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We show how duality diagrams may be rigorously formulated in terms of recoupling diagrams. This
allows us to write down in closed form general solutions to the constraints imposed by duality and the
absence of exotic resonances, and to give for the first time in closed form general expressions for the

coupling constants in terms of the quark-hadron recoupling coefficients which are given by the 6j-like
symbols of the appropriate group. We note the connection with the internal-symmetry factors given by
the trace of a product of matrices, and we further note that SU(n) is not determined by the above

constraints.

I. INTRODUCTION

For SU(2), diagrammatic techniques have been
developed for the handling of Clebsch-Gordan
coefficients Sj, 6j, and multi-j symbols by Yutsis
et gl. ,

' Kotanski et al. ' and Massot et a~. ', These
techniques have been further developed for SU(3)
by El-Baz et a/. 4''

From the concepts built into these symbols for
recoupling coefficients, it is clear that such dia-
grams may be applied to any group whose prod-
ucts of representations have well-defined Clebsch-
Gordan series, and the symmetries of these co-
efficients will be similar provided that the repre-
sentations can be expressed in terms of Young
diagrams.

These diagrammatic techniques allow us to
formulate the duality diagrams of Rosner and
Harari' in a rigorous way as a solution to the
crossing constraints imposed by duality and the
absence of exotic resonances. We can then give
closed form diagrammatic expressions for the
coupling constants in terms of the recoupling co-
efficients (6j -like symbols) of the appropriate
gl oup.

Apart from the particularities of the phase
factors involved [for SU(2) see Edmonds, ' and for
SU(3) see de Swart'] which are convention-depen-
dent, the results are quite independent of the
group structure assumed. For this reason, in
what follows, we shall not do the bookkeeping
associated with these phases. These can be
worked out by hand and they should not affect rel-
ative phases.

Before writing down the duality diagrams as re-
coupling diagrams, we first give just a brief intro-
duction to the use of these diagrams in Sec. II.
We refer the reader to Refs. 1-5 for details of
the diagrammatic techniques, and to Refs. 8 and
9 for detailed nondiagrammatic treatment. From
these authors, the reader may learn how to in-
clude the correct phases in the particular cases

of SU(2) and SU(3).
In Sec. III we give a general treatment for meson

duality diagrams, and in Sec. IV for baryon-meson
duality diagrams containing just one 8& pair and
many mesons. In Sec. V we present our conclu-
sions.

In the Appendix we comment on the construction
of fully symmetrized. Sjm -type symbols and Oj-
type symbols for a general group from the Clebsch-
Gordan coefficients of that group.

II. METHOD

We start from the Clebsch-Gordan coefficient
for the given group:

where p& labels the representation; v& labels the
particular state within the representation by means
of other quantum numbers, some additive and some
not; and y labels a particular orthogonal state in
the case where p, occurs more than once in the
product p, && p, . The set

form a complete orthonormal basis for all the
states in the product p, ~ p, . Such states will
normally be chosen so as to have a defined symme-
try under the interchange p. , p, .

In what follows, Eqs. (4) and (&) appear both in
conventional form in the text and in diagrammatic
form in Fig. 1. Subsequent equations of this sec-
tion and of other sections are grouped into a fig-
ure since they cannot be handled typographically.
In these diagrams juxtaposed symbols are to be
multiplied together unless otherwise indicated.

The partially symmetrized Clebsch-Gordan co-
efficient is represented diagrammatically by
Eq. (2) shown in Fig. l. Here [p, ]' denotes the
dimension of the representation p, and + indicates
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the anticyclic/cyclic ordering of the represen-
tations in the Clebsch-Gordan coefficient. A
reversed arrow would indicate the conjugate rep-
resentation entering with a phase factor appro-
priate to the contragredient representation.

A line between two vertices implies a summa-
tion equivalent to a contraction of spherical ten-
sor indices, as shown in Eq. (8). The fact that
the )"„")form a complete orthonormal set allows
us to write two orthogonality relations as follows:

P'Y P'Y, Pg42 8 g (4)
7

gram with n legs and no', loops is an njm symbol
and a diagram with n lines and no external lines
is an nj symbol. A diagram with n legs and loop(s)
may be reduced to a product of an njm symbol
and an nj'symbol (with summations over inter-
mediate j 's where required) by identities of the
general type of Eq. (7).

