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Non-Abelian Compton Scattering on Targets of Arbitrary Spin*
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The scattering of isovector photons on targets of arbitrary spin S is studied up to second
order in the frequency of the incident photon. A general proof is given of all the isospin-
antisymmetric lour-energy theorems that have been conjectured for arbitrary spin, based
on the results obtained for love-spin targets.

I. INTRODUCTION

Beg' has studied the non-Abelian Compton effect
on nucleons to first order in the frequency ~ of the
incident photon and showed in particular that the
well-known Cabibbo-Radicati sum rule follows
from the obtained isospin-antisymmetric first-
order theorems. Singh' studied the nucleon case
to second order in & and derived an isospin-anti-
symmetric second-order theorem related to the
isovector magnetic-moment charge radius. The
scattering of isovector photons on spin-1 targets
was taken up by Kumar' and new results up to
second order were obtained. In particular, a
zero-order isospin-antisymmetric result, similar
to the spin-~ case, ' was put in terms of the gyro-
magnetic ratio and was conjectured to be valid for
higher spins. In two previous papers we have
studied the case S = & and a generalized form for

the Cabibbo-Radicati theorem and the magnetic-
moment-radius theorem were obtained, as well
as other isospin-antisymmetric results, related
to the quadrupole and magnetic octupole moments
of the system. A11 these low-energy theorems
were put in a form shown to be valid for 8 ~ ~ and
conjectured to be valid for higher spins.

In this paper we discuss the scattering of iso-
vector photons on targets with arbitrary spin S.
The isospin-antisymmetric part of the scattering
amplitude is studied up to second order and a gen-
eral proof is given of all these low-energy theo-
rems that have been conjectured to be valid for
arbitrary spin.

In Sec. II we give a general discussion of the
low-energy theorems. Section III is devoted to the
expression of the current matrix element for ar-
bitrary spin S. The results are discussed in Sec.
IV,

II. THE I.OK-ENERGY THEOREMS

%'e consider the tensor &„„~ given by

Here n and P are isospin indices, k and k' (P and P') are incident and outgoing photon (target) momenta.
Our metric is defined by k„=(k, ik, ) =(R, i~)

Using current conservation ~&J& =0, and the basic equal-time commutation relations of the current op-
erators

Jq =(J, , iJO):

I.J."(x), '(J)Py( .—xy.) =i~ "Jg(x)f'(x- y),
[J"(x), J, (y)]5(x, —y ) =is &J/(x)6 ( x )+yia [-p",. (x)5'(x-y)],

one obtains the divergence conditions'

O'T =T kp pv vt

(4)
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From the conditions (4) one has the identity

1/2

k,' Ts~k =(d(d'T"8+i{2m)', 6 8)'(p'~ [—', ((d+(d')Z)'(0)+ —,'(k,'+k,.) J')'(O)]~ p) .
Next &;j is divided into two parts:

TCXg UCXQ g (XBij ij fj (6)

where U, , refers to the unexcited or one-particle (target) pole contribution, and

s (p'I ~,"I »&k I
~'I t) & &p'I ~~ I

-&'&&-k'I J( I o &

(27()' E~ '~ E(k) —M- (d E(k') —M+ (d'

where a summation over the intermediate spin states is implied and we have taken the target initially at
rest, p =0. %e then recall that the frequency of the outgoing photon is given by the relation

M((d' —(d) = k k' —(d(d' . (6)

Using Eqs. (5) and (6) and also splitting T,"0 into its unexcited and excited parts, we have the relation

k,' E,&8k&-(d. (d'.Eoos+(d(d'Uoos —k,'. U,".

z kB,. +i(27()'(E~, /M)'~ e" ~(p'~ [~((d+(d')&g(0)+2(k,'+k, )ZI(0)]~0&, (9)

where

8 &p'I ~o I k& &
k

I
&o'I && &p'l~o I-k'& &-k'I &."I 0)

(») Eq " - E(k) —M- (d E(k')- M+ (d'

and, since p,", (x) =0, E,"0 is given by a similar expression containing all but the single-particle interme-
diate state. As is well known, 'E,", is of order ~' and this statement has been presented in a more pre-
cise way by Singh, ' who has shown that

Eoo~ = k,' k~ I",.„.8(k, k '),

where I',",.8 is free of kinematical singularities and symmetric under the interchange n —P, i —j,
k —-k', that is, it obeys crossing symmetry.

