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carried out, then the ratios of the coupling con-
stants will have the correct phases.

The choice of phase corresponds to that chosen

by Durr and Wagner" for SU(2) (in that reference,
the reader will also find an account of the use of
diagrammatic techniques for y algebras).
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The.hadron Hamiltonian for strong and nonleptonic weak interactions is regarded as a
function of the Cabibbo angle, evolving from a primitive "initial condition" (in which weak
and strong hypercharge are identical) to its physical value by a rotation projection. Various
existing determinations of the Cabibbo angle are reproduced and a new one is calculated,
with good numerical results for an initial condition in which chiral SU(2) is broken only by
an octet term in the electromagnetic direction.

The nonleptonic weak, electromagnetic, and
semistrong interactions of hadrons define, through
their SU(3) breaking, ' an SU(3) frame orientation
for the description of purely hadronic processes.
Regarding for the moment the weak hypercharge
and electric charge as fixed, "external" field di-
rections which provide a coordinate system with
which to probe the strong-interaction Hamiltonian,
H~(8), where 8 is the Cabibbo angle, let us consid-
er a theory in which H~(8) continuously evolves
from Hz(0).

H, (8) = x[H, (o)].
If Hz(6) =H~z~~(8)+Hz@~(g) is octet-broken for all 8,
and is on the same SU(3) orbit' for all 8, there is

an SU(3) transformation

U(8) —= e "'~ '
U(0) =1

such that

H, (8) = U(6)H, (0)U~(g) . (2)

Otherwise (and this is the case of physical inter-
est),

H (6) =U(6)[H (o)+G(6)l& (6)

= ~(8)H, (0)U'(8)+ G(6)

=x[H, (0)], (3)

where G(8) is the orbit shift. This allows H~(8) to
interpolate between, say, an SU(2)xU(1) orbit for
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HB(0) and a U(1) x U(1) orbit for HB(8). Now let us
assume that the orbit shift operator is a pure
SU(3) octet, i.e.,

H(' (e) = H(' (0)~ d' (e) = o (4)

This is equivalent to the assumption that, whatever
the obscure interplay of weak, electromagnetic,
and semistrong interactions which induce the
Cabibbo rotation, the SU(3)-symmetric part of
HB(8) is unchanged; the orbit perturbation is only
in the octet space in which the interplay occurs;
and the operator X acts like an identity on an SU(3)
singlet HB(0). Now let us require that HB(8) is a
Qx Yxs x(P singlet for all 8, and, specify G(8)
= G(3)(8) and U(8) by the requirement that G(3)(8)
and U(8)HB(0)U7(8) separately are Qx(. x(P invari-
ant. Then

U(g) e-2i (B3) F7

apart from I 3 and E, rotations which play no role
since HB(8}, hence HB(0), is a Qx Y singlet. Thus

H {g) e-2i3(e)F7H (0)e2i3(e)F7+ G(3)(g)

HB(8) =PHB(8)

= PG (8) + PU(8)H, (0)Ut (8)

= PU(g)H, (0)U7(8)

=x[H, (o)]. (6)

As a result the 3.'operator is linear and homoge-
neous in the "initial" condition HB(0).

Consider now the Hamiltonian H(8) =He(8)
+H„L7i(8) where HNi2 (8) is the nonleptonic ('(P-in-
variant weak contribution to the hadron density.
We assume the following transformation properties
under chirai3'i SU{3):

HB
- (3, 3*)$ (3*,3) (spanned by u„v,),

H„L~
- (1, 8) (spanned by g, +h, ) .

where X is specified by a scale parameter e(g) and

by the orbit shift operator. Let P be the projection
operator on the Y-conserving subspace, PHB(8)

HB(8). The—following assumptions are then equiv-
alent: (i) The orbit shift operator G(')(8) has pure

~Yg o, pG("(e) = o,
e.s

G(3) ( g)

is orthogonal to HB(8), (1 P)G(') = G('-). (The orbit
shift is in this sense maximal. ) (ii) The X opera-
tion, while not as simple as an SU(3) rotation, is
the projection of an SU(3) rotation on the Y-con-
serving subspace,

Thus

H, (8) =u, +c,(e)u, +c,(e)u,

+ c,'(8)(g,+ h, ) + c,'(8)(g, + h, )

+ c',(8)(g, + h, )

Pe-2i3(9)E7H (0)92(3(9)E78

+e-2ieF7(g +h )B»BF7

where by definition (at 8 =0, Y' „k = Y,&„3)

(g) e-2ieF7{g + h )9 i2BF 7

(8)

(9)

HB(0) =ue+ c,(0)u, + c,(0)u, .

