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Using the light-cone quantization of the free-quark model, a wide class of unitary transfor-
mations which relate the "current" to the "constituent" quark models is constructed. The
Melosh transformation is obtained as a special case. The construction clearly exhibits the
kinematical aspects of the transformation. Phenomenological applications are discussed. A
method for determining acceptable transformations in potential models is formulated.

I. INTRODUCTION

Recently, valuable insights into a method of re-
solving certain long-standing difficulties of the
quark model have been provided by Melosh. '
These difficulties stem from the failure to dis-
tinguish between two separate "quark models. "'
In one model, dubbed the "current'" quark model
by Gell-Mann, operators with the algebra of SU(6)~
are defined as integrals of certain vector and ten-
sor densities formed from local quark fields. '
The SU(2) x SU(2) subalgebra of these operators
leads to the highly successful Adler-Weisberger
sum rules. 4 However, careful studies of the way
these sum rules are saturated indicate that the
physical hadrons do not fall into multiplets of this
algebra. ' They transform as reducible represen-
tations.

The second kind of "quark model" treats the
quarks as though they were constituents (in some
abstract sense) of the hadrons. ' Insofar as spec-
troscopic assignments are concerned, low-lying
hadron states seem to fall into pure multiplets of
an SU(6)~ group involving the unitary spine and
Pauli spins of the quarks. The Johnson-Treiman

relations, ' a~ well as numerous predictions on
transition rates, ' indicate that these cjassuxcazxons
are also valid for collinear processes. The ques-
tion arises whether this group is related to the
"currents" group in any simple way.

It has been suggested from time to time that
there may exist a transformation which takes the
set of "current" SU(6)~ generators into the
"constituent" SU(6)~ generators. ' Melosh has
given an example of the form such a transforma. -
tion might take within the context of the free-quark
model. He arrives at the succinct expression'

v'„= exp —,'i d'x g~ x arctan q x .
The similarity of this expression to the Foldy-

Wouthuysen (FW) transformation suggests a sim-
ple physical interpretation. To the extent that in
the "constituent" quark model hadrons are treated
as nonrelativistic bound states of fermions, it is
convenient to identify the spins of the fermions as
those which have a correct nonrelativistic limit.
The FW construction provides us with such an
identification. Further, Bitar and Gursey" have
established that the relation of these spin opera-
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tors to operators relevant to interactions with
currents, such as the magnetic momentum opera-
tor, is also given by the FW transformation. An
essential restriction recognized by Melosh is that,
to maintain the collinear properties of the symme-
try, the FW expression must be modified to have
no dependence on p, .

With this transformation it is possible to re-
solve certain of the difficulties arising from the
naive identification of the two "quark models. "
The algebraic structure of the transformation is
such as to allow' the anomalous magnetic moments
of the 56 L, =0 baryons to be nonvanishing. With
further simplifying assumptions, Gilman and Kug-
ler" have gone on to make a series of quantitative
predictions.

Since the interesting applications of these trans-
formations involve sum rules for matrix elements
of charges between infinite-momentum states, it
is relevant to inquire whether the interesting qual-
itative features of the transformation become more
transparent if one works directly with the "light-
like charges. " The virtues of such charges in
sum-rule work have been discussed extensively
by a number of authors. " For example, it is pos-
sible to rederive relations previously obtained on-
ly by using the p- limit, such as fixed-mass
current-algebra sum rules" and the algebraic re-
alization of ehiral symmetry, '~ without invoking
that limiting procedure. The light-cone formalism
is reviewed in See. II.

In Sec. III we will find that there is a large class
of possible "lightlike" transformations that lead
from "current" charges to acceptable "constituent"
charges. The general form of these transforma-
tions is

)'=exp —dx dx„xx(x), x((x i) x (x)I,
2

(2)

where E is an arbitrary function of its arguments
with the property E(0) =0. In the remaining sec-
tions of the paper we will examine the interpreta-
tion and consequences of this nonuniqueness.

In Sec. IV we find that the large class of possible
transformations in the light-cone formulation has
a straightforward interpretation in terms of
changes of possible spin bases. The light-cone
formulation permits us to separate these purely
kinematic aspects of the transformation from the
obscuring complications due to pair states created
by V~ in the equal-time formulation. This simpli-
fication is possible because V [E(I. (2}] is a "good"
operator and does not create pairs in the light-cone
formulation. We also discuss the manner in which

the nonuniqueness of the transformation is present
in the equal-time formulation.

The nonuniqueness of the constituent operators
has bearing on the interpretation of the dynamical
information supposedly revealed in certain SU(2}
X SU(2) calculations. We have in mind the notion'
that the correction of (G„/G„)„„„„„from its group-
theoretical value of 5/3 to its experimental value
leads to the dynamical condition (p') = m, '. It is
now clear that any transformation with the alge-
braic structure of V~ will give some correction to
G„/G„, but the "dynamic" content of the correc-
tion depends on the particular representation in
which the wave functions of the states and the rele-
vant transition operators have been written. Not
unexpectedly, one will arrive at a "right" V, if
one exists, when consistent interpretation of all
matrix elements is possible. These matters are
considered more extensively in Sec. IV.

So far an important fact has been neglected to
allow a clear presentation of the essential ideas
of the investigation. It is that the lightlike
"current" charges (as defined in Sec. II) commute
with the lightlike Hamiltonian, whereas not all the
equal-time "current" charges commute with the
equal-time Hamiltonian. This shows that the light-
like "current" charges and the equal-time
"current" charges are essentially different opera-
tors. Such a possibility should be expected since
there is no unitary transformation which relates
equal-time and light-cone commutators. The
light-cone commutators contain structures which
are not limits of expressions away from the light
cone and which therefore cannot be obtained by
taking the p -~ limit of equal-time expressions.
For example, it is known that the light-cone com-
mutators determine the fixed-mass sum rules";
the p- ~ method sometimes fails to convert an
equal-time commutator into a light-cone com-
mutator. "

The differences between the p- ~ limit of an
equal-time theory and a light-cone formulation
are irrelevant for understanding the kinematic as-
pects of V discussed above. However, they are
important in delineating the classes of V which
one may wish to consider. In Sec. III w'e have taken
the simylest approach possible: Since the
"current" charges are conserved, and the
"constituent" charges are to be conserved, a con-
served V has been chosen. There are other pos-
sible avenues of investigation. Section V repre-
sents an excursion into one of the possible new di-
rections. The conditions the transformation must
satisfy so there will be a conserved "spin" quan-
tum number in potential theory models are dis-
cussed. The details are exhibited for the simple
case of the two-dimensional transverse oscillator.
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II. LIGHT-CONE ANALYSIS OF SU(6)~,„„,„t3 from H to give

8P"=i d'x 6 (n, x')q(x)n, y' q(x), (3a)

In this section we introduce our notations for
light-cone quantization, "and define the generators
of SU(6)~ currents in this formalism. We also give
the form of the states that transform as represen-
tations of this group.