Following Pais' we write now the complete minimal basis for E,~ . To order we have' for the iso-
spin-antisymmetrie part of the amplitude,

E[n8] [in I8] g a (~ ~r)E(L)

= [I",I ]/((d+ (d')a, p, ~+ [a,(0)+M ((d'- (d)a» + ((d+ (d')'a»]e, &„8

+((d+ (d')a„, (8,.8&+8&8,. ——',826, ,)+ a4(0)[5,&S (k'x%) -R '%'e,
& S„]

+a, (0)e,,„(k'8 k'+k 8 k)+a, (0)e,&„(k'8 k+k 8 k')

+ a, (0)[k,'(Sxk'), — (kS kx),. (i+j)]
+ a, (0)[k,(8)(k'),. —k,'(8xk)&+ (i —j) —2k k'e, ,„S ]

+ a~(0)[((8)Sy, S„& + (8), 8(, 8„&)(k'xk)„5(38 —1)8 ~ (k'xk)5, .]

+ a,o(0)e;i„(k„'k„'+k„k„)(8,S„,8„&

+a„(0)[&,~„(k„'k„+k k„')(8„,8„,8„)—-'(38' —1)k k'e;, S ]+0((d')}, (12)

( 1, B, C& =ABC + CAB+ BCA,

8' =S(8+1), I" is the oth component of isospin, and the expansion of the coefficients, to order (dm, is in
accordance with crossing symmetry.

Upon contraction with k,'k& and making use of E(i. (8), one obtains
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k,'. BI",.2'k,. = [I",Ia](k k'(&u+ ~')(a, , —2'8'a, , )

+8 ~ (Q'xQ(a2(0)+k '%'a» —sk k'(3S' —1)[a2(0)+a»(0)] + &a&a'[4a„—a»+2a, (0)]].

+(S k', S .k] (tv+ &u')az, + (k,'k&+k, k,')(k'xk)„(S„S&,S„&[a2(0)+ a»(0)]

+ (k,'. k,'. +k,. k~)(k'xk)„(8, , S,, 8„)a„(0)+O(&u')) .
The unknown term I'~„.8~of Eq. (11) can be expanded in the same basis as E~, 8~. Therefore, from Eq.

(11), one can write

(d(d'Eoi~oa j = [I",I 8 ]S (k' x k)(d(d'b2(0) + O(uP),

(13)

(14)

where b2(0) is an unknown coefficient.
Equations (13) and (14) are now to be substituted in Eq. (9). It is apparent from Eqs. (13) and (14) that

only a» and a, (0) will receive an unknown contribution from ~&@'Eo~",@. All the other amplitudes in Eq.
(13) will be completely determined by the known terms of Eq. (9) giving six low-energy theorems

III. THE CURRENT FOR ARBITRARY SPIN

In this section we shall prepare the way to es-
tablish the explicit expression of the low-energy
theorems. As we are working on E~, @ to order
O((u2), we need in Eq. (9) II„"„8 to order O(~') and

(p l &„"(0)l0 &
to order O(~'). To compute these

quantities we need the isovector current matrix
element for arbitrary spin S. This has been done
before'2 to order O(uP) and also" to order O((d2),

in the study of the scattering of physical photons
on arbitrary-spin targets. Therefore, we shall
quote only the main results, paying attention only
to the definition of the various form factors and
their relations to the multipole moments, since
some confusion of normalization seems to prevail
in the literature. '" The expansion of the current
matrix element in the Breit frame is"

28

, (Q'), iB,(Q')Qx --- It, (S .Q)... ,
l =0 BQ

(B'& and the magnetic octupole moment Q~ (in
units of 1/2M'), respectively given by the gener-
al definitions":

(r*) I"=(O, S Jd,"(r)r'dr O, S), (1Va)

0 S
q)r

d,"(r)(Sr*—r*)dr 0, S), (1Vb)

V

I =— O S r&&J dr OS (17c)

(S*)")"= (O, S I( xJ"),r—*rdr O, S),

n'
O S g 5 2 d 0 $4x6'"

(O, S r„, r„d„"(r)dr O, S)

(1Ve)

These quantities are computed by the usual re-
lation"

where o and 0' denote polarization states and

&1(S 'Q) = (S Q')"'I'1
(S2Q2)1/2

where P, (x) is the Legendre polynominal of de-
gree /. Parity conservation demands A, =0 for odd
& and B, =0 for even &. To order O(QS), only A, (0)
= 1, dio = [dI",(I)/«]„and A, (0) will be present in
the Breit-frame matrix element of 40, and only
B,(0), B,'= [dG, (&)/d& j„and B,(0) will appear in
the vector part of the matrix element. Before
continuing we shall relate these various isovec-
tor form factors to the isovector charge mean-
square radius (&2&~, electric moment Q (in units
of 1/M'), magnetic dipole moment p.