III. MESON DUALITY DIAGRAMS

We begin with the well-known 4-point meson
diagram, and we first derive the crossing matrix
diagrammatically, as shown in Eq. (9) (see Fig. 2)

P1, P2 ' l 'Y l 'Y I

v u'V V V V V VI~ 2 I 2 I 2

These two identities may be thought of as com-
ing from the cutting of the line(s) in the identity
shown in Eq. (8). Combining expressions (4) and

(5) in more complicated diagrams, we may obtain
the general type of identity shown in Eq. (7) as
given by Kotanski' and El-Baz, ' and also, in part-
icular, the very useful identity of Eq. (8). In the
cade of SU(2), the closed line symbol in Eq. (8)
is just a 6j symbol (up to a phase factor).

In general, in the terminology of Ref. 3, a dia-.
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FIG. 1. Diagrammatic equations (2)-(8) of Sec. II. FIG. 2. Diagrammatic equations (9)—(l4) of Sec. III.
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by use of Eqs. (4) and (8). Thus our problem is to
solve Eq. (10), in which A ':»'] and A "B' are the
s- and t -channel reduced amplitudes, in such a
way that s and t extend only over the nonexotic
representations and in such a way that the reso-
nance dominated amplitudes always give factor-
izable couplings.

Now from Eq. (9) we clearly have the diagram-
matic identity given in Eq. (11), in which (I denotes
the quark representation used to define nonexotic
mesons as qq and baryons as qqq. Moreover, the
multi-j type symbols of Eq. (11) factorize by use
of Eq. (8) to give Eq. (12); for SU(2) this is just
the Biedenharn-Elliot sum rule for 6j symbols,
as given in Ref. 8. We can now see by inspection
of Eq. (12) that we have indeed found a solution
to Eq. (10) having the desired properties of ab-
sence of exotic channels and factorization of the
nonexotic resonating channels.

The above forms the basis for the diagrammatic
solution to the crossing constraints imposed by
duality. Thus for the N-meson duality diagram,
we write (in a more symmetrical way) the ex-
pression in Eq. (13). We make use of the iden-
tities of the general type of Eq. (7) to factorize

C3xOxO = + + +CZAR

Eq. (13) into a particular tree-graph njm coeffi-
cient and a multi-j graph. Then using Eq. (8) we
shall factorize the multi-j graph into a product
of 6j -like symbols, one for each 3-point vertex
of the tree graph. This gives the closed form of
Eq. (14) for the 3-meson reduced coupling.

The coupling for a definite signature point on
the o., trajectory is then given by g„~+ v,g,"„and
if y is chosen so as to be even or odd under inter-
change p, p.„ then we shall find the linking of
the internal symmetry and the configuration
space symmetry as required by Bose statistics
for self -conjugate mesons.

We note that the solution given by Eq. (13) is
not a, model solution, but is the unique solution to
the multiparticle crossing constraints; just as we
derived diagrammatically the crossing equation
for the 4-point amplitude, so we can derive the
multi-particle crossing equations using the dia-
grammatic methods of Kotanski, ' and we can then
formulate the diagrammatic solution given in
Eq. (13). For, by choosing various representa-
tions to replace the q's in Eq. (11), we can obtain
a whole set of solutions to Eq. (10) (probably a
complete set), but only the one solution which
we have singled out has the properties we require
of it—and it is for this reason that we can claim
that the quarks are introduced into the dualit'y

diagrams in a model-independent way.

C (B,Q.) + (16)

IV. BARYON DUALITY DIAGRAMSl
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FIG. 3. Diagrammatic equations (15)-(20) of Sec. IV.

For baryons the solutions to the crossing equa-
tions may be obtained by essentially the same tech-
niques as in Sec. III, except that in the Clebsch-
Gordan series qx qxq of Eq. (15) (see Fig. 3), we
note that the second representation on the right-
hand side will always occur twice; and so we have
for the coupling to a given baryon B a nonunique
expression (16). Here the &(&, Q) are suitable
coupling coefficients which cannot, unfortunately,
be represented diagrammatically, and here, as in
subsequent equations, the summation over Q will
refer to the representations in the Clebsch-Gordan
series for qxq, and a summation over B will re-
fer to the representation occuring twice in
qXqXq.