In addition to the usual quantization on the space-
like plane t =0, it is possible to quantize a field
theory on a hyperplane tangent to the light cone,
conventionally taken to be the byperplane x+ = t+z!
W2 =0. The metric tensor is given byg+'=g =0,
g' = g '= I, g'~ = -5'~, where the standard nota-
tion for vectors, V", is V' =V'+V'/v2, and V'
for i equal to x or y; tensors are treated similar-
ly.

For the free-quark model the Lorentz genera-
tors may be written in the general form

I 2 8 8&=—
I dx dx, q t(x) —m'+- . q, (x).~2) '

q Bx Sx'

Explicit forms of the other generators are listed
in Appendix A.

The canonical commutation rules for the inde-
pendent components of the field in the light-cone
formulation are postulated to be

(q,'( ), q, (X)). =„« = —'6(x -X )6(x.-y. ))( -)i
2

The commutation relations involving redundant
components of the field follow from the above com-
mutator and the constraint equation (5).

In the free-quark model the generators of the
SU(6)~ of "currents" may be written as follows:

M)'"=i
t d~x5(n, x')q(x)

8 p 8
xn yo x& -x" +~, y' qx .

Q, =i d'x6(n„x")q( )xny -,')X, q(x),

q), =ifd'xll(x„x")q(x)x, y" y y' —,'X, q(x),

Q„=(fd xil(x„x")q(x)x„y"q, —'X, q(x).

(Ba)

(Bc)

The Lorentz generators appropriate for the light-
cone. quantization are obtained by letting n' = 0 and
n =1, n'=0=n' in the above expressions. (We
will distinguish light-cone operators from the
usual equal-time operators by placing tildes on
light-cone operators. ) These expressions for the
light-cone Lorentz generators can be simplified
by removing the dependent components of the
quark field, that is, those components that do not
obey a dynamical equation of motion. As an ex-
ample of how this is accomplished, consider the
light-cone Hamiltonian H =—P given by

8 . 8H= dx dx~q x -iy — —.-i &+m q x .8x 8x

The form appropriate when discussing the space-
like quantized theory is obtained by setting n' =+I
(conventionally n' =1, n=o). When n'=+1 only the
vector charges are conserved.

The lightlike charges are constructed by using
n =+1, n'= n~ =0 in Eqs. (6). It is easy to check
that [q„e]=0, [q„„e]=O, and [q...JI]=0. The
operator Q„ is equal to the lightlike axial charge
Q„. Therefore chiral [SU(3)x SU(3)],„„,„„is a
conventional good symmetry in the light-cone for-
mulation, as is SU(6)~,„„,„„.

In the free-quark model the operators Q, and

Q, commute with the Lorentz generators K, and

B, =(K, +e,~J,)/V2; i =1, 2, e„=+1.

We may write q(x) =q (x)+q+(x), where q, (x)
=P,q (x); P, are defined by P, =—,

'
y y' and P

=& y y . Using the Dirac equation it is possible to
express q (x) in terms of q, (x),

8
q (x) =—y' y~ +im q, (x).

2g 8x'

The operator I/q is defined by

I—f(x) fdy x(x -y )=f-'. (x', x, , y ).
The dependent components may now be eliminated

Thus it is possible to construct representations
of SU(6)~,„„,„„for states of arbitrary momentum,
provided these states are constructed in the light-
like helicity basis, "defined by

~
p', p„x&, =e" it.e"s~'~ Im/Wa, O„~&

&'(P', p, , &)Io& (B)-
This is another indication of the utility of working
in the light-cone formulation.

%'e can go even further and construct direct prod-
uct states of total spatial momentum zero of the
general form
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m „)n(f dq, f "dq,

) (+ )q(+ qq)

tf

&&f (p p &} &1.)C.',"' „"Q [t)'(p
& &I

'
&( & )] & [d'(p &}

' ~ «)]IO).
i= jI, f=l+l

(10)

In the free-quark model the wave function f (p~, &i)

is equal to unity, and the coefficients C~:.:,~~ may
be chosen in such a manner that the state trans-
forms according to a given irreducible represen-
tation of the SU(6)~,„„,„„group. The classification
of the states will remain invariant if we give them
nonzero momentum by means of K3 boosts and B~
"boosts" just as in Eq. (9) for the single-particle
state. How much of this can be extended to the
case where there is field theoretic interaction is
not clear; aspects of the situation in potential the-
ory are discussed in Sec. 7.

III. CONSTRUCTION OF THE GENERAL
TRANSFORMATION

In this section we will consider the general
form of a unitary transformation (in the free-
quark model) which acts on the SU(6)~ group of
lightlike "current" charges to give a set of charges
W„'=Vi)&„'V ' that satisfy the following set of condi-
tions:

(a) W„' is a "good" operator. This is the analog
of requiring the equal-time 8"s to be such that
classification will be meaningful for infinite-mo-
mentum states.

(b) [W', K,] =0, in order that the symmetry be
collinear.

(c) [W,',J,]=0, to preserve the spin projection
classification.

(d) Conservation of vector current (CVC) re-
quires that W' =Q'.

(e) W„' has the same 8 and P properties as Q„'.

(f) [W„',If] =0 so that W„' classify single-particle
states.

