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with a small (perhaps vanishing) c,(8) term, can be
achieved with an input which is chiral-SU(2)-sym-
metric up to a U'-spin singlet octet term, the I'7
invariant direction of SU(3) breaking by electro-
magnetism.
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The possibility of enlarging the gauge symmetry of the dual resonance models is consid-
ered by studying the structure of SU(2, 2)- [or SO(4, 2)] invariant dual models. n-point functions
based on the degenerate representations of SU(2, 2) are w'orked out in detail, and a condition
under which these amplitudes are dual is specified. Dual models based on the nondegenerate
representations are also discussed. Through a physical interpretation of the characteristics
which emerge, a possible connection between the dimension N —1 of the hadronic matter and

the gauge-symmetry group SO(N, 2) is pointed out.

I. INIODUCTION

Recent developments in the dual resonance
models (DHM) have led to a better understanding
of the attractive features as well as the limitations
of these models. A description of these models in
terms of quantized minimal surfaces in space-
time has shown' that such models arise naturally

from the dynamics of one-dimensionallyextended
objects. The relevance of the gauge conditions in
these models was shown in I and II to be related
to the coordinate-independent description of the
minimal surfaces. Further arguments were
given in these works that the well-known tachyon
condition on the extenggl masses, which comes
about because of the requirement of gauge invari-
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ance, cannot be removed without drastic {and
hitherto unknown) modifications of the dual ver-
tices. In particular, no multiplicative modifica-
tion of dual vertices is likely to succeed in com-
pletely removing the mass-shell condition with-
out introducing ghosts or other unphysical features. '
There are of course other shortcomings.

In view of the many attractive features possessed
by DRM and of the limitations mentioned above,
it would be of interest to consider possible depar-
tures from the underlying principles which might
lead to more realistic models.

Interesting attempts in this direction have been
taken by Domokos' and by Del Giudice et a E.

Although the points of view adopted by these
authors differ in detail, they have one common
feature: They are both led to consider subgroups
of the conformal group SU(2, 2) which leave a
particular direction in space-time invariant and
to construct composite states which are covariant
under such groups. Since the generators of these
subgroups contain dilatation and special conformal
generators of SU(2, 2), if it is demanded, on
physical grounds, that the resulting theory be
Poincard-invariant, one is led to require the full
SU(2, 2) invariance of the kinematics. As is well
known, the mass spectrum of such theories is
either continuous or contains only zero-mass par-
ticles.

In the absence of a satisfactory symmetry-break-
ing scheme, and because we believe a reasonable
mass spectrum is an important feature of any dual
model, ' we wish to consider SU(2, 2) not as a
kinematical invariance group but a.s a, global
gauge grouP in the same way that SU(1, 1}or
SU(1, 1)8SU(1, 1) is employed in currently popular
dual models. One motivation for such a gauge
symmetry is its apparent connection with the
"dimension" of the hadronic matter. It is clear
from the formalism developed in I and II that one
may regard the SU(l, 1)SSU(1, 1) or SO(2, 2) as the
global gauge symmetry of a one-dimensional
hadronic matter. If it turns out that the dimension
of hadronic matter is not one but three, then it
would be natural to regard SU(2, 2) which is the
universal covering group of SO(4, 2) as the relevant
global gauge group. ' For brevity, we shall hence-
forth indicate the relation between a group and its
covering group by the symbol -.

In this paper we will consider the SU(2, 2) sym-
metry as an input and explore the possibility of
constructing SU(2, 2) -invariant due. l models.
Since it is not a Priori clear w'hat type of operators
are relevant in these models, we shaQ adopt a,

e-number approach and obtain the general form
of the SU(2, 2)-invariant dual n-point functions.
Our method of obtaining these is quite similar

to the one used in obtaining SL(2, c)-invariant n

point functions in the Gel'fand-Naimark z basis,
which are generalizations of Naimark's trilinear-
invariant functional. ' Of the two sets of SU(2, 2)-
invariant anharmonic ratios, one is the general-
ization to Minkowski space of the cross ratios in
the complex plane, and the other set involves
local spinors. Because of the indefiniteness of
the metric in the Minkowski space, the cross
ratios of the former type are in general not dual
to one another. They can, however, be made
dual by an i e prescription which is discussed in
Sec. IV.