By analogy with Eq. (6), the identity Eq. (1V) al-
lows us to write, analogously to Eq. (4), Eq. (18),
which may also be derived directly from the appli-
cation of Eq. (4) twice. Note: In the space of the
orthogonal baryon states in the representation
which occurs twice in qxqx q and in the space of
the representations Q lying in 4(x(I, we require
also for factorization the following subsidiary
orthogonality conditions on the coefficients C:
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Q C(B, Q) C(B, ()]') = 5Q Q. ,

Z C(B, Q) C(B', @)= 5B,s .
Q

Equation (18) also serves to identify the conjugate
antibaryon B shown in Eq. (19}.

The general solution to the planar crossing con-
straints is then given by the expression (20). We

may then check, using the diagrammatic tech-
niques at our disposal, in particular Eqs. (4) and

(18), that Eq. (20) then gives for the B,M,B8
vertex Eq. (21) in Fig. 4, in which we have used
Eq. (5}to simplify the expression we first obtain.
For the M,B,B3 vertex we find Eq. (22), in which
we use Eq. (8) to simplify the expression we first
obtain.

We thus obtain coupling constants satisfying our
conditions, but we note that baryon trajectories
will not necessarily have defined signature, for
g~~+ (38g„~will no longer exhibit the same simple
symmetry linked with representation as for me-
sons. This illustrates the fundamental phenome-
nological problem of planar duality for meson-
baryon amplitudes, namely that where B lies in
the representation appearing twice in q&&q&& q (i.e.,
where the summation over Q is not trivial), the
signature linked with representation no longer
holds —and this leads to predictions for unsigna-
tured baryon trajectories which have never yet
been observed; see Refs. 11-14.

We might also draw recoupjLing diagrams for the
nonplanar duality constraints of Mandelstam' of
the type shown in Eq. (23), and in this case we find
the same two types of coupling for BMB and MBB
as may be checked by analyzing the diagram graph-
ically. We can see, however, no valid reason for
introducing crossed diagrams such as Eq. (24) be-
cause these diagrams introduce couplings like those
in Eq. (25) and they cannot be projected out in a self-
consistent way be use of Eq. (18) for all vertices;
their inclusion would not allow consistent factor-
izable 3-point couplings to be obtained. For the
same reason we do not include the vy -u~e coupang
of Eq. (26) which arises from two such twists.

V. CONCLUSIONS

Our main conclusion is that quark duality dia-
grams may be given a rigorous mathematical
formulation in terms of recoupling diagrams for
general quarks. This allows us to write down in
closed form the solution to the crossing con-
straints imposed by duality and the absence of
exotic resonances given in Eqs. (13}and (20).
Likewise this also gives us in closed form the
coupling constants of Eq. (15) and Eqs. (21) and

g = [B)][M3[[83] ZC&8(,Q()C(83, Q3) [Q&j[Q3]
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Q],Q3
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FIG. 4. Diagrammatic equations (21)—(26) of Sec. IV.

(22) which may be evaluated in terms of the 6j-
like symbols of the appropriate group.

We note that the sum over spherical-tensor
indices in the duality diagrams of Eqs. (13) and
(20), as defined in Eq. (3}, can be rewritten in
terms of the trace of a product of matrices, whose
indices are just the spherical tensor indices ap-
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pearing in the Clebsch-Gordan coefficients. For
the case of mesons only as in Eq. (13), we find
the Paton-Chan isospin factor, "and in the case of
mesons and baryons as in Eq. (20), we find the
extension in terms of rectangular matrices and
block-diagonal matrices of Ref. 14. The diagram-
matic formulation makes the group symmetry of
the couplings manifest, and the matrix formulation
makes the factorizability of the couplings mani-
fest.

We further conclude that the only a Priori con-
straints on the group symmetry of the coupling
constants bootstrapped by dual dynamics is that
the group should have a well-defined Clebsch-
Gordan series for the products of its represen-
tations. This supports the thesis of Van Parijs
et al. ,

"who show by the specific example of SO(5)
that the group need not be SU(n). This conflicts with
the thesis of Capps" and Dethlefsen et al. .

' How-
ever, where we expect the internal symmetry
[except for the subgroup of SU(2) of isospin] to be
broken by giving some of the quarks a heavier
mass, we believe that the final result will "look
more like a broken SU(n).""