We write V = exp(iY), where Y is a Hermitian
operator. The conditions that F must satisfy are
discussed below.

We will restrict ourselves to consideration of a
form bilinear in the quark field,

Z=i dx dx q Foxy", y", 8, ~' q x ~

This assumption ensures that W„' does not lead
from nonexotic to exotic states.

(a) Since W is to be "good, " the operator f'
should be "good." A "good" operator as the term
is used in current algebra is one whose matrix
elements do not vanish between states with infinite

momentum. In the light-cone formulation such
operators can be written in terms of densities
local in x, involving only canonically independent
fields.

The condition that F is "good" restricts the pos-
sible Dirac structure of E, to the following form:

E.= r'(E(»+ r'+&2&+»+. (3&

+r'r. E . +l [r", r"]E(.&)

Since the tensor —,'i[y", y ] is equivalent to y' be-
tween qt (x) and q+(x), F(» is not an independent
function. Thus I' can be rewritten in terms of the
independent fieMs as

q (dqfdx dx=, qi()xq, (x).

The "goodness" assumption further restricts the
functions above so that they have no derivatives
with respect to x+, for these may be written

8
+ q+(x) =-,'i ' dy e(x -y )(-q))'~'+m')q+(x', x~, y )

=—(V~' -m')q, (x) .

This expression is nonlocal in x .
(b) The condition that [K, , W' ] = 0 can be satis-

fied with [K„Y]=0. The lightlike generator K3 is
(see Appendix A)

K =i&2 dx dx~q, (x) x' + -x -- q+(x).
8 8

3 8x 8x 2

We thus require

8
E(x~, y" S' &') x- =O (x'=O)

Since E is a polynomial of finite degree in s/sx
by condition (a) above, 'e the condition [E,x (S/Bx )]
=0 implies that E depends on x and S/Bx only as
a polynomial of finite degree in x (8/Sx ).

(c) The condition that [Z„R",] =0 can be satis-
fied with [J,, Y] = 0. In the light-cone formulation
the rotation 43 is

d idqf dx dx q=q(x)(x''~x, q+ —,'x*x)q (x).' 8x'

We thus require
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~4m'ngoJgp e-47f'ng' fg gr
3 3

This implies that E may be written

iE x ]xg q V~ ~xg~ Vg ~6 x]~g) A.
~X

( ")+r'F ('")
+r'&((.)(" )+r'r'F((c)(' "),

where

8
f(3)( ) i &S)( *) i (3)(

8
F,.„,("~ ) =x,E„,( ~ )+, F„',( ~ ~ ) .

(d) CVC implies that Y is an SU(3) scalar Thus.

F. depends only on the unit matrix of SU(3).
(e) The discrete properties of Q and W imply

that Y has P =+, and 0 =+. This condition elim-
inates a number of possible terms. We now have

E =y;x E(~) x,x~, V~, x~ 'V~

+y, ~'E(") x x~' V~' x~ V~ . 14
Bx

(f) The final property of W' is that it commutes
with H. Since in the free-quark model [H, Q "] = 0,
we have the possibility

I Y, H] =0.
Using Eq. (6) we find the restriction

W„'= (cosF)Q,' —(sinF)K', (16a)

(where n~ is a unit vector in any transverse direc-
tion) when the operators act on states at rest. In
the free-quark model, this implies E(0) =0.

Two of the assumptions made in this derivation
may have to be relaxed in field-theory models
with interactions:

(1) The lightlike charges no longer commute
with P unless the fermion mass vanishes. Thus
the transformation can no longer be constructed
to commute with the Hamiltonian, if we require
conserved 8".

(2) It may be necessary to include terms in V

that are not bilinear in the quark field. These
terms may be required anyway in light of theorems
regarding the necessity of exotic states in the
saturation of the current algebra. " It will be in-
teresting to see if such terms are needed phe-
nomenologic ally.

The explicit forms of the operators 8' con-
structed using the general transformations V,
Eq. (15), are given in Appendix A. The lightlike
Melosh transform corresponds to choosing
E =arctan(l& I)/m). Another form which satisfies
all the conditions above, except E(0) =0, is E
= constant; the resulting S' operators have many
properties in common with the operators intro-
duced by Gilman and Kugler in their phenomeno-
logical analysis. In particular, we may identify
the operators which satisfy an O(5) algebra. "
Defining Q', and K' from

V~ -m
2n

=0 these operators are

This condition implies that E does not depend on
x (8/Bx ) or x'. Therefore one may express Z as

Q,'=&2 dx dx~qt(x} ,'(r, v, q„(x—), (16b)

& =r~s'E(l')(Is. l).

Thus the most general transformation satisfying
the properties (a)-(f) stated above may be written
as

and

K' =&2 dx dx~qt(x), ,
~ ,'7;q, (x), —

)Bz)
(16c)

(16d)

o'=W2f «dxq~(x)-,'7)q, (x). (16e)

where

F-=I&.IF". (I&.l)

(15)
(Here v; is the isospin operator. ) This algebra
can be extended to SU(4) by appending the opera-
tors

There is an additional physical constraint that one
should impose on V." It is that when 8', acts on
states at rest, it is equal to the "spin" part of J™,.
In general this implies the restriction

r
Qq =W2 dx dx~qt+(Ã) gogq+(Ã),

K WRf «dx qt (x)=;;q, (x),
2l e~ I

(17b)
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S' =&2Jt dx dx,q, (x) '
~

' —,'7;q, (x) . (17c)
(8~

Finally, it can be extended to give another SU(6)
by changing v,

' into A, These generators are simi-
lar in form to the standard SU(6),„„,„„generators,
because after all there are only a limited number
of possible structures in the free-quark model.
Nevertheless, they are not exactly the same be-
cause the derivatives appearing imply they have
different L properties.

where

'U11.'(P) =XQcos2f 2P1. + +i sin2 f]X1,

X+ g/2 p

/ fcs.-=s"'"'S'(Is.l).