To make contact with the conventional DRM, we
specialize to the simplest form of the dual ampli-
tudes which can be obtained from the anharmonic
ratios in the Minkowski space alone, and explicitly
evaluate their 4-point function. We find, not
surprisingly, that they are just 4-point functions
of the Virasoro type. '

The plan of this paper is as follows: In Sec. II
we derive the general form of the n-point functions
based on the degenerate representations of SU(2, 2)
-SO(4, 2). We then demonstrate that the form of
these n-point functions does not depend on the
dimension of the projective space (four in this
case), so that a class of n-point functions on
SO(N, 2) can be constructed in the same way. This
unified approach allows us to offer a physical
interpretation of such amplitudes. In Sec. DI we
discuss a class of n-point functions based on non-
degene~ate representations, which are obtained by
a, method due to Domokos and KOvesi-Domokos. "In
Sec. IV, we specialize to the simplest form of
n-point functions on the degenerate representations
and explicitly evaluate the corresponding 4-point
function. Section V is devoted to a, discussion of
the results. We present in an appendix the rele-
vant properties of the conformal group SU(2, 2) and
its representations, which are needed for the
evaluation of the n-point functions.

II. n -POINT FUNCTIONS ON THE DEGENERATE
REPRESENTATIONS OF SO{4,2) AND THEIR

GENERALIZATION TO SO(N, 2)

The n-point functions which we want to construct
are the generalizations of the usual bilinear in-
variants. As expla, ined in the Appendix, the
irreducible representations Q "(x",z) of the
conformal group SU(2, 2) are realized, generally,
on the six-dimensional manifolds (x",z). In addi-
tion, this group can also be realized on a mani-
fold of lower dimension, namely, on the Minkowski
space spanned by x". These are called the degen-
erate representations of SU(2, 2}. They are real-
ized on the space of functions Q (x) where the
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action of the group is given by

~,' 0"(x)= I& I'(sgn&)'0" (x'), (2.1)

where x' and x are related by (B10}and, from
(B16), b' = det(k) = det(ÃB+ D). e is the parity of
the representation.

Consider the n-point functional

A. n= dP Xg Xg + Xi~. . . ~ Xny

(2.2)

In a dual model the functions Q~(x) may be inter-
preted as wave functions of external particles or
parts of dual vertices. The invariant-volume
element is given by

(x, x—~)"(x, -x, )„, i4 j; k4 l.
We now turn to scale transformations. Making

use of (2.1), it is easy to see that the kernel K
must be of the form

n n

Q g [(x, -x, )"(x„-x,)„]
g,j =&. k, l =z
i &j A&1

where

(2.V)

(2.8)

Finally, consider the effect of inversions. These
transformations further restrict the form of K
to

x„„=x„x'= x"x„. (2.3)
K = C„(x) g [(x, x,}] '&', (2.9)

T, :A.„= dp, x, T,"' "' x,
f"-z

x K(x„.. ., x„;$d,)). (2 4)

The requirement that A„be an SU(2, 2)-invariant,
l.e.,

The kernel K(x„.. . , x„;(d, ]) is a generalized
Clebsch-Gordan coefficient which must be deter-
mined from the requirement that the n-point func-
tion A„be invariant under SU(2, 2).

As discussed in the Appendix, every SU(2, 2)
transformation can be obtained from an appropriate
combination of (a) Poincard transformations, (b)
scale transformations, and (c) inversions. We
shall therefore determine the form of E by con-
sidering these transformations one at a time.

