
GAUGE MODEL FOR THE PION MASS AND THE p' VECTOR. . . 1179

term in the unification of strong, weak, and electro-
magnetic interactions is discussed in Ref. 7-

4Of course, we should expect the parameters f, g, g, g,

and A, to be readjusted in order to properly fit the p, A&,
and p' masses and the p width when the present model
is embedded in the larger ~ scheme,
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The question of cancellation of the logarithmic divergence appearing in the proton-neutron mass

difference is studied in a unified theory of weak and electromagnetic interactions. It is concluded that

the contribution from weak hadronic currents in an extension of the Salam-Weinberg model for leptons

to hadrons does not cancel the logarithmic divergence arising from purely electromagnetic interactions,

I. INTRODUCTION

It has been known for some time that a logarith-
mic divergence' appears in the proton-neutron
mass difference when this mass difference is cal-
culated from purely electromagnetic interactions.
Recently there has been some interest in unified
models' of weak and electromagnetic interactions,
and in one sense this interest stems from the hope
that such models would lead to a finite theory of
electromagnetic and weak physical processes. In
the version studied by Salam and Weinberg the
weak and electromagnetic interactions are medi-
ated by two charged vector bosons S'„',a neutral
massive vector boson Z„,and the massless pho-
ton Q&. The model has been extended by Weinberg'
to include hadrons; and the bosons A.„,W&, and Z„
are coupled to the electromagnetic current J&, the
weak hadronic charged current J~~, and weak ha-
dronic neutral current J~&, respectively, with com-
parable coupling strengths. Thus for q'(in the prop-
agators of massive bosons W„and Z„)»m ', mz'
the contributions from J~ and J~& to the proton-
neutron mass difference will be of the same order
as that from J'„,and it is interesting to see wheth-
er the logarithmic divergence to the mass differ-
ence arising from J'„is canceled from the contri-
butions from J~ and J~. The purpose of this paper
is to study this question. Our conclusion is that in
the Weinberg model the divergence in the mass

difference is not canceled and in fact the situation
is the same as in ordinary theory with the contri-
bution coming to the mass difference purely from
J'„;the only difference is that e' appearing in the
coefficient of the logarithmic divergence for the
purely electromagnetic case is replaced by e'/
(2cos'8~) in the Weinberg model, g„being the
parameter appearing in the model (it is defined
below).

II. MASS FORMULA

J~™=iqy„Qq,

J ~~= i gyes(1 + y, )Wq,

Jz 1 Jgt(0) e' Jcm4 sin'6. ..
2

(2.1a)

where

J~ ' =i qy„(1+y,)W'q. (2.1b)

Here q is the column matrix

In Weinberg's extension' of the Salam-Weinberg
model for hadrons the electromagnetic weak had-
ronic charged and neutral currents in terms of the
four quarks q4, q„q„q,having charges a, a, a —1,
a —1 are given by



1180 FAYYAZUDDIN AND RIAZUDDIN

q4

3q

neutron mass difference by using the Lagrangian
(2.2). For this purpose we follow a method dis-
cussed previously by us' and define the isospin
currents

Q is the charge matrix, W is the 4x4 matrix

0 p
0 0

V„'=i q(x)y„T'q(x),

l", =i q(~)y „T'q(x),
(2.4a)

with

-sing cosg~
cosg sing

8c being the Cabibbo angle, and W 0 = [W, W t] .
The parameter 8 appearing in Eq. (2.1a) is de-
fined below. The interaction Lagrangian, as far
as the interaction of the above currents with the
vector bosons is concerned, is

g e Jemg +
1
(g 2 + g d2)1/2JZZ

where the matrices

(oooo)T'=, T =(T')t,

0 0 0 0

T'=[T', T ] =

(2.4b)

+ ~(J~2Wq+ J~qWq), (2.2) The corresponding isospin charges are

where

tang =—, , ;;= e',g
g' 8 +8 Then

(2 .4c)

+g
16m' 16m

s„V'„=i[I',Z]

(g2 d
i2 1/2

=ie[I+, J& ]A&+z [I+,J „]Z„
2v 2' (2.3a) +i [I',$~2]W„,

2 2
(2 .5)

g2 e2

8 8 sin2gw ' 4 4sin26w cos2gw

m ( g2 +g 2)1/2di
m~ g cosg~

m~ ) 37 GeV, me) 75 GeV, (2.3c)

where e is the electric charge and G~ is the Fermi
coupling constant of the weak interaction.

