneracy m, = m, gives Re D' = 0. These together
with (A16) imply

~ ' =I' =D' =0.3

There is, therefore, only one term in (A14) that
depends on the relative phase between Q,

' and Q,',
and it is proportional to E' We m. ay rotate P,'
—e' P,', Q,'- Q,'; this does not alter their vacuum
expectation values, nor the coupling between Q,

'

and B„, but it can transform E' to real. Once E'
becomes real, one may define the time reversal
to be the antiunitary operator under which P,'- P,'
and Q,'- Q,'. Since (A14) contains only real param-
eters and since ( P,')„„and ( &f&2)„„are also both
real, the theorem is proved.

Remark. The condition of Theorem 2 can be
weakened: We need only t, =R, t, =I, t, =R', and

m, = m„but m, can be different.
Theorem 3. If R' is a normal mode, then to or-

der f ' the amplitude of B„(k)=B„(P)+B„(q)van-
ishes for arbitrary virtual momenta k, P, and q.

Proof. From (A17), it follows that if R' is a
normal mode then-A. ,'=0, which implies E' =0, on
account of (A16). In (A14) there are only two
terms, one proportional to D' and the other to E',
that depend on the relative phase between Q,

' and
Just as in the previous proof, we may rotate

Q,'- e' Q,
' and Q2- $2, but this time to make D'

real. All C-, T-violating effects must then be
proportional to ImE'. lt is easy to verify that in
(A14) the ImE' term is of the form

—'(ImE')(R +I )(Ip+IR' —GR).

Because of (A20), V„, ~ does not contribute to the
lowest-order f ' diagrams for B„(k)=B„(p)+B„(q},
but V«b may. Since R' is assumed to be a normal
mode, V«b can contribute to such diagrams only if
it contains at least one factor of R' [in which case
the V„» vertex can link with the -f m aB „'R' ver-
tex in (A19) through the R' propagator]. However,
the cubic-function part of the above ImE' term
does not contain any R' factor; hence, the theorem.

For a general triangle, the actual calculation of
the transition B&(k)=B„(P)+B„(q)is rather com-

plicated, but we hope to give some of the details
in a separate publication.

APPENDIX B

To establish (25), we first express X, and y„
defined by (23), as linear functions of the normal
modes t„t„ t, and the Goldstone mode 6:

X, =a,t, +a, t, +a,t,

and

x2 =b~tx+b2t2+bst3+rG (B2)

where a;, b~, and y are constants. From (22), it
follows that

g,p, sin(8 —n) -g, p, sino. =0

g&p&cos(8 —n}+g2p2coso. =I

these together with (23) require li, to be indepen-
dent of G and the constant y in (B2) given by

y = (gp)-' r, (B3)

where g=(g, '+g, ')"' and p=(p, '+p, ')'I'. Let us
define

(Q~)
a=

I
a

and

, (', )
E,b', 1

(B4)

By using (23), one derives

aa =1,
ab =0,

and

5b =1 —y'=1 —(gp) 'r',
(B6)

where the tilde denotes the transpose.
The Fourier transform of (24) at the zero mo-

mentum is

g~aM 2b

where

(m, ' 0 0 )
o m, ' o
0 0 m, 't

(B6)

(B7)

We may search for the maximum of (B6) by vary-
ing a and b, but keeping M' and the three orthonor-
mal relations given in (B5) fixed. It is straight-
forward to show that for m, m2o m„
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lg'cM '& I-2g'[I -(gp) I' ] ' (~ —~ )
2 f2p2 (818)

and the equal sign holds when

(88) If in addition we assume 8=—,~, i.e., a right-angle
isosceles triangle, then I =2 "'gp; hence, P=y
=2 '~', the normal modes become

and

2-1/2
1 3

&1=-&2=-2 "'[I-(gp) 'I']"',

a, =b =0.

(89)

I, = —,'(-I- M2R+R'),

1
t2 =

~
—(I+R'),

t2 = 2 (-I+ W2R +R'),

(819)

Clearly, the maximum value for ~g'aM '5
~
re-

mains the same, if one changes ty ty or t,- -t„or a- -a, or b- -b.
For any given shape of the triangle p„p„and

e, one finds that the maximum in (88) can be real-
ized if the normal modes are given by

t1 2 1/2( [ P ~ (n2 +P2)-1/2 ]I
ts

+[n v(n'+P') "'P)R +yR') (810)

and

t, =( 'n+P') "'[yPI —ynR+(n'+P')R'], (811)

where f, assumes the upper sign in (810) and t2

the lower sign, y is given by (83), I, R, and R'
are defined by (14) and (A10),

n =(pgi") '[(g,'-g, ')p, p, -g, g, (p,'- p, ') cose],

(812)

2 "'g'(I ' —m ') (820)

As another example we may take the limiting
case 8 =0, or 11. From (813) it follows that p = 0;
hence (815) implies rn12 = m2', and therefore ac-
cording to (88) the maximum T-violation ampli-
tude is zero, as it should be.