If T~ is a transformation operator which
represents the action of an element gH SU(2, 2} on
the functions Q (x), then the action of SU(2, 2) on
A.„is given as follows:

where d, ~ are still given by (2.8), and C„(x) is an
SU(2, 2)-invariant function of the x's. To see the
nature of these invariant functions, consider C~(x).
By imposing constraints due to SU(2, 2) transforma-
tions, it is easy to verify that, aside from a
constant, C4(x) must have the form

C,(x) = C,(R,(x), R,(x)).,

where, for example,

( )
(x, -x,} (x, -x,)
(x, -x,)'(x, -x,)' '

(2.10)

(2.11)

(x, -x,)'(x, -x,)' '

These anharmonic ratios are the generalization
to Minkowski space of the well-known cross ratios
in the complex plane.

We thus find that the general n-point functions
based on the degenerate representations of SU(2, 2)
must have the form

T A„=A„, g& SU(2, 2), (2.5)
n

Ir&~( )e"( )

imposes restrictions on the form of the kernel K.
We first consider Poincarb transformations.

Under translations we have

x,"-x,"+a",

n

x 'Q [(x, -«, )'] " C„(x), (2.12)

so that to keep A„ invariant, K must have the form

K(x„.. . , x„)= K((x, —x, ), . . .);
i 4j; i,j = 1, ~ ~ ~, n . (2.6}

Consider next homogeneous Lorentz transforma-
tions. As is clear from (2.4)-(2.6), these trans-
formations restrict the x dependence of K to the
form

where the C„'s are functions of the SU(2, 2}-in-
variant cross ratios and 4&j are constrained by
the condition (2.8}.

Since SU(2, 2) is the universal covering group of
SO(4, 2), the expression (2.12) is also an n-point
function on SO(4, 2). Moreover, we note that in ob-
taining A.„, the dimension N=4 of the Minkowski-
space coordinates x" has not played a crucial role.
In fact, let x"= (x', x', . . . , x" ') be the Minkowski-
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space coordinates of the Ã-dimensional manifold
with signature (1, —1, —1, . . . , —1). Such a space
is related to the homogeneous space associated
with SO(N, 2) by the usual stereographic projec-
tion. " Then it is easy to see that the cross ratios
will still be of the form (2.11) and that the Poincare,
scale, and inversion transformations in such an
N-dimensional projective space will determine
the kernel to be of the form

(x, —x,.)"(x, —x,.)„„ i ej; p, = 0, 1, . . . , N —1.
(2.13)

The invariant-volume element will now take the
form

—-ar/2
d"v = g d"x, g (x; -x;„)'

x'„„=x„x'= x"x„. (2.14)

Thus for those irreducible representations of
SO(N, 2) which can be constructed in the lower
dimensional manifold x", ]L(, = 0, . . . , N —1, and
which can be specified by a single Casimir oper-
ator d, the dimension, and the parity e, one can
write a class of n-point functions":

Q d"g(x, )(f& '(x, )

(2.15)

For N= 1, one obta.'".s in this way the n-point func-
tions on SO(2, I)--SL(2R). For N= 2, one obtains
a class of n-point functions on the conformal
group SO(2, 2) which is locally isomorphic to
SL(2R)SL(2R). For N= 4, one of course re-
covers (2.12), and so on.

Although the n-point functions A„are independent
of any Particular interPretation of the underlying
dynamics, the unified description (2.15) makes it
possible to give a physical interpretation to the
quantities x . Since the quantities (v', g) in papern
I and II, where the global gauge group is SU(1, 1)
S.SU(1, 1) -SO(2, 2),"may be associated with '. .i. -

"orbital" degrees of freedom of a one-dimensional
object, one expects that when the global gauge
group is changed from SO(2, 2) to SO(N, 2), the
corresponding quantities x", p, =0, . . . , N-1, retain
their significance and could be interpreted as the
orbital degrees of freedom of N-dimensionally ex-
tended objects. Thus the space part of x"=(x', x)
is in this way related to the "dimension" of the
hadronic matter or to the number of internal orbital
parameters necessary to describe a hadron.