Lastly a footnote: It is now manifestly clear
why in a quark dual diagram for a 3-point meson
coupling, each quark must be exchanged and not
turn back on itself. Since the lines properly
imply a sum on the quark indices, such a diagram
would be valid only where the meson lay in the
representation l-gqq, q, ; otherwise the coupling
would not even conserve the symmetry.

APPENDIX: THE 3j COEFFICIENT

We use the results Eq. (27) (see Fig. 5) to de-
rive from the crossing equation Eq. (9) the further
results that follow when one of the lines is just the
identity representation, and from Eq. (28) so
obtained, we derive Eq. (29). Now, using Eq. (29)
in the case where the summation over P reduces
to one term, we may invert the equation and so
derive Eq. (30), from which we then obtain Eq.
(31). Hence, where no summation over P is in-
volved, the coefficient in Eq. (29) is merely a
phase factor.

Thus in SU(2) where indeed no summation is
found, we may, with appropriate phase conven-
tions, define 3jm symbols having the full sym-.
metry required under the interchange of all the
columns in the coefficient. In SU(3) the summa-
tion is quite often not found (in particular, where
one of the representations is the fundamental one),
and in the particularly important case of 8&&8, by
choosing the totally symmetric and totally anti-
symmetric

(27)

QY 43
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FIG. 5. Diagrammatic equations (27)-(31) of the
Appendix.

8, 8, 83

(corresponding to the familiar d&;~ and f&;„), we
again find the summation restricted so that either
the symmetric y or the antisymmetric y can occur
in the coefficient in Eq. (29). Hence we may, as
stated by de Swart, obtain the full symmetry
under the interchange of all the columns in the
Clebsch-Gordan coefficient —at least in some
cases, which would be required in order to be
able to construct 3p symbols. But it is still not
clear whether this can be done in general by suit-
able choices of y's.

Our notation is thus designed so that (where
possible) the permutation of any pair of legs or
indeed the changing of the position of the thick bar
(denoting the representation onto which the two
others are projected) in Eq. (2) will lead to a
phase dependent on the p& but not on the v, .
Hence the 6j-type symbols appearing in the cou-
pling constants will differ by only a phase from
those defined by some other convention, and the
usual permutations of the representations may be
made —although the phases may be nonstandard.
In particular, provided the implicit summations
prescribed by the 6j-type diagrams are correctly
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carried out, then the ratios of the coupling con-
stants will have the correct phases.

The choice of phase corresponds to that chosen

by Durr and Wagner" for SU(2) (in that reference,
the reader will also find an account of the use of
diagrammatic techniques for y algebras).
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The.hadron Hamiltonian for strong and nonleptonic weak interactions is regarded as a
function of the Cabibbo angle, evolving from a primitive "initial condition" (in which weak
and strong hypercharge are identical) to its physical value by a rotation projection. Various
existing determinations of the Cabibbo angle are reproduced and a new one is calculated,
with good numerical results for an initial condition in which chiral SU(2) is broken only by
an octet term in the electromagnetic direction.

The nonleptonic weak, electromagnetic, and
semistrong interactions of hadrons define, through
their SU(3) breaking, ' an SU(3) frame orientation
for the description of purely hadronic processes.
Regarding for the moment the weak hypercharge
and electric charge as fixed, "external" field di-
rections which provide a coordinate system with
which to probe the strong-interaction Hamiltonian,
H~(8), where 8 is the Cabibbo angle, let us consid-
er a theory in which H~(8) continuously evolves
from Hz(0).

H, (8) = x[H, (o)].
If Hz(6) =H~z~~(8)+Hz@~(g) is octet-broken for all 8,
and is on the same SU(3) orbit' for all 8, there is

an SU(3) transformation

U(8) —= e "'~ '
U(0) =1

such that

H, (8) = U(6)H, (0)U~(g) . (2)

Otherwise (and this is the case of physical inter-
est),

H (6) =U(6)[H (o)+G(6)l& (6)

= ~(8)H, (0)U'(8)+ G(6)

=x[H, (0)], (3)

where G(8) is the orbit shift. This allows H~(8) to
interpolate between, say, an SU(2)xU(1) orbit for