In general, if the coupling constants f, g„g„
and l" and the masses m„m„m„andm~ are
given, then in order to realize the maximum T-
violation amplitude in (88) the shape parameters
p„p„and 8 are determined by (17), (21), and
(815), and the vibrational modes t„ t„and t, by
(810) and (811).

APPENDIX C

and the corresponding maximum T-violation am-
plitude in (88) is

P =(gr) 'pg, g2sin8,

and therefore

(813) In this appendix we discuss the minimum of the
c-number potential energy V(Q) defined by (38);
this minimum is assumed to be at

n'+P'+y' =1. (814)

The only condition is that the constraint (16) should
hold. Because of (810) and (Bll), this constraint
can also be written as

—,'(n'+ p2) "'n(m, ' —m22) = p[ m2'--2'(m, 2+ m2')]

(815)

One can readily verify that the solutions (810) and
(Bll) together with (89) indeed lead to y, and y2
defined by their original expression (23).

As an explicit example, we may consider the
special ease g, =g, = 2 '"g and p, = p, = 2 ' 'p; i.e. ,
an isosceles triangle. From (812), one sees that
n =0; therefore, (815) implies

(Gl)

(C2)

where 8 is real, and o, p» p, are all real and ~0.
Since V is invariant under the SU, &U, gauge trans-
formation, we can always transform the upper
component of Q, to zero, and both components of
Q2 to real and non-negative. Equation (38) can
then be written as

V = —2A.,P,
' —2X2(v '+ p, ') +—,

' Dp, 'p, '[(cosa —b )' —b, ']

+~[A p, '+B(o '+ p, ')'+Cp, '(cr '+ p, ')
(816)

I'= g'p'(1+cosa) (817)

The angle 8 and the side 2 "'p of the isosceles
triangle are determined by (17) and (21), which
can now be written as

+(C -D)P, 'P, '],

where

& =-(4DP,P.) '[&p,'+&(o'+p. ')]

For D &0, the minimum of U is at

cos8 =~.

(C3)

(C4)

(C5)
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Keeping (C5) satisfied, we find

BV &V

80 8P2
2 +k(& -C)pi'

Since D & C, at s Vjs p,
' = 0 the derivative s V/so '

is always positive; hence to obtain the minimum
of V we require

g 2 p

The function V then reduces to (A2) discussed in
Appendix A provided the constant C in (A2) is re-
placed by C+C.

APPENDIX D

It is possible to have a spontaneous T violation,
but without a spontaneous gauge-symmetry viola-
tion. Let us consider a simple example which con-
sists of a spin- —,

' field g and a single Hermitian
spin-0 field P. The Lagrangian density 2 is as-
sumed to be renormalizable, and it is invariant
under T, C, and P:

Thus, the vacuum expectation value of Q is not
zero;

(Ds)

Since according to (D3)-(D5) Q is of P = -1, CP
=-1, and T =-1, such a nonzero vacuum expecta-
tion value implies spontaneous violations of I', CI',
and T.

In the tree approximation, p is determined by the
minimum of the c-number function V. Therefore,

p'=A 'A. .
We may write

4=p+x.
The potential V becomes

V(X) = V. +-.~'X'+&S X'+-'&X',

where VD=-4A 'A' and p, '=2k.. In order to render
the quadratic expression -P y, (m+i gpy, )g in a
more familiar form, we perform a unitary trans-
formation U:

U(Ut =- [exp(--,'iy, n)]y (D12)

fgP'y. —y.44,
where the potential V(Q) is given by

V(y) = --', ~y'+-,'Z y'.
From Hermiticity, the parameters m, g, A., and
A must be real. It can be readily verified that the
Lagrangian 2 is invariant under T, C, and P under
which

UQU

where

sinn=M 'gp,

coso. =M 'yn (D13)

TP(r, t)T ' = /t (r, -t) „-
CQ(r, t)C '=p(r, t),

(D3)

(D4)

(/n2 + g2p 2)1/2

The Lagrangian 8 becomes

(D14)

Py(r, t)P-' = -y(-r, t); (D5)

VDU =-- — —" —'V(y) —
/ y y

— —+M} /
] '

gy 2 8

2 ~x 8Xp

the corresponding transformations of g are stan-
dard. In addition, 2 is invariant under the simple
gauge transfor mation

g-e' g and P- P. (D6)

A. &0 andA. &O. (DV)

As we shall see, the solution may violate T invari-
ance, but it remains gauge-invariant.

To generate a spontaneous T violation (but avitI/-
out a spontaneous gauge-symmetry violation), we
assume the (renormalized) coupling constants to
satisfy

-ggTy, (sino. +fy, cosr )gy.

Since P y~g is of P =1, C =1, and T =1 while
ig y, y, g is of P =-1, C =1, and T =-1, the La-
grangian (D15) satisfies spontaneous T, P, and
CP violations, but the gauge invariance (D6) re
mains preserved.

From (D9) one sees that there are two solutions
of (&P)„„: p and -p. Either solution is not invari-
ant under T, I', and CP. But since the Lagrangian
is invariant under T, P, and CI' both solutions
must exist, and they should transform into each
other under either T, or I', or CI'.
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