(19)

(20)

IV. INTERPRETATION AND APPLICATIONS OF V

The transformation V constructed in the pre-
ceding section has a very natural interpretation
as a change of spin basis. As noted in Sec. II, the
sta es in the lightlike helicity basis (LLHB), Eq.
(9), transform as representations of SU(6)~,„„,„„,
independent of the value of their momentum.
States transforming according to the same repre-
sentation of SU(6)~ „„,,„,„„,which is generated
by W' and W', may be constructed from the states
of the LLHB using V: if

m
X —,0~;y2

2

The parameters p~ and A, have the values

(~2 m 2)1/2
p~ p~ arcs inh

m

(21)

P (d (~p 2 + m2)1/2v2 p+
(0

Since V commutes with H, we see it does nothing
but rotate the spin of the state.

Let us construct a state of arbitrary momentum

by means of the prescription

~p+ p .~s ) e11x2e811'E1 elen1'Zg

then

W (VIP p. '») =C (I'i p, p, ; X'&).

We will now show that the states ($'~ p', p1. ; ») are
simply one-particle states in a different spin basis.

First we compute the action of V on the covari-
antly normalized single-particle states in LLHB:

The remaining parameters 8 and n~ are also func-
tions of the momentum, and determine the specific
spin basis. The prescription (21) has been adopted
so the "spin" defined by the construction is in-
variant under boosts by K3 if 8 and n~ are functions
of p~ and m only, and not functions of p+.

These states, Eq. (21), are related to the states
in the LLHB in the following manner:

&IP', p X'&=2& 9 )IP' p. ;» (18) IP+s P1. ~ +si()) = Z&122 I
P+

~ P1. t » ~tO
(22)

where
~+m»2

so~„(p)=S~~I( (cos S+(sic,'-Sii, o )

(22)
1/2

+ ip, xo, cos-,'8-i sin —,'8 n~ P o', +ip ~n

Thus, comparing Eqs. (18) and (22), the states
~
p', p~, s ) are just the states transforming according to

SU(6)2 „„„„„,„„, (V~p', p1. , »), provided we make the identification

~~kp
k

Ã/ /~
i

s
(24

(g2 m2 1/2
8 =f(((d2 -m')'/2) —arctan

m
(25)

For the Melosh transformation, f =arctan[((()2 -m2)'/2/m], so by Eqs. (20) and (25), S =0. Thus the cor-
responding spin basis is

~p+, pj;a(d)=exp iln K'2 exp iJ)~ K~arcsinh, 0~;+2
Cc) m

(26)



E. EICHTEN, F. FEINBERG, AND J. F. WILLEMSEN

A similar construction in the equal-time formulation leads to states classified by lV,~ = V~E,~ V„' in a
momentum-independent manner in the free-quark model.

The "constituent" states corresponding to the Gilman-Kugler basis are obtained by taking E=2~, where
a is a constant, so

((g2 m2)1/2
8 =-,'a —arctan

m

They are

~g p+ ( ((g2 m 2)1/2
lp', p;+Il) =exp iln K, exp~ip~ K„arcsinh

(. , (~2 -m')"' - - mx exp
l
i —,n -arctan p, xJ,o

m

~~p=exp i In K, exp ip, a, exp(i2up, xg,),O;+22' '

These are a complicated mixture of LLH states and "transverse helicity states, " which we will define be-
low. The wave functions corresponding to the states (27) are

(Olq„(x)lp', p, ; N ) =e '2'"u(p', p~, +Il„),

~ ~P2p' "'
(CO82R+'Lp~ X o'1 sin2CR)$21/2

u (p', p~, ah„) =

m
+ (cos-,n +ip~x a~ sin —,a)c', y„/2

2 P'

Now suppose that p'= m/v 2, and that we pick
+=2m. Then these spinors take the simple form
("transverse helicity state" )

(n +w
u(P iP»+"2/2) =2

n +zn

(~,+in„)
u ' -ll ) =—1 1

P p

I

n =P'
lp. l

It is straightforward to verify that these are the
eigenspinors of the "transverse helicity" operator
K, Eq. (17b). We have, then, that the LLH spinors
are eigenspinors of Q„ the spinors u(p', p~, +I2,/2)
are eigenspinors of K; but unfortunately the spin-
ors of phenomenological interest, " e= —,'m, are in
some sense in between these cases. It is not clear
whether this is of any physical significance.

As mentioned in the Introduction, the nonunique-
ness in the definition of V which is so striking in
the lightlike formulation has an analog in the equal-
time formulation as well. We can see this analog

by constructing new equal-time W operators 8'ET

VEETV ' using the equal-time transform

8~v =exp —,'i d2xqtg) E(le~i)q(x)
B~

These 8"s will not commute with the Hamiltonian
unless E coincides with E~, but the matrix ele-
ments of [H, W] vanish when taken between states
at infinite g momentum in the free-quark model.
Thus the theoretically interesting problem of clas-
sifying states at infinite momentum suffers from
the same ambiguity in the equal-time formulation
that is immediately apparent in the light-cone
quantization.

Let us now study the constraints placed on the
transformation t/ by phenomenological considera-
tions. It is to be expected that matrix elements
involving zero momentum transfer cannot fully
determine a nonlocal function such as E. Con-
sider for example the algebraic calculation of
(G„/G~)„„,l„„. It is determined by the matrix ele-
ment of the third isospin component of the axial
charge between collinear physical nucleon states.
These states are complicated mixtures of states
which transform as irreducible representations of
the chiral algebra of charges, but fall in an ir-
reducible representation of the "constituent" al-
gebra. Thus one calculates the matrix element
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](t! physics] I 4 0 I+physics]) = (&current I
I 0 0 I I+current)

~ ~

~

T3
= ¹„„,(qs dx dx qr(x)y' s—sex+i, , sisF q, (x) )q )„„,„0 IB~ I

The state g,„„,„t) is in the same representation un-
der the "currents" group as the nucleon was under
the "constituents" group. This gives a coefficient
5/3 as before, but it multiplies the integral

(%currents 2 (cosF)%currents ) 2

where P.„„„„is the wave function of the nucleon
in Ne "currents" representation. The wave func-
tion in the "constituents" representation is fixed
to be the eigenfunction of the strong Hamiltonian,
and is to be considered as unique.