III. n-POINT FUNCTIONS ON THE NONDEGENERATE
REPRESENTATIONS OF SU(2,2)

We now consider a class of n-point functions
which can be constructed on the manifold (x", z)
discussed in the Appendix. One again starts with
the n-point functional

—n

A„= g dg(x, , z,.)(pz(8("((x,, z,.) K(x„.. . , x„; z„.. . , z„, Z„.. . , Z„;(d;(6;m;j). (3.1)

The functions

yz8m(x z) = y((~m(xo x) x2 x3 z z) (3.2)

Z(x, z) = X,(x„.. . , x„)

+z(z).xmas
~ ~

~ zn xn~ z)x).~
~ ~ ~ ) zn xn) .

transform according to the irreducible representa-
tions

~
d(6m) of SU(2, 2). An essential complication

that one has to deal with in this case is the explicit
dependence of the quantities z,- on the Minkowski
coordinates xu. This is clear from (A35) and (A36).
Thus, except under the subgroup of Vfeyl trans-
formations, the differences of the form z,.(x,.)
—z, (x&) do not transform into differences of the
same form. As can be seen from (A34) and (A35)
the multipliers which arise from the x dependence
and the z dependence of the functions (P'8 (x, z)
after an SU(2, 2) transformation are not of the
same form. It then follows that the kernel of
(3.1), which must compensate for such multipliers
to keep the n-point function invariant, can be
written in the form

(3.3)

The factor K„can be determined in exactly the
same way as for the degenerate series and is, in
fact, given by (2.9). To find the factor K„we
follow the method of Domokos and Kovesi-Domo-
kos. ' For rn; =0, the quantities which have the
correct transformation properties to compensate
for the multipliers arising from (A44) turn out to
be of the form

E(z„x,"; zj, xju) = ( z, )x(Xu, W, )(zt.)-xju.

(xu)ou(xu xu)zt(xu) (3 4)

where au= (I, Fr), and z and x" belong to the mani-
fold (x",z). Under SU(2, 2), E transforms as fol-
lows:

E(z;', x'; "; z', x,' ")= [h„(x)z,. + h„(x)] '
[h „(y)Z,. + h„(y) ] ' E(z„xI'; z, , x,". ); (3.5)
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since these expressions are not symmetrized with respect to i and j, we consider instead

which transform according to

C(z', , x', "; zi, x,'")= (h„(x,)z, (x,)+h„(x,.) j '( h„,(xi)zi(xi)+h22(xi) ~
'4(z, , x,"; zi, xii'). .

These functions can now be used to define an invariant-volume element

(3.6)

(3 7)

n n - n

IIdP(,", )= II d';d'; lI( —„,)'@( „,"; „„„,)
i=1 i=1 —j=l

It is now a straightforward matter to show that the n-point function (3.1}must have the form

(3.8)

where m, =0 for all i, P,i satisfy the constraint

QP;i =P;, (3.10)

C(z„xi'; z„xi')C(z„xi'; z„xi')
@( J j xi I z3y x3 )@(z21x2 9 z41 4 )

(3.11)

Once again the n-point functions (3.9) are inde-
pendent of any particular interpretation of the
underlying dynamics. One may try, however, to
give a physical interpretation to these amplitudes
along the lines discussed in Sec. II. In particular,
since z(x) transforms as a local spinor under
Lorentz transformations, it would be an attractive
possibility to associate it with the "spin" de-
grees of freedom in the same way as x" is associ-
ated with orbital degrees of freedom. The n-point

and dp(x, , z, ) is given by (3.8). The quantities C'. &-~

and C„(z,x} are RT&(& e&; »o»i»~&~ ~ (x) being lim-

en by (2.10) and (2.11)and C„(z,x) being a function of
the cross ratios constructed from the quantities
C(z„xii'; z&, xii'}. A prototype of such cross ratios
islo

function (3.9) could then be thought to arise from
a model of hadrons as three dimensionally ex-
tended objects in which the intrinsic spins of its
constituents are nontrivially coupled to their or-
bital motion. '4 Such an interpretation can be made
more concrete by using an operator formalism
which will be discussed elsewhere.