We now derive an expression for the proton-

where we have assumed that I' commutes with

A„,Z&, and 8'&. There may be additional terms
in Eq. (2.5) arising from quark masses (more ex-
plicitly from the mass difference of q, and q,
quarks) in the Lagrangian. Such terms give rise
to tadpole-typ e contributions which we are not
cons idering here.

Taking the matrix elements of Eq. (2.5) between
a neutron (initial) and a proton (final) state, using
the property of I' as an isospin raising operator
and taking the spin sum on both sides„we have

-(2, .(m. m, )2= ie[(PI&-„J'„IP)--(~l&„J'„l~&].... -i '2 [(PI&„J'„IP&-(~l&„&'„l~)].,„.
[(Pl w„J~IP) -(nl w„J~la)] . ,„..

2 2
(2.6)

It is easy to see4 that to the lowest order

-(2}/)'e(N
I A„J'„I N)„,„=2e',

2
„.d'q, (((}'„,(v, q'), (2.7a)

q'+m ' (2.7b)
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(2.7c)

where

(P'„„(v,q') =i(2m)' Jl d4z e "'(N(P)( T(J'„(z)J',(0))(N(P)&,

Q„,(v, q') =i(2w)' JI d'z e "'(N(p)~ T(J„(z)J'', (0))~N(p)),

b'„.(?, ??') =((&?)' J &'* e "'((??(??)I?'(7„'(*)J.'(()))I??(??)) +J-z},

(2.8a)

(2.8b)

(2.8c)

where the spin sum is understood and will not be written explicitly, N denotes p or n, and v= -(p q)/m.
Thus from E(ls. (2.6) and (2.7)

(m —m„)= [(&m)'b —(Am)'"]+ [(Am) b —(hm) "]+[(Am)~b —(Em) "],

where
C'

bm)" =
( )

— d~q A

where no summation over b is implied here and in what follows and where

(2.9a)

(2.9b)

C'=e' = +N
4 8'

Ab ~ (b =e)JlV q2

6„„+(q„q„/mz')
q'+ m~'

6„„+(q„q„/m~')
+m~

(5 =Z)

(f =w). (2.10)

After making the Cottinghamb rotation, we can write (2.9b) as
f+1

(&m) = 4a(-2&) dq J~ dSq (1-X )&)( (p)? (q &S)22m'' 0 1

where

v/(q 2)x/b

(2.11)

III. ANALYSIS OF THE DIVERGENCE IN THE MASS DIFFERENCE

As is well known, Q'„„canbe decomposed as

(? ??') = ???P ('+?(???????)+ . ????? ?,(??, &)+ (5?, —pq (pq)'

while Q aznd (t)~„have the decompositions

o, 1 P ~ q (p q)'A„.(q-', v)= —.p„p,— . (q„p.+p.q„)+ . q„q.T'.(q', v)
m q q

v Tg (3.1)

+ 5~V —
2 T ~ q, V +

2 2 CPVfxaP~qsT3 q
q 2m

(? Tb( 2 v)~ ) )? Tb( 2 v)
(? " ) Tb( 2 v) f Zor gr

m
(3.2)

In the above equations

Abs Tb(q', v) = 2wWb(q', v),

where W, are the usual structure functions of

(3.3)

b

deep- inelastic lepton-nucleon scattering. In par-
ticular

(3.4)
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The antisymmetric terms in (3.2) do not contri-
bute to (Am)' in Eq. (2.11) and therefore will not
be considered. Now from Eqs. (2.10), (3.1), and
(3.2)

~'„,yt„(q',v) =r"(q')q'(q', v)+ —,1 E'(q', v)

qIrg(qg, v) = -3Te~(q', v)+2(l+ v' jq')T', (q', v) .