The integral which modifies G„/G„ from 5/3 to
its experimental value must be numerically =1/2[2.
This is clearly a constraint on V. For instance,
F =0 is ruled out. However, since (I[),„„,„„itself is
an implicit function of E, any dynamical explana™
tion of this numerical value of the integral is rep-
resentation-dependent.

Next consider calculations in which the term in-

volving sinF in V 'Q, 'V gives a nonvanishing con-
tribution. This would involve transitions with
AL =+1."" In principle, comparison of the inte-
gral of this function with the integral of cosF be-
tween identical wave functions could give informa-
tion about F. However, phenomenologically, it
seems that the ratio of the integrals

((1), , (cosF)(t),)/(Q, , (sinF)(])},)= cot8, 8 = (tt)„Ftt),)

when taken between low-lying states. " This is
predictable if the relevant wave functions are suf-
ficiently peaked in momentum space, and so does
not restrict F in any clear manner.

I et us now examine matrix elements involving
first-order terms in transverse momentum trans-
fer, such as the magnetic moments. These ma-
trix elements give information on the average value
of I' taken between wave functions. The moments
may be calculated using the following expressions:

[M(2]y)'6'(0)] " = A; —,0~;=,' exp " dx dx, e """tg+~„(x)exp " " B;—,0~;+-,'

[M(2 }x' 0( )0]
y =(d; —,0;= dx d xdxs„(x) B,; —,0;+—')'2'" '

(28)

(29)

It is shown in Appendix B that these are kinemat-
ically correct light-cone expressions using the
free-quark model with an anomalous Pauli term.
The calculation for the physical nucleons is
straightforward, and the details are presented in
Appendix B. Using

ds„(X) =x Jdx dx,q(x)-,'2 "y"q(x)

we obtain for the anomalous magnetic moments

where [see Eq. (B3)j

b. =(y„(2]2/M) (8/sx )(F' —slnF/I B„I)y,)
(4., (F'- st~/I&il)4. )

In the free-quark model where the three quarks are
are at rest 6 = 3. The mechanism responsible for
giving a nonzero result is the same as that dis-
cussed by Melosh. ' lf I" is zero, the anomalous
moments vanish.

The ratio of the total magnetic moments of the

proton and neutron is shown in Eq. (B4) to be -3/2,
independent of the form of I". This is reassuring,
as it is one of the principal results that drew at-
tention to SU(6). Higher moments of the electro-
magnetic current give information on averages of
higher derivatives of E.

To conclude this section, we stress that the
notable qualitative changes in the predictions of
the quark model effected by V are due to the al-
gebraic structure of Eq. (15) under SU(6)~,„„,„„.'"
However, to make quantitative predictions for
processes involving nonzero momentum transfer
we need to know the averages of the derivatives
of the function E between wave functions. " For
phenomenological analysis this means that new un-
determined constants must be introduced.

V. ASPECTS OF THE TRANSFORMATION
IN MODELS WITH POTENTIALS

The discussion of the previous section indicates
that one has considerable latitude to approach
models with interaction. In the present section we
will examine one such approach, allowing the
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quarks and antiquarks to interact by means of a
potential. It makes sense to do this because mod-
els of this genre preserve particle number, a con-
cept vital to the meaning of the "constituents"
classification scheme of the hadrons. Further-
more, in spite of appearances, such theories
are relativistic in a well-defined sense, namely,
that the solutions span representations of the in-
homogeneous Lorentz group. "" In the light-cone
quantization, the formalism under which relativis-
tic invariance is possible has been discussed in
detail by Bardakci and Halpern, "and we will uti-

lize some of their results below. Our aim is to
see how the conditions of relativistic invariance
affect the "constituent" -to-"currents" mixing
scheme effected by V.

Let us first cast the quark field into a form ap-
propriate for examining its properties in first-
quantized notation in a simple manner. This in-
volves eliminating the redundant components from
the four-component Dirac spinors, and performing
a unitary transformation so that in effect the Dirac
matrices act like Pauli matrices. Bjorken, Kogut,
and Soper" arrive at the simple expression

+

q, (x) = p, ~2 ~, [l)(p', p;h)(2p')'"w g)e ' 2"+d't(p", p, ;h)(2p')'"2()(-h)e' '],
h= %1/2 .

" +0
(30)

where

x(l) =(p

Note that the creation operators give states in the
lightlike helicity basis, as in Eq. (9). The action
of operators on the wave functions

—(2'&21'), —(2 &27'); ~ (31)

Consider next a two-particle system which we
would want to correspond to a meson at rest:

I

(0)q, (x)dt(p', p, h)(0) and (0(qt(x)l) t(p', p; I1)~0)
takes on a simple nonrelativistic form. For exam-
ple,

O', = I dx dx,qy(x)y'-,'x'q, (x)

( I
(xq)=g dp, ( f{p„)c(byxx, p, , q yq—(( — ), px, , ))q0) .

B,h

(32)

H =H +H-+U. (33)

Introducing center-of-mass and relative coordi-
nates and momenta in standard fashion, Bardakci
and Halpern find that the theory will be invariant
under Lorentz transformations if the potential is
Galilei-invariant, and rotationally invariant under
a set of operators obeying the algebra SU(2)
formed from relative variables exclusively. La-

To study the properties of the wave function of
such a state under Lorentz transformations, we
write the generators P~, P, J„K„and B~ as
the sums of the generators for the two particles.
A representation can be found in which these gen-
erators do not involve interaction terms. ""All
of the interaction dependence can be placed in
just three generators, H and S . Recall that this
is a virtue of the light-cone formulation of dy-
namics, for in the equal-time case there must be
four generators which contain the effects of inter-
action. A field-theoretic example is provided by
quantum electrodynamics. "

The "potential" is just the term added on to the
sum of the free Hamiltonians of the two particles,

We now focus attention on the action of the gen-
erator J2 on the state (32), which is at rest. In
such a state J3 =j, . Notice that the conventional
partition into "orbital" and "spin" angular mo-
menta,

j2 =l, +22 = (x,1/2 —x21/, )+ (,'(12), —(—,'v2)—;,

is not unique. Since the transformation V com-
mutes with J„we may choose to write

(34)

q, = V(l, +Z, ) V-'-=L,, +W,

and not destroy the over-all Lorentz properties

beling these "internal spin" operators j, , the in-
teraction-dependent Lorentz generators S™~are

3''+P, 'I, l
2M ( ~ M& 3

L C.rn.