IV. SIMPLEST POSSIBLE AMPLITUDES

We mentioned in Sec. II that the orbital ampli-
tudes (2.15) are the analogs of the Bose-type SU(1,
1) SU(1, 1)-invariant dual models in the present
formalism. To make this analogy more explicit,
we consider a special case of the n-point functions
of the type (2.15) in which the wave functions P~'(x,.)
) ~ve d.. =0, for all i, and thus transform as sea-
tars under SO(N, 2). It follows that the factor
II,. &[(x, -x&)'] '& in (2.15) is also invariant under
SO(N, 2). It must therefore be expressible in terms
of the anharmonic ratios of the type (2.11). In
particular, the 4-point function will have the form

,- -(x, -x,)'(x, -x,)'- '»~(x, -x,)'(x, -x,)' -'» „, ,
(x, -x,)'(x -x )' (x, —x,)'(x, —x4)2) 4 (4.1)

We now evaluate this expression for the case
where $0(x, ) belong to the identity representation
and are therefore constants. For N=1 and 2 these
are the Minkowski-space analogs of the well-
known amplitudes. ' Although evaluation for arbi-
trary N does not present any difficulty, we con-
sider the case N=4 for illustration. Since the
group SU(2, 2) acts transitively on the Minkowski
space, we can follow the Koba-Nielson prescrip-
tion" to fix any three points in (4.1) and isolate a
divergent but SU(2, 2)-invariant factor. This meth-
od of isolating divergent factors is of course not
limited to the 4-point functions or the special case

we are considering. More general cases can be
dealt with in a similar manner.

It is convenient to fix the three points as follows:
xl"-I", x2"-, x3"-0. After separating the diver-
gent factor and setting C,'(x) = 1, one is left with

B4 =- B4

de g2 dl2 2 Il g 2 d23 2 (4.2)

The quantity I" is a non-null but otherwise arbi-
trary unit 4-vector. Because of the SU(2, 2) invari-
ance of B„ it should not matter whether I" is time-
like or spacelike. To ensure this and to make B4
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well defined, one must specify the manner in which
the singularities in (4.2) are to be handled. To
this end we shall make the replacements'

(4.3)

to evaluate B4. It is a straightforward matter to
show that, aside from singularity-free multipliers,
it has the form

I'(-d„)r(-d„)I'(d„+d„+2)
r(d„+ 2)r(d„+ 2)r(-d„- d„)

If we make, among others, the identification

d„=d(s) —1,
d„=d(t) —1,

we can write (4.5) in the form

(,) I'(1- d(s))I'(1- d (t))r(d(s) + d(t))
r(l+ d(s)) r(1+d(t)) r(2 —d(s) —d(t))

With the constraint

d(s)+d(t)+d(u) =1,
(4.7) can be written in the symmetric form

(,) r(l —d (s))r(l —d(t)) r(l —d(u))
~4 I"(1+d(s))r(1+ d(t))I'(1+ d(u))

If instead of (4.6) we make the identification

d»=~d(s), d»=-,' d(t),

the amplitude (4.5) will reduce to

r(- —,
' d(s))r(-,' d(i))r(- —,

' d(u))
r(2+ &d(s))r(2+ &d(t))r(2+ &d(u)) '

where

d(s)+ d(t)+d(u)=-4.

(4.5)

(4.6)

(4.6)

(4 9)

(4.10)

(4.12)

These special cases of our orbital amplitudes are
thus the analogs of the Virasoro-Shapiro ampli-
tudes with arbitrary intercept. ""

The expressions (4.11) and (4.12}agree with the
results of Sommerfield" and of Brower and God-
dard, » who start with an ansatz which could be ob-
tained from (2.15) by setting P~&(x,.) = Cf (x) = 1 and

going to the Euclidean region. This is understand-
able since our ie prescription makes it possible to
perform a Wick rotation where the amplitudes co-
incide. This agreement does not mean, however,
that it is purely a matter of taste whether, e.g.,
one takes SO(2, 2) or SO(3, 1) as the underlying
group structure. The dual models of interest