(3.10a)

Here

TI(q' v) =(1+v'jq')Tg(q' v) —Tr(q' v)

where

(3.5)

where

= T', (q', v)+ T,'(q', v),

(3.10b)

(3.10c)

&'(q') =—. (b = e)5 2

q

1
(b =Z)

q +mz

1 (b=w),
+02~

(3.6)

V2
T', (q ', v) = —,T', (q ', v) —T', (q ', v)

and ihe corresponding absorptive parts are

Absr~i, = 2~~'i, ~

with the scaling limits

(3.10d)

(3.11)

e'(q', v)=rr, '(q', v) —(t+—,)1",(q', v), (3.7)

Eg(qg, v) =—gqg[q Td(q, v) —2mvTg(q', v)]r2 2 5 2

vW,'(q', v)- E',(() +O(1/q'),

m2
WI, (q', v) -—E~(g) + , H~($)— (3.12a)

m~ =fling or mph ~

(3.8a)

(3.8b) where

where in Eq. (3.7) b =e, Z, or W while in Eq. (3.8)
b=Z or 8' only.

It is easy to see that the term E' (b =Z or W)
arises due to the nonconservation of the current
J„orJ~. Now it has been shown' that the deep-
ine'astic region (q'- ~, v- ~, $ =q' /2m„ finite)
is the relevant one in the discussion of possible
divergences in Arn. In such a region one may
argue that one may effectively neglect the noncon-
servation of the currents J~~ and J~~ so that the
contribution from F ~ is suppressed in the scaling
region relative to the contribution from Q'. More-
over, if one assumes that the divergences of the
currents J„andJ„aresimply given by the quark
masses in the Lagrangian, one can show by using
the Bjorken-Johnson-Low limit' that the term F"
would not give a divergent contribution to the pro-
ton-neutron mass difference in the lowest order. '
For these reasons we shall not consider the term
Ee any further and concentrate on tlute. Thus we
write from Eq. (2.11), as far as the discussion of
possible divergence in the proton-neutron mass
difference is concerned,

a tqe OO

(&m)'=2 2,.g(-2~) J
dq'&'(q')

+1
x ds(1-y')"'q'4'(q', gX), (3-9)-I

where q denotes the onset of the scaling region
and where from Eq. (3.7) we can write Qe as

E~(h) =2 E.'(5) —E', (5),
(3.12b)

Then assuming that (i) T, and T~ satisfy unsub-
tracted dispersion relations in the variable v for
fixed q' and (ii) E~($) =0 (this assumption avoids
a quadratic divergence in b.m), it has been shown'
by using Eq. (3.9) and the above equations that

dq2
( m )divergent ~ n 2 m 21677

H~F — d . 313

Substituting Eq. (3.13) in Eq. (2.9a) and using Eq.
(2.3b) and (3.4), one obtains the divergent contri-
bution of the proton-neutron mass difference as
follows:

3A dq
(mP mn)divergent (3.14a)

where n =en/4g and

1
A= F ( -F" ——H -II" d

0

(3.14b)

with
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F'.(&) -F",(&) =[F (&) -F:"(&)]„,.„.. ..,., [F."«)-F:"(~)]

+ [F '"""(()—F'"'"(5)]
8 sln20 2 9

(3.14c)

Il.'(&) -II".(&) = [If, (&) -If:"(&)]

above discussion we see that in Weinberg's unified
model of weak and electromagnetic interactions,
the situation regarding the logarithmic divergence
in the proton-neutron mass difference is the same
as in the purely electromagnetic ease; it is not
canceled and only its magnitude is changed by the
factor 1/(2 cos'8~).

Finally we discuss the effect of the scalar meson
present in the Salam-Weinberg model on the mass
difference. The portion of the I.agrangian which
gives the coupling of the quarks with such a meson
ls

[~{"")'(~)-H {"'")"(~)l.
8 sin'0

W
I z, (y) = -zqrq —qrqy, (3.20)

H~~(g} =0 (3.15a}

(3.14d)

Regarding the H~'s, two alternatives have been
considered in the literature':

where r is a diagonal 4&&4 matrix whose diagonal
matrix elements we denote by y,. (i = 4, 1, 2, 3). In
Eq. (3.20) A. =&/, &o with Q, =/+A. , &g&0=0. By us-
ing the first part of the Eq. (2.5), we see that the
first term of Eq. (3.20} gives a contribution to the
proton-neutron mass difference of the form

or

lf', (&) =o II'. (&) =2V'. (&) (3.15b}
2~(2)) )'(&p I qrql p& —&s I qrql ~& ) . (3.21)