There are essentially two inputs c3(0), ce{0); spec-
ifying both yields hvo independent relations among

co c3 cs, and s in'8; specifying one yields one re-
lation among these parameters. The latter case
results in general in a quadratic equation for sin'9
which for special input degenerates into a linear
equation for sin'{9. The specific choice of input
rests on one's intuition for the nature of the 8=0
limit of H~. We consider three cases:

(A) If ce(0) = —v 2, c,(0) = 0 [chiral SU(2) for 8

=0], then

c,+ W2 c,+ M3 c, = 0,
M2 c,+vs c,sin2g =

3 co

=-(3)'"—'.
Co

Both relations have been obtained by Oakes' in an

The physical input which specifies X is e(8) = 8,
i.e., the rotation component of 3', is the same ro-
tation which takes Yw..k into Ystrong Since Hgz~
and H~ have been assigned to different chiral
SU(3) representations, we may write

H(g) P(3, 33')c- ie2F H7(0)e2iBF7 (10)

where P ' ' ~ projects on Y = 0 as before but acts
only in the (3, 3*+3*,3) subspace. H(8) is now
specified in a completely geometric (but not co-
variant} way in terms of the initial condition H(8).
As a result of (9) we have the selection rules AS
=1, I2I=-', and (~S=O, I3I=O}, (LS=O, I)I=1),
(b,S=1, AI=2) weak transitions proceed with effec-
tive couplings ''

(1 ——' sin'8): (-')'" sin'8 (-')'" sin28.

It is not necessary to make the assumption (9)
(implying octet dominance) to use the solution (6).
It has been invoked to motivate the scale e{g}=8
of the strong rotation in (6) by identifying it with
the rotation in (9).

We now consider the predictions of (6) for vari-
ous
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operationally equivalent manner. Equation (11)
has been obtained by Pegoraro and Rao' by looking
for nilpotents of a symmetric algebra' on ((3, 3*)
6 (3*,3))$((l, 8)$ (8, 1)) space. The solution is
characterized by two independent relations and a
strong dependence of sin'8 on c,/c, . A consequence
of (11}and (12) has been obtained by Tanaka and
Tarjanne, in the form

tan'8=2c, /(c, + v 3 c,),
by a self-consistency approach using covariant
equations with a weak inhomogeneity; with Oakes,
they share a large c, term, characteristic of co-
variant solutions involving no orbit change. In (12),
the SU(2) x SU(2) limit of sin28 is well defined, 8
-0, but the SU(3) limit is not defined. The esti-
mate M3 c,/c, =0.03 of Socolow9 from the n-p/
A-p mass-difference ratio leads to tang =0.14,
about half its experimental value, but Qakes' has
argued from an ri-3v analysis that M3 c,/c, may
be three to four times larger, leading to a good
agreement with the Cabibbo angle. The solution
depends sensitively on M3 c,/c8, known to be
small, but not a very accessible parameter. In
view of the current development of gauge theories
and developments in calculating electromagnetic
mass differences, it js conceivable that a c, term
may not be necessary at all, putting both (11)and
(12) in jeopardy. Finally, concerning case A, we
wish to note that (11) is equivalent, in quark lan-
guage, to the lack of a 6'6' quark mass term" in
H(8} [hence in H(0}]; (11) and (12) are equivalent
to the assumption that the AS=0 parts of (8) (both
strong and nonleptonic weak) transform like a sin
gle member of an octet, c,/c, =c,'/c', .