With this prescription we can make use of the
integral representation

(x'+ ie) = s" 'e'" ""'ds (4 4)
(- i)
r(~)

from the theoretical point of view are those which
are endowed with a Virasoro algebra. '9 It is well
known that SO(2, 2) possesses analytic representa-
tions which allow for the additional (gauge) free-
dom of analytic mappings. ' The generators of
these transformations are precisely the Virasoro
algebra. "" The group SO(3, 1), on the other hand,
does not possess analytic representations. It is
only when one puts the SO(3, 1) wave functions
Q'"(z, Z), ' the very causes of nonanalyticity, equal
to constants that the remaining amplitude becomes
analytic. This is because in this particular case
the dependence on z and Z completely decouple,
and transformations can be applied to z (Z} without
affecting 7 (z). The underlying group structure
thus becomes effectively SL(2R)S SL(2R).

V. DISCUSSION OF THE RKSUI.TS

The main purpose of this paper has been to
study the possible forms of dual models with an
underlying SU'(2, 2)-SO(4, 2) global gauge sym-
metry. As a motivation we have noted that if, as
seems to be the case. one considers RO(2, 2) as
the global gauge symmetry of the one-dimensional
hadronic matter, it would be natural to consider
SO(4, 2) as the corresponding symmetry of a three-
dimensional hadronic matter. The n-point func-
tions discussed in Secs. II and III are generally
dual once one specifies the manner in which the
singularities in the Minkowski space are to be
ham~&ed.

We have chosen to work within a c-number
formalism mainly to find out the type of amplitudes
one expects to obtain. A more consistent operator
formalism is possible, however, and will be dis-
cussed elsewhere. Our c-number approach is
clearly not without built-in limitations. For ex-
ample, the dependence of the n-point functions on
the external momenta is not determined by SU(2, 2)
invariance and is introduced indirectly through
the Casimir operators. Also the nature of the
singularities is determined by the channel trajec-
tories d,.&(s) and P,.&(s), the specific forms of
which must be assumed separately. Some general
features emerge, however, independently of such
assumptions: Whatever the nature of the operator
formalism, the resulting n-point functions would
have the general characteristics of those discussed
in Secs. II and III.

We have also discussed a class of n-point func-
tions invariant under SO(N, 2). A special case of
these, i.e., when Q '(x,.) =constant and C"„=1, are
related to those of Ref. 18 by a Wick rotation. If it
turns out that the intercept moves up with increas-
ing N if one wishes to impose the Virasoro condi-
tions, it is clear that an important role would have
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to be played by the functions Q~&(x, ) and C„"(x)
(which were left out in the special case considered)
if one is to obtain models with more realistic inter-
cepts. Should such attempts fail, it would certainly
be tempting to regard this as favoring the one-
dimensional nature of hadronic matter. One would
then have to look elsewhere for the solution of the
problems mentioned in the Introduction.

Finally, we note that the mass spectra in the
models we have discussed manifest themselves in
the d-s plane, where d is the eigenvalue of one
of the Casimir operators of SU(2, 2}, which speci-
fies the dimension of a given representation. When
restricted to Weyl group, d specifies the eigen-
values of the dilatation operator. An operator of
this type also plays an essential role in field
theories on hyperboloids. " It would be interest-
ing to see whether there is a connection between
such attempts and ours.

We write g in the form

A B
~=CD'

(AS)

(A4)

ACt- CAt =0,
AD -CB =I I

BD -DBt=0 .
(A5)

The submatrices are further constrained by the
unimodularity condition

det(g) =1.

Next, consider a few subgroups of 6:
(1) The subgroup

(A6)

where A, B, C, D are all 2 x 2 matrices. The con-
straint (AS) reciuires that

ACKNOW'LEDGMENT

I wish to thank G. Domokos for a critical reading
of an earlier version of the manuscript and for
drawing my attention to an error in the kernel
of the n-point functions on the nondegenexate rep-
resentations, which was then corrected by using
the method of Ref. 1.0. I am also indebted to him
for informing me of a paper by Symanzik2' in
which the Euclidean version of the kernels of the
type (2.9) has been considered in a different con-
text.

