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Recent work on quantum electrodynamics is reviewed, some speculations about the theory are made, and
some conceivable future experimental implications are discussed.

I. INTRODUCTION

f,(x,) =0, (1.2)

where f,(x) is the contribution to f (x) arising from
diagrams containing a single closed fermion loop.
Examples of diagrams which contribute to f, (x)
are depicted in Fig. 1.

In Sec. IV we show that the quantum electrody-
namics of electrons with physical mass m c 0 can
be finite under two possible circumstances:

(i) The bare fine-structure constant o., is taken
equal to x, [o., is determined from the high-mo-
mentum behavior of the photon propagator D„,(k)].

In this note we will first summarize the reason-
ing which leads to the possibility of a finite quan-
tum electrodynamics. 'The arguments presented
will in essence be those already discussed in pre-
vious publications. ' ' However, we hope to be
able to present the argument in a form which
makes clear the beautiful simplicity of quantum
electrodynamics. We will then discuss the impli-
cations of a finite theory for high-energy electro-
dynamic experiments.

In Sec. II we will show that a self-consistent fi-
nite solution of the quantum electrodynamics of
zero-physical-mass electrons exists if the square
of the coupling constant x is chosen to be a positive
root x, of the equation

f(x,) =0,

where (x/27)) f (x) is the sum of the coefficients of
the logarithmically divergent integrals for the vac-
uum polarization in massless electrodynamics with
coupling constant x.

In Sec. III we assume the existence of a root x,
of Eq. (1.1) and study the properties of massless
electrodynamics with coupling constant xp which
is a self-consistent finite theory. We show that in
this theory scattering amplitudes involving only
external photons vanish and we obtain the following
simplified equation for xo:

(ii) The physical fine-structure constant n is
taken equal to x, [n is determined from the behav-
ior of D„,(k) for k' near zero].

If m =0, since no other scale must be introduced
into a finite theory, the exact photon propagator
D(k) is proportional to the free propagator and
hence the bare charge and the physical charge are
equal. Alternatives (i) and (ii) are then equivalent
and reduce to the result of Secs. II and III for
massless electrodynamics. In the real world
where m W0 the distinct possibilities (i) and (ii)
arise from two different orders of summing the
series for the contributions to the vacuum polar-
ization which depend upon the mass m. The order
of sun;mation which yields alternative (ii) was
pointed out in the important work' of Adler. It
yields the physically attractive possibility of de-
termining theoretically the observed fine-structure
constant n.

In Sec. V we review what is presently known
about the fundamental function f,(x) and discuss
the possibility of distinguishing between alterna-
tives (i) and (ii) from high-energy experiments.

D-'(k') = k'[ & +II(k2)]

II„„(k)= (k'g„, —k„k„)II(k') . (2.3)

The electron propagator S(P) is determined in
terms of the electron self-energy function Z(P) by
the equation

(2.4)

II. rn = 0 ELECTRODYNAMICS

The photon propagator D„,(k) can be written as

&„.(&)=(z; —
q,

" ~()")+~~„u. , k„A.,

where b is a free parameter which determines the
gauge. D(k') is then determined in terms of the
vacuum-polarization function II„,(k) by the equa-
tions
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FIG. 1. Examples of diagrams contributing to f&(x).

(o)

(e}
+ ~ ~ ~

FIG. 2. Examples of graphs for Z(p).

Z(P) and 1I„,(k) are given by a sum over all
Feynman graphs, examples of which are depicted
in Figs. 2 and 3. In these diagrams the solid lines
stand for the electron propagator S(P) and the
wavy lines for the photon propagator D„,(k). If a
finite, unique solution to these equations exists,
then by scale invariance

(2 5)

(2.6)

For simplicity of presentation we have omitted
from Eqs. (2.5) and (2.6) nonessential finite con-
stant factors which rescale the coupling constants
appearing at each of the vertices in Figs. 2 and 3.
Let us call the square' of this rescaled coupling
constant x.

We now insert the trial solutions (2.5) and (2.6)
for S and D into the expansions for Z and II de-
picted in Figs. 2 and 3. This substitution gives
rise to all the perturbation-theory integrals for II
and Z in massless electrodynamics except for
those containing internal electron or photon self-

FIG. 3. Examples of grnphs for O(k ).

energy corrections. Because m = 0, the integrals
not only possess the usual ultraviolet divergences,
but they might also diverge in the "infrared" re-
gion where some subset of the momenta P; of the
internal lines become small. However, in the Ap-
pendixes of Ref. 3 it was shown by elementary
power-counting arguments that no such "infrared
divergence" arises when one or more of the P; are
held fixed. Furthermore, as long as the external
electron and photon momenta are nonvanishing,
there are no divergences arising from the small-
P; integration region when all the P; are integrated
over. This insensitivity of the relevant integrals
of quantum electrodynamics to the electron mass
m when m is set equal to zero is the essential fea-
ture of quantum electrodynamics which leads to
the possibility of a consistent finite theory.