+
. 2mPm 2md m /3R2)1/2j'2M 2m '

where

M =(x-), +(x-)-, ,

%2 =2HM —(P~ ),.m.
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of the system.
The utility of a particular choice of this splitting

is based on being able to find L, and W, such that
they commute with H separately,

[Li,H ] = [W~, Jf] = 0 . (35)

In this manner, the "L, and W," classification of
the state will be meaningful. This imposes condi-
tions on V once the Hamiltonian has been speci-
fied.

Consider first a potential which is a function of
the internal coordinates and momenta only, and
does not depend on the Pauli spins. Since the gen-
erators J, and K, do not involve interaction, the
arguments presented in See. III still suffice to de-
termine the general form of V given in Eq. (14).
In order to be rotationally invariant under the
"internal spins" j, , the potential U must depend
on both the relative momentum n~ and relative
position x~. The constraint (35) will then be non-
trivial to satisfy, and will give restrictions on

Fi(X~ ~ 1T~ ~ X~ ' T1'~) alld Fi(XJ ~ 7T~ ~ X~ ' if~) [which
were denoted F,' and F," in Eq. (14)].

A simple example is provided by the two-dimen-
sional harmonic oscillator. In states at rest we
have

H =2 (1Tg +X~ ) (36)

(in appropriate units for m„and x~). Consider
0'=e'", where Y' is the Hermitian operator

Y = ~2i ((Vg V~ ' x~, Fi}+ (0(T~ ' f~', F2 J) .
The condition Eq. (35) can be satisfied if

[F„H]=2iFi,

[Fi,H] = -2iF, .
A solution to this system is"

F, = =,' (x,', w„],
F, =4 (x~' f~') . -

It is amusing that in addition to the sum

(3Va)

(37b)

(38a)

(38b)

V-~v, V=-,'o, -[i ,Y—,
'

o] +
, [iY[iY,—,'o.]]+~ ~ ~—

each term in the sum by itself is a candidate for
g",), up to factors of i required for Hermiticity.
Of course, the example, is not intended to be a
realistic model, but only to show what a nontrivial
solution can look like.

With this type of potential, it is still consistent
to use the free form of the axial charge, Eq. (31).
That is, this axial charge will have all the prop-
erties it is supposed to have under Lorentz trans-
formations and under parity. It is also conserved.
This is possible because the interaction conserves
particle number, and is independent of Pauli ma-

trices. In a field-theoretic model, e.g., in the
linear 0 model, one would have to append the con-
tributions to the axial-vector current of the other
particles. The terms which break the conserva-
tion of axial charge will change particle number.

U'sing V it is then possible to construct eigen-
states of g, from the eigenstates of the "spin" W, .
For instance, if

~
M, 8,) is a state with a definite

eigenvalue of W„V '~M, s,) is a state with the
same eigenvalue of Q, . However, it is not an
eigenstate of L, . Neither does it have the same
energy as

~
M, s,). This is how the mixing scheme

works in this type of model in all cases for which
we can find solutions to Eq. (35) (which are es-
sentially differential equations) ~

The conditions to be satisfied if the potential in-
cludes spin dependence are much. more compli-
cated. A simple way to construct a rotationally
inva, riant U is to make it a, function of j'. Since
the j, include Pauli matrices, U will have what
looks like "LS"coupling in it. Such a potential
will no longer commute with Q„but there is still
a possibility that a conserved W, operator can be
found. The conditions to be satisfied will contain
many terms, and it may be possible to contrive
canc ellations.

In any case, the point here is that one has a well-
defined procedure for constructing the desired op-
erators W„L, once a potential has been decided
upon on some other physical grounds. It is an
analog of the FW construction for interacting field
theories, but with the advantage that it focuses on
the single condition one wants to maintain; namely,
the conservation of the "spin" W, . Our Lorentz
generators are fixed in a given basis, and the
bound states, as well as the vector and axial-vec-
tor currents, must have the correct covariance
properties with respect to this set of generators.
We have seen that these Lorentz conditions in no
way conflict with the construction of W, .

The problem of finding the representations of
the chiral SU(3)&& SU(3) charge algebra has thus
been reduced to finding the operator P such that
Vg,V ' commutes with the Hamiltonian (in addi-
tion to the other conditions for V given in Sec. III).
Thus, the problem is identical in form to tne one
solved by Melosh in the free-quark model, but
with the difference that the specific functional de-
pendence of V depends on the interaction.

VI. SUMMARY AND CONCLUSIONS

In the attempt to find economical saturation
schemes for charge-algebra sum rules, one can
use states at infinite momentum so that many-
particle contributioris to the intermediate states
will give nondominant contributions. Alternatively,
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one can use states at finite momentum and state
the sum rules in terms of lightlike charges, and
thus avoid a limiting procedure. The correctness
of either procedure is tested by the phenomeno-
logical success of the derived sum rule.

In the light-cone formulation of the sum rules,
as well as in the p -~ formulation, the physical-
particle states lie in reducible representations of
the charge algebra. By constructing the unitarily
equivalent "constituent" algebra under which the
particles transform as irreducible representa-
tions, the problem of finding the "mixture" of
charge-algebra representations which make up a
physical particle is elegantly solved.

We have found that in the light-cone quantization
of the free-quark model there is a large class of
transformations which take us from the current-
algebra charges to such constituent charges.
These transformations have a well-defined alge-
braic structure under SU(6)~,„„,„„asa simple
consequence of essentially kinematic constraints.
The same is true in potential models, since these
are subject to an identical set of kinematic condi-
tions.