APPENDIX: SUMMARY OF THE PROPERTIES
OF THE GROUP SU(2,2) AND SOME OF ITS

REPRESENTATION S24,25, 26

I. The Group SU(2,2) and Its Subgroups

X~ g„=
I 0

Clearly,

[g„,g„.]=0 for every x and x'.

From (A5)

X =X,
so that X is Hermitian:

+11 12
X= det(X) = real.

12 22

(2) The subgroup

A BE~ gq -=

(AV}

(A8)

(A9)

(A10)

(A11)

The group SU(2, 2) is the group of unitary uni-
modular 4~4 matrices which leave the bilinear
form

In this case the conditions (A5) and (A6) reduce to

A =D'-'

=D it

invariant, where Z is the complex 4-vector

Z —[ l~ 82~ 8~ Z4],

The metric D is given by

(A1)

BD -DB =0

det(g, ) = det(AD}.
(A12)

0 iID= (A2)

where I is the unit 2 && 2 matrix. The invariance of
the bilinear form implies that for every element g
~ SU(2, 2) we must have

ZfDZI t Zgag tZt

-=ZDZ'

Thus

'd't B
0

where

da GL(2, C)/U(1) -=Weyl group.

(3) The subgroup of diagonal matrices

-d-it 0
D&gq d

(AIS)

(A15}



FRE YDOON MANSOURI

where d is given by (A14).
(4) The subgroup

-11

0
(A16)

Y. That is,

g: x- x' such that g„g= g~ g„.,

g: y- y' such that g, g=gAg~. .

(A26)

(A27)

where

(5) The subgroup

'd, ' 0

(A17)

(A18)

The transformation x- x' is a realization of the
group SU(2, 2) in the coset space SU(2, 2)/K, and
the transformation y- y' is a realization of the
group SU(2, 2) on the coset space SU(2, 2)/A.

Vfe now consider the Poincar6 subgroup of
SU(2, 2) in more detail. By (A8) the 4-parameter
subgroup X is Abelian and can be put in 1-1 corre-
spondence with the translation subgroup T4 of the
Poincard group as follows:

where

1 0'
z 1 (A19)

X12 X SX
P

1 2

X2] X + Zx
p

(A28)

and X,=d, X, X being given by (A10}. Thus

g3 =gag gX ~

(6) The subgroup

(A20)

X22 X X
p

0 3

where

x" = (x', x', x', x') (A29)

1 BBH gg (A21) specifies a point in the Minkowski space. Thus

Clearly

[g~i, gs] = 0 for every B and B (A22)

x +x x —sxX= x'+ zx' x'- x' (A30)

We note that every element g~EB can be written
in the form det(X) = x"x„. (A31)

where I is the inversion matrix

(A23) Under the action of the block diagonal matrices
g~ given by (A15), the manifold x transforms
a,ccording to

0
L- jo 0

I'=d 'Xd '~ (A32)

0

2. The Decomposition of the Elements

g SU(2,2) and the Poincare Subgroup

(A24)

When the matrices d are restricted to SL(2, c},
this is just the transformation law of a 4-vector x"
under SL(2, c}. It is thus clear that the Poincar6
subgroup of SU(2, 2) can be realized by matrices
g„and g„, d~ SL(2, c). In this notation, the famil-
iar product law of the Poincard group may be
written as

(d„X,) (d„X',) =(d,d„X', +dPX, dgt) .