[cf. Eq. (3.12b)]. Then

1
E~~ —E2

0
(3.16)

F {!I+i/)P(() F(I/+ll)n(g)

F 2~~(g) —F 2~"(g) = -2 sin' e~ (1 —2 sin'() ~ )

x [F (~) -F :"(~)]

which give

(3.1Va)

F:(&)—F."(&)=„..., [F". (&) —F;"(&)],

(3.18)

so that from Eqs. (3.16) and (3.18) we have from
Eq. (3.14a)

3n (" dq' 1

1

x] [F (g) —F","(g)]dg, (3.19)

where the —or + sign holds according to whether
the alternative (3.15a) or (3.15b) holds. From the

where the + or —sign holds according to whether
one has alternative (3.15a) or (3.15b). We now

show that the second and third terms in Eq. (3.14c)
arising from J „andJ& do not cancel the first
term arising from J'„Iso that the logarithmic di-
vergence remains in the proton-neutron mass dif-
ference. To see this we note that it has been
shown that in the Weinberg model the following
relations hold:

This contribution we have called the "tadpole-type"
contribution previously [below Eq. (2.5)] and it is
proportional to the quark mass difference. Now
since the unified model we are considering is re-
normalizable, a parameter of the model can be
redefined so as to absorb the logarithmic diver-
gence we have found in the proton-neutron mass
difference previously. The mass renormalization
counter term for this purpose is available by re-
defining the matrix I in Eqs. (3.20) and (3.21) as

r= r„+r„ (3.22)

where the matrix elements of qI'„qare finite
while at least some of matrix elements of qr, q
are logarithmically divergent so as to cancel the
logarithmic divergence we have found previously.
Thus we rewrite Eq. (3.21) as

—.'~(2~)'[(& pi qr. ql p& -&sl qr.ql. &)

+ (& pl qr, ql p& -&~l qr, qls&)] = (bm}(',„;„+(bm)„',

(3.23)

where the renormalizability of the model implies
that (am)r cancels the logarithmic divergence we
have found previously. However, the proton-neu-
tron mass difference is then essentially a free pa-
rameter.

The term qrsq in Eq. (3.20} gives the quark
masses so that A,y -m„y,. denoting the diagonal
matrix elements of I'„and m, being a typical quark
mass. On the other hand gA. is of the order of vec-
tor boson mass m~. Thus y must be of the order
gm, /m~. The term qr„qQ in Eq. (3.20) can also
contribute to the electromagnetic mass difference
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due to the Q-meson exchange. This contribution
would be logarithmically divergent. But since y is
of the order gm, /m~, the scalar-meson exchange
contribution would be of the order'o (I,/m~)' and
thus highly suppressed compared to the logarith-
mically divergent contributions from the i5&„part
of the vector-boson propagators discussed previ-
ously. Thus it is impossible to cancel the leading-
logarithmic contribution from the Z-boson and
photon exchanges by means of the scalar-meson
exchange and one has to carry out the mass re-
normalization in the way indicated above. There
is a possibility of the cancellation of the contribu-
tion of the scalar-meson exchange with the contri-
bution arising from the q„q„partof the vector-
boson propagator which is of the same order and

type as mentioned in Ref. 7.
One can also take the point of view that in the

Lagrangian

(g2 gl2)l/2

2 P

+ ~ (Z'W +J'W) —~qf'q —qf'qy
2 2

all the parameters are physical and finite. Then
the logarithmic divergence cannot be canceled.

Finally we may mention that the nucleon, being
a strongly interacting particle, should not be
treated as a pointlike Dirac particle. It should not
appear in the Lagrangian as a fundamental entity.
Strong-interaction effects must be taken into ac-
count in any discussion of proton-neutron mass
difference. In fact the proton-neutron mass dif-
ference calculated in Born approximation comes
out to be finite, the necessary convergence factor
being supplied by the electromagnetic form fac-
tors of the nucleon. One should clearly understand
the source of the possible logarithmic divergence
in the proton-neutron mass difference in the usual
theory. The deep-inelastic region q'- ~, v- ~,
g = q'/2m @ finite is the relevant one in the discus-
sion of possible divergences in hm. In this re-
gion, the experiments on inelastic electroproduc-
tion indicate the sealing behavior of inelastic,
structure functions. Thus the experiments indicate
that we are seeing a pointlike structure in this ki-
nematic region, that is to say the nucl, eon behaves
as if it is made up of pointlike constituents (par-
tons). These partons are Dirac particles and may
be identified with quarks. Experiments also indi-
cate that spin- —,