In phenomenological applications, all of the al-
lowed transformations give predictions for pro-
cesses involving zero momentum transfer in
terms of two reduced matrix elements involving
the function I' appearing in V. In first order of
momentum transfer, calculation of the total mag-
netic moments of the nucleons gives the usual
SU(6) result, (g~/((J, „)r= -3/2, independent of the
structure of V. The ratio of the anomalous mo-
ments involves a reduced matrix element in which
F' enters. Continuing in this fashion, higher mo-
ments of the currents give information on the
value of higher derivatives of I' averaged between
particle mave functions.

In addition to attempting to find more detailed
information on V phenomenologically, it is of in-
terest to try to construct V theoretically in mod-
els with interaction. Such transformations will
undoubtedly have a richer algebraic structure
than those permitted in the free-quark model.
Indeed, such structure may be necessary to do
phenomenological analysis for higher-lying states. "

Within the framework of potential models, we
have seen that there are a small number of condi-
tions to be satisfied in order to find conserved
"constituent" z component of spin once a potential
has been specified. In principle, it is straight-
forward to solve the conditions for V, or else
show that such a V cannot exist for the given po-
tential. Even the latter possibility could be very
interesting, as it could indicate a relation between
chiral-symmetry breaking and "spin" -symmetry
breaking. We also note that even in potential mod-

els it may be possible to introduce more structure
in the form of V by introducing more internal de-
grees of freedom, as in dual models. It wi'. 1 be
interesting to see whether dual parton models
with spin admit a Foldy-Wouthuysen type trans-
formation.

In interacting field theories, one may have to
fall back on the FW procedure of constructing V
in powers of m ', though in general there is no
assurance this will give us conserved charges.
Such solutions mill also lead to exotic configura-
tions, and will have explicit dependence on the
gluon fields. It is an open question whether these
features a,re desirable even if they can be made
tractable. Finally, once an infinite number of de-
grees of freedom are admitted, with either inter-
acting field theory or dual models, one must allow
for the possibility that the chiral symmetry is re-
alized in the Nambu-Goldstone manner. Even in
this case, there can be "algebraic consequences"
of the chiral symmetry, '4 but all criteria based on
commutativity with the Hamiltonian must be han-
dled with great care.
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APPENDIX A

We list the Poincarb generators in the light-
cone quantization of the free-quark model. In the
notation of Kogut and Soper"

«« «Ha J ««-«*,«1 («) q, («), =
8xf

p'=iv2 jtdx dx, q~(x) q, (x),8x

8 8)) i«') J d«dx,=««(«) —m*+ ( q, («),
g X Xf
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M =-S =i&2
~

dx dx qr(x) x —m'+, -x ——yJ +im q, (x),
8 a e y» a . ™~

2$ 8x ~x» ex» 2'g ~x

I"=0 ={JRf dx dx qi(x)(x' —x +—'y'y)q, (x),

M' {{-=i'dR=f dx dx„qy(x) x' —m'x ( -x ——q, (x).
2n

The Dirac equation has been used to eliminate the dependent components of the quark field and to elim-
inate derivatives with respect to x'.

We also list in this appendix the general form of the "constituent" charges Wz = VQ&„V ', where V is
given in E{I. (2). We have

(0 =Q, =JRf dx dx qy(x)'-Xq, (x),

W„=V 2 'dx dx q~xy y-,'A, q, x V '

=dsf dx dx, qy(x) —,'y, y, x, coos'xi, ,
- sins q, (x),

lB~ I

W'»~ = V 2 dx dx~q+~ x y~y p&»q+

9)

=&Rf dx dx,qi(x) y, y'+i, ', sinF+;. . . yx{R cosy) —,'2'q, (x-).
I ~pl

(A.!0)

APPENDIX B

We will first show that in the free-quark model the expressions in Eqs. (28) and (29) for the total and the
anomalous magnetic moments are correct by considering an electromagnetic current with an anomal. 0us
Pauli term:

JE)'„(x)=eq(x)y)'q (x) + (J„ i „q(x)Z)'"q (x),

where

gl)R{ 2
[y)R yV ]

According to Eq. (28), the anomalous magnetic moment is given by

where

|Iq) = &2M (2v)'a'(0) .

Now, we have to first order in k„

ik B
) " = —,0~;=2 1- ' Q+v2ie dx dx„k„xq+t(x)q+(x)+&2p, „(-ik„) ' dx dx~q+~(X)iy„q+(x)

"('-~")~ "-:)...
~ ~

~

B M
, 0, ;=,' xs xi dx dxxqy(xlq(x)+J, R sx d,x dx q7(x)y, q, (x)-idq - *,0;+').2' "' J. 2 + + A~ J + x + M 2

2 J. q

The generator B„may be written (at x' =0) as

n=dsif dx dx qi, (x)x, q, (x),ex
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and the expression for the anomalous magnetic moment becomes (terms with x, give zero contribution)

"=»(2 ii»„~ (0, =,')y„I0,u (0, +-,
'

)2M

2M X 1/2 VX+1/2

The calculation for the total magnetic moment is also straightforward. According to Eq. (29), it is given
by

First we note

2' "

Since

dx dx„x»dz„(x) =&2eJ dx dz~ x»qt(x)q (x)-~ qt(x)y„q (x)
»t2

9
q (x) =:y+ im +y, q, (x),

2'g 8xg

we may reexpress JE„ in terms oi canonically independent variables:

dx dx~x»JENNY) =»)2 e dx dx~q, (x) y, , — — +x» q, (x)
m-f y~s/ex~ m' (s/sx, )(e/ex~)-

2n' 2n'

m' —(8/Bx, ) (a/ex~) . y, y, 8/ex, . e
-Z „2 m -Zy. Q'+~+) .