It is easy to verify that any element gc SU(2, 2)
can be written uniquely in the forms

(A25)

where g„, g~, gA, and g, are given, respectively,
by (A7), (A11), (A16), and (A18). Because of these
decompositions, a transformation gc: SU(2, 2) de-
fines a transformation on the submanifolds X and

The remaining transformations of the group
SU(2, 2) are seals transformations which are a
subgroup of the diagonal matrices g„~ D, and
special conformal transformations g~E B given
by (A21). By (A23) and (A24) any special eonformal
transformation can be obtained by an inversion
followed by a translation and another inversion.
Therefore, conformal transformations may be
obtained by combining Poincard transformations
with inversions and scale transformations.
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It is useful, for later reference, to have explicit
expressions for the transformations x —x' and
z- z' which follow from (A26) and (A27). Writing
g e SU(2, 2) in the form given by (A4), one finds

X'=(XB+D) '(XA+C),

where x is given by (A10). "Symbolically"

, m+C
XB+D

(A34)

It is also easy to show that

h„a+h2,
h„z+ h22

where h;,. are elements of the matrix

h =XB+DC GL(2, c)/U(1) . (A36)

Under an SU(2, 2) transformation these measures
transform as follows:

From the physical point of view, it is important
to note that because of the dependence of h on x,
the variable z is, in general, a, function of x, i.e.,
z = z(x). Under the subgroup of Weyl transform-
ations, h = D, and there is no mixing of the x and
z coordinates. Thus if z is independent of x to
start with, it mill not acquire x dependence under
%eyl transfor mations.

The invariant volume elements for the subgroups
X, Z, and Fare, respectively,

dg(x) = d'x

=dx'dx'dx'dx',

dp(.z) = d'z,

dV(y) = d V(x)de(z)

T:y"s (x,z) = I&l 'T„y 8 (x',z), (A42)

where & is given by (A40) and x' by (A34). The
action of T~ on functions belonging to H, is given
by

T:f" "(z) = lbl "(sgnb)' (h„z+h„)8+

x (K„7+5 )8- fdB™(z) (A43)

mhere c determines the parity of the representa-
tion, and z' is given by (A35). It is easy to check
that the tensor product of spaces 8, and H„ is
identical to the space of functions H„=SU(2, 2)/A

The action of SU(2, 2) on R, =H, is given b—y

T, :y"'(x,z) =
I
~I"(sgnn. )' (h»z+h»)""

these, d, is discrete, and d, and d, are continuous.
%e summarize below the properties of the non-
degenerate representations obtained by analytic
continuation from d .

Let H„be the space of all c" functions of f(g„)
= f(x) =f(x', x', x', x'), g„e X, square integrable
with respect to the invariant measure dg(x). Also
let 8, be the space of functions f(d, ) =f(z) upon
which an irreducible representation

I dPm) of the
Weyl group W= [SL(2, c) x dilatations] is realized
by operators T~, where m is an integer or half
integer, and d and P are in general complex num-
bers. For. obvious reasons d is called the dimen-
sion of the representation. Then the representa-
tion Q (x,z) —= ldPm, x",z) of SU(2, 2) is realized
on the tensor product space:

X2=IIg SH„. (A41)

The action of the operators Td, @~SU(2,2), on the
functions gd8™(x,z) of X, is as follows:

du(x') =
I &

I
'dt (x),

dv(y')= I&l 'lh 'z+h, .l
'dI (y),

a = det(h)

(A38)

(A39)

&&(K„z+K„)' y" (x', z')

=—
I
aid (sgn n.)' o.(h, z) y'8 (x',z),

(A44)

= det(XB+ D). (A40)

3. Principal Series of Unitary Trreducible Representations
of SU(2,2) and Their Analytic Continuation

According to Graev, the representations of the
principal series of SU(2, 2) are induced by the
representations of a Cartan subgroup. Since
SU(2, 2) has three distinct nonequivalent Cartan
subgroups, there are three nondegene~ate prin-
cipal series of unitary irreducible representations
of SU(2, 2), which he labels as d„d„and d, . Of

where again x' and z' are given by (A34) and (A35) .
The specification of vectors transforming ac-

cording to a given representation requires, in
general, nine labels, three of which are the eigen-
values of the Casimir operators, i.e., d, P, and m.
In the realization (A44), the remaining labels are
taken to be the 4-vector x" and the complex num-
ber z. In particular, the unitary representations
of the principal series d, are realized according
to (A44), where m= half odd integer, P is purely
imaginary, and d = -i+ip, where p is a real num-
ber.
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