' partons are coupled to the lepton
current via pure V-P currents of type qy„(1+y,)q.
Thus it is very relevant that the fundamental La-
grangian written from gauge-theory considerations

should involve only quark fields; the nucleon,
being the composite of the quarks, should not en-
ter in the primitive Lagrangian. The hadronic
currents which enter this Lagrangian satisfy light-
cone algebra. Light-cone algebra is relevant for
the scaling region. In our approach, this basic
Lagrangian is used to extract the underlying alge-
bra and the various coupling strengths for calcu-
lating the neutron-proton mass difference. It may
be mentioned that the real test of gauge theories
for hadrons lies in the deep-inelastic region where
we are directly probing the pointlike constituents
of the nucleon, the pointlike constituents being
described by the primitive Lagrangian written
from gauge-theory considerations.

We conclude that as far as the proton-neutron
mass difference is concerned the unified model we
have discussed does not lead us to a satisfactory
situation. The situation regarding this problem is
more or less similar to the one in pure electro-
dynamics since in the latter case one has also in
general a logarithmic divergence due to photon ex-
change in the mass difference which can be re-
moved by introducing a counterterm (which may
be taken again as arising from a "tadpole-type"
contribution) leaving the mass difference essen-
tially a free parameter.
¹te added. While we were writing this paper,

we came across a report by A. Love and G. G.
Hoss [Nucl Phys. (to be published)] reaching es-
sentially the same conclusion as ours by consider-
ing the contribution from the neutral weak current
J 2

¹te added in Proof. After the submission of the
paper we came across a paper by S. Weinberg
[Phys. Hev. Letter 29, 388 (1972)]where the prob-
lem of mass differences in spontaneously broken
gauge theories is discussed. In particular he has
discussed another extension of the Salam-Weinberg
model of leptons to hadrons where there are six
massive intermediate bosons and a photon and the
proton-neutron mass difference is finite. The
model we have discussed involves only three mas-
sive intermediate bosons and a photon.
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It is shown in a simple model of quarks and mesons with Yukawa coupling that consistency

conditions determine all dimensionless parameters of the model, Similar results are discussed for models

also containing baryons (bound states of three quarks) and SU(3) symmetry. We use the static limit of
the ladder approximation.

I. INTRODUCTION

Since the boot~.'x'ap idea was first formulated'
no one has succeeded, to the author's knowledge,
in constructing a completely bootstrapped model,
that is, a model in which all dimensionless con-
stants are uniquely determined by consistency
conditions.

In a, recent publication' (hereafter referred to as
II) a model of quarks, mesons, and nucleons was
constructed from a four-fermion point interaction,
where all particles are bound states. However,
as emphasized in II, the four-fermion coupling
constant was left as a free parameter, arbitrarily
chosen to ensure some simple situation, hence
failing to achieve a real bootstrap. We thus see
that the condition that all particles be bound states
(i.e., that there be no "e1ementary" particles) is
not equivalent to a complete bootstrap.

It is the purpose of this paper to construct a

simple soluble model which is completely boot-
strapped. While constructing this model, we
emphasize mathematical and conceptual simplicity
and the bootstrap idea more than the need for pre-
cise description of experimental data. From this
point of view our model is a mathematical presen-
tation of the bootstrap idea and not a phenomenologi-
cal physical theory. Nevertheless, we will build
our model as much as possible from physical data
and intuition.

In Sec. II we define our model, consisting of a
spin-~ quark and a scalar meson interacting via
a Yukawa coupling, and we show that in the static
limit of the ladder approximation all dimensionless
parameters are determined.

In Sec. III we briefly outline some generalizations
of our basic model: We include pseudoscalar as
well as scalar mesons, we include spin-~ and -~3

baryons (bound states of three quarks) as well as
mesons, and we include SU(3) symmetry.