2g g ~X/

Since between the rest states the x' term and transverse derivatives give zero, we have

m2

Therefore,

+ 2 p~ s O~-p p„P+Q 0 +p

2M 2M

These expressions agree with the expected results in the free-quark model. Consider the calculations
of the anomalous and total magnetic moment for physical states. %e may m'ite

8 M k k
(q)q =

0 d; —,0;——' exp -(0; * dx dx [e'** »Md( )]exxqiB, * 0;,0;e')
2M 2

The electromagnetic current is taken to be that of the free-quark model (with no anomalous Pauli term),

J»E„K)=eq(x)Yk&'"q(x) .
Using the expression for B„given above and using the expression for fdx dx, x, OEM with no'anomalous
Pauli term we have

»q)0M =(d;—,0, ;--,' i dx dx, xeR eqe(x),"X "q, (x)
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and

The physical states A and B which are constructed as simple irreducible representations of the strong
charges can be related to the states classified simply under SU(6)~,„„,„„by

(
M M

+strung 2 2 Od 2 2 +currents F- 2 Od 2 2
2 V2

M
Bstrong p & OJ & +p =p' Bcurrentp & OJ,. +~

W2

where

V =exp —dx dx, tft(x)
}(2 Bi

Thus, in terms of states that transform simply under SU(6)~,„„„tone may write

tq) " = d„„„,;=,0; ', dx dx=x,dts(x)- 0)
V2

+&2jdx dx q, (x) —,es — i —,sosF —I+—,i Fs(s*,-y,EM 29 s 2 t. . ri'&d.
M Bx

8+ 8„ M
~22

I I 12 yd Sd. qe(x) +current 2 I Od 2 +2
v2

Ã) 2M
=2 24 current 2 2 02 2 2 &2e dX dXd q+ (X)23.2M

Pg I
'

2

m 1
y -e,a,e»y&~2,

ig
( coFs-1+ sginE)

2n Ie J.

y. y; ~ cosE „si„Ey

2 ~je 1 YJ J ~ J.
~n

M
yi ' Bi, "'2 (I+(X) Bcurrents 2 2 Od 2 -2 . (]32)2'

,I(

Now consider the neutron and proton magnetic moments. The baryon SU(3) octet belong to the represen-
tations

(6, 3) L, = 0 for spin up

and

(3, 6) L, =0 for spin down.

Therefore the only terms that may connect (3, 6) L, =O and (6, 3) L, =O have (3, 3)+(3,3) L, =O; the contri-
bution of such terms is given below:

(V) " =i (3, 6) L, =O,„„,„,;,|)i;a W2 dx dxiqt(x) 2eX2M- 2 ( egy„)"'"""
2

' " X Q () ()

M
xq, (x) (2, 2} 0, =0,„...;=, 0, ; e)J
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and

a

33} " =((3, 6) L, =O„„,„,;,));a d3 ef dx dx ae(x)-' xex
jp

/Bz[ . m - /8
/

. BE sinExy„-, —,'(cosE+1)+ L2 sinE+ —,-- ( 4j)' 2n' 2n'

Mxa, (x) (6, 3) L, =O,„,, ; —,0;a) .

From these expressions we see that the ratio of the proton to neutron anomalous magnetic moments is
given by

where

&(3 6) L.=o-*-(' (M/~2) 0ilb~/M)f(s/» )(E'-»»/ls. l)l(6 3) L.=o---L (Iif/~2), o.)
((3, 6) L, = 0,„„„3;(M/3(. 2 ), 6L ( ( E' si n E/-(5 L() [ (63 3) L, =0„„.,(; (M/V 2 ), OL)

BF

(S3)

In the free-quark limit a = —,', so p, ~/p, „"=-1. The ratio of proton and neutron total magnetic moments is
given by

pP
independent of E.
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The eikonal approximation is used to investigate the forward one-fermion matrix element of the bilocal
operator that appears in the most singular term of the canonical light-cone current commutators for the
fermion —neutral-vector-gluon model. A relationship is exhibited between this matrix element of the bilocal

operator and the leading behavior of v 8',. This relation allows calculations of contributions to the matrix
element of the bilocal operator to be applied to the corresponding contribution to v 8', . A simple set of
graphs contributing to the matrix element of the bilocal operator is calculated in the eikonal approximation.
This gives a contribution to v 8', in agreement with explicit calculations in perturbation theory for the
corresponding set of graphs of v 8'2.

I. INTRODUCTION

The determination of the structure functions for
deep-inelastic electron-proton scattering is of
great theoretical interest. Insight may be gained
by examining simple field-theoretic models. In
particular, the inelastic structure functions have
been studied for a fermion-neutral-vector- gluon
model in perturbation theory. '

In this paper the eikonal contributions to the bi-
local operator that appears in the most singular
term of the light-cone current commutators in the
fermion-neutral-vector-gluon field theory are in-
vestigated. Since the forward one-fermion matrix
element of this bilocal operator can be related to
the leadinghehavior of vW, (as -tI'-~, v-~),
therefore the behavior of v W, can also be inves-
tigated by the method. ' In particular, the contribu-
tion to this matrix element of the bilocal operator
corresponding to structureless gluon graphs can
be easily calculated in the eikonal approximation.
The results can be related to the contribution from

the corresponding graphs of v8', by means of the
relation found between the bilocal operator and
vR', . The results agree with explicit calculations
of these graphs of vR', made by Fishbane and
Sullivan. ' The eikonal approximation for these
graphs of vS; has been obtained by Fried and
Moreno'; however, the objective of the eikonal cal-
culation we willdohere isnotanew result for vW„
but a different approach, ' i.e., to study the leading
bilocal operator and then apply results to v W, .

In Sec. D, the form of the bilocal operator will
be obtained and the relationship between the for-
ward one-fermion matrix element of this bilocal
operator and vS", will be derived. In See. III, the
eikonal approximation to the bilocal operator ma-
trix element will be obtained and various approxi-
mations made to obtain numerical results. The
relationship between the matrix element of the bi-
local operator and vR', is used to obtain a result
for vW, within these approximations. In See. IV,
the physical relevance of these calculations is dis-
cussed and further calculations are suggested.

II. THE BILOCAL VERTEX FUNCTION AND ITS RELATION TO vV2

The electromagnetic current commutators at equal x+ have been computed canonically for the fermion-
neutral-vector- gluon theory. The results are

x
-2 [8 (x)~ cT"(0)1++=0 @~ a~ iPx)p'p"y"exp -ig, drBA (z) g(O) —H.c. e(x )0'(x~)

0

Now the leading term in the operator expansions as ~'- 0 of the unordered product of currents can be ob-