~ (in units of
1/2M), magnetic dipole mean square radius

= (211)2(-i)"lim

x (2Q, sl ~„(0)I-~2Q, S&, (19)

(+2&)r 6~(

Q" =-3M S(28-1)A,(0) s

p,
~ =2MSB, (0),

(It &
= 58BO(0) —10SB,',

O' 0 = -30M'S(S —1)(28—1)B2(0) .

(19a)

(19d)

(19e)

where N=n, + +n .
Using Eq. (15) one obtains the following rela-

tions":
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With these relations we have the current matrix element in the Breit frame expressed in terms of the
multipole moments.

With a Lorentz transformation we can go from the Breit frame to an arbitrary frame. By straight-
forward calculation oo~ obtains, '"with

q=p -p and P=p +p,

(p']I, ]p) =I I)+0'A'+ ', iS (p'xp)+-,'A, (0)[2(S ql* S*q*]+O(q')I (20)

W

(p'( J"~ p) =I +i[B,(0)+q2B,'](Sxq)+ 2 iBS(0)[5((Sxq),S q, S q) —3S2q2(Sxq)]

P2 2

+ q'A,'+ —,'A, 0 3 S q' —S'q' +, S ~ pxp', , ' 8 ~ q

SM2 P (Sxq)- 4M2 ((S pxp ) (Sxq)] —
SMR (p q)(Sxp)+0((f') (21)

IV. RESULTS AND DISCUSSION

From Eq. (8) one has

1 1 k k' co'-~
+ - =—,+, +0(&u2),

E(k) —M- ~ &(k') —M+ &u' M &~' 4M'

1 1 1 1 ~+(d'
E(k) —M- &u E(k') —M+ &u' ~ (d' 4M

(22)

(23)

Using Eqs. (20)-(23) in Eqs. (l) and (10), and recalling Eq. (14), we have for the isospin-antisymmetric
part of Eq. (9),

I

k!B!':I!k=[I",I ]II-', ( +II)Ixkk'[S'A (0) —2A']+IS (k'xk) -B,(0)+k k'( B,'(S)-0SS( B)+ 0'', )

+ (u(u'[-2B,'(0) + 3 S'B,(0) —ib2(0)]

——,
' (S k, S k'} ((2)+(2)')A12(0)+ 2iB2(0)(k,' kq+k,.k', )(k'. xk)„(S„S,, S,)

IB(0)(k'2'-+-'.k'I k, }(k x, k,)(S,, S,I, 2') + 0,(td')I . (24)

By comparing Eqs. (13) and (24), and using
Eqs. (19a)-(19e)we obtain the following isospin-
antisymmetric low-energy theorems:

(25a)

qV

4M 8(2S-1) '

WenV' (0"-(0)=12~S(S 1)(2S 1)M ~

(25d)

(25e)

~V""' 2iMS (25b)

i~6Q"
12S(S—1)(2S—1)M (25f)

(B2)V ~ V

5S 4M'S 4M' (25c)

Theorem (25b) confirms a conjecture2 based on
the analysis of the corresponding results for
S =1.
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Theorems (25a) and (25c)-(25f) constitute a.

proof of the results conjectured before on the
basis of the results obtained for S & ~. In partic-
ular, theorem (25a) is the generalized form of the
Cabibbo-Radicati theorem and (25c) is the gener-
alized form of the magnetic moment radius theo-
rem, which were first derived, respectively, by
Beg' and Singh' for the nucleon case, in terms of
the usual nucleon isovector form factors.

The low-energy theorems up to second order

associated with the isospin-symmetric part of the
amplitude give a trivial extension of the results
obtained earlier for physical Compton scatter-
ing."' A more general analysis of the ampli-
tude for physical Compton scattering on targets
of arbitrary spin, up to order 0(tu'), has been
given by Lin." It would be interesting to inves-
tigate the implication of this type of analysis on
the isospin-antisymmetric part of the amplitude
for isovector photons.
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volvimento Economico, CoordenagKo do Aperfeiqoa-
mento de Pessoal de Noel Superior, Conselho Nacion-
al de Pesquisas, and Fundal™ao de Amparo a Pesquisa
do Estado de S™aoPaulo.
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