(B) If we ice as input for Hs(0), motivated by an
underlying SU(2)~ x U(1)-gauge-invariant theory, a
complete set of t),S= 0, parity invariant, SU(2)~
x U(1} invariants constructed from (3, 3*)8 (3*,3)
elements, and add to it the SU(2)~ x U(1) tI),S =0,
parity-invariant symmetry-breaking terms" in-
duced when a SU(2)~ doublet Higgs field (j) [coupled
to

i 2 7'
Os+i

and

i 2 gs
Op+its

with equal strength] develops a vacuum expectation
value, then

Hs(0) = 2b[(-', )'"u + (-,')'"u, +u, ]( (j))

+a(uo —M u8)

and from (6),

c, + l2 c, —M3c,
Sln 0=

2M2co —c8 —v3 c, (14)

which is the form developed by Cabibbo and
Maiani" from apparently different assumptions.
The input (13), in quark language, simply states
that Hs(0) [but not Hs (6)] lacks an XX quark mass
term. [In this sense, the solution is complemen-
tary to case (A).) In (14}, sin'8 does not depend
sensitively on c,/cs. Using the Gell-Mann-Oakes-
Renner" determination for c,/co and the Socolow'
determination for c3/c8 results in sin8 = 0.22.
Equation (14) has well-defined limits for SU(2)
xSU(2) (8-0}and SU(3) (8-45'), the limiting form
advocated by Qehme" using deformed current al-
gebra.

(C) It is characteristic of case (A) that there is
no electromagnetic driving term, c,(0) =0, with

c,(8} induced completely by the E, rotation; in (B),
there is a primitive c,(0) term, presumably of
electromagnetic origin, but combined in a SU(2)
chiral breaking term (—,')'"u, +(—,')"'u, +u, which has
an SU(3)-symmetric part. If one requires that the
only breaking of ckiral SU(2) wken 6 =0 is of elec-
tromagnetic origin, and that the breaking teem
transforms like a U-sPin singlet member of an
octet, then

H, ( )=0((' +u, )
~ a(u, —M2 u, ) (15)

M2 c,+c, —c,/M3

2v2 c, (16)

resulting in" sin8 = 0.2V. As in case (B), 8-45'
in the SU(3} limit and 8-0 in the chiral SU(2) lim-
it Solutio. ns (B) and (C) for sin'8 are both linear
degenerations of equations which in general are
quadratic in sin'8, with a sin4g term which van-
ishes for special input. Case (C) is unique in that
it is the only solution with pure octet SU(2) xSU(2)
breaking in Hs(0) which has this singular charac
teristic.

Finally, we note that the Hs(8) solution, for any
Qx Y-invariant input Hs(0), has extrema only at
6=2n)); thus it is Hs(0), not Hs(8}, which is an ex-
tremum, distinguishing this approach from those
employing variational principles to induce 8. It is
also easy to see that Hs(8) is an even" function of
8, so that the sign of 8 can never be predicted
from this approach (hence the Oehme" form [tan8
=f (c,/co)] can never arise from this mechanism) .
It is interesting to note, however, that most ex-
isting "calculations" of the Cabibbo angle or rela-
tions between chiral and electromagnetic breaking
fall into this class of solutions; and a new solution
[case (C)] with a good numerical result, consistent
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with a small (perhaps vanishing) c,(8) term, can be
achieved with an input which is chiral-SU(2)-sym-
metric up to a U'-spin singlet octet term, the I'7
invariant direction of SU(3) breaking by electro-
magnetism.
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The possibility of enlarging the gauge symmetry of the dual resonance models is consid-
ered by studying the structure of SU(2, 2)- [or SO(4, 2)] invariant dual models. n-point functions
based on the degenerate representations of SU(2, 2) are w'orked out in detail, and a condition
under which these amplitudes are dual is specified. Dual models based on the nondegenerate
representations are also discussed. Through a physical interpretation of the characteristics
which emerge, a possible connection between the dimension N —1 of the hadronic matter and

the gauge-symmetry group SO(N, 2) is pointed out.

I. INIODUCTION

Recent developments in the dual resonance
models (DHM) have led to a better understanding
of the attractive features as well as the limitations
of these models. A description of these models in
terms of quantized minimal surfaces in space-
time has shown' that such models arise naturally

from the dynamics of one-dimensionallyextended
objects. The relevance of the gauge conditions in
these models was shown in I and II to be related
to the coordinate-independent description of the
minimal surfaces. Further arguments were
given in these works that the well-known tachyon
condition on the extenggl masses, which comes
about because of the requirement of gauge invari-