The situations concerning ultraviolet divergences
in the above expressions for Z and II are quite dis-
tinct. For Z the usual ultraviolet divergences in
the perturbation-theory integrals can be isolated
in terms of two infinite constants, the wave-func-
tion renormalization constant Z, and the electron
self-mass 5m. However, since 5m is proportion-
al to m and since m has been set equal to zero, the
5m divergence is not present. The expansion of
Fig. 2 then contains only the Z, divergence. How-
ever, this divergence depends upon the value of
the gauge parameter b and can be eliminated in
every order of perturbation theory with a suitable
choice of b. The proof of this fact makes essential
use of the properties of Feynman integrals for
small as well as large values of the momenta of
the external lines. In a suitably chosen gauge the
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II (k', x) = —i, f (P'/k', x),
0

(2.7)

where f (P'/k', x) is a finite function of p'/k' and x
which arises from carrying out all the integrations
in the diagrams of Fig. 3 except the final integra-
tion over the magnitude of P. Equation (2.7) fol-
lows from the fact that the integrals for f are both
infrared- and ultraviolet-finite. The ultraviolet
divergence in II is obtained by calculating the
large-p limit of f. But by scale invariance this is
equivalent to letting k approach zero. Now, since,
as stated above, all integrals for f remain infra-
red-finite when k is set equal to zero, we conclude

»m f(P'/k', x)= f(x),
p2~ oo

(2.8)

where f (x) is the finite function of the coupling
constant x which is obtained by setting k =0 in the
integrals for f (P'/k', x)." We can then write

integrals of Fig. 2 for Z possess neither infrared'
nor ultraviolet divergences. By dimensional argu-
ments it follows that Z is proportional to y P mul-
tiplied by a power series in x with coefficients
which are finite to every order in perturbation the-
ory. Thus (2.5) and (2.6) are self-consistent solu-
tions of Eq. (2.4). Equation (2.4) then simply de-
termines the constant factor we have omitted from
the expression (2.6) for 8 in terms of the coupling
constant x.

We now investigate the ultraviolet divergences in
II to see if (2.5) and (2.6) can also be self-consis-
tent solutions of Eq. (2.2). There is an over-all
superficial quadratic divergence in the perturba-
tion-theory integrals of Fig. 3. However, because
of the factor k'g„, -k„k, which appears in the ex-
pression (2.3) for II„„this quadratic divergence
is reduced to the usual logarithmic ultraviolet di-
vergence for II. This over-all logarithmic diver-
gence arises from the final integration over the
momentum P of the electron line which is coupled
to the external photon line on the left of the dia-
grams of Fig. 3. If P is held fixed, the integra-
tions over the remaining internal lines in these
diagrams are finite in the ultraviolet region. This
follows from the following facts: (a) The diagrams
of Fig. 3 contain neither electron nor photon self-
energy insertions; (b) the only other kind of inser-
tions which lead to ultraviolet-divergent subinte-
gr=tions are vertex insertions as in Fig. 3(d),
which, because of Ward's identity, are finite in
the gauge in which Z is finite. "

Using scale invariance we thus conclude that the
integrals for II(k) can be written in the form

11(k' x) = —
~ .f (P'/k', x)
0

"dp'
+

2
[f(P'/k', x) —f(, x))

P

+ q—,f(*)f (2.9)

We see that the II divergence is like a single power
of the logarithm of an ultraviolet cutoff on the mo-
mentum P', and therefore the assumption of the
existence of a finite solution to mass-zero electro-
dynamics is in general inconsistent. However, if
the coupling constant x is chosen to be a root x, of
the equation

f'(x) =0, (2.10)

then the coefficient of this logarithmic divergence
vanishes. " II(k', x,) is then finite and by scale in-
variance [or by explicitly letting P'-k'z in the fi-
nite terms in (2.9)] is a constant II(x,) independent
of k'. Thus, for coupling constant x =x„(2.5) and
(2.6) are also self-consistent solutions of Eq. (2.2).
Equation (2.2) then simply determines the constant
factor we have omitted from Eq. (2.5) for D in
terms of the finite constant II(x,). We thus con-
clude that mass-zero quantum electrodynamics
with coupling constant x, determined from Eq.
(2.10) is a finite theory having the exact electron
and photon propagators which are proportional to
the free propagators.

The possibility of obtaining a finite mass-zero
theory by imposing a single condition upon x de-
pended upon the fact that the integrals of Fig. 3
for II diverged only like a single power of a loga-
rithm. The essential reason for this single loga-
rithm was that all integrations except the final in-
tegration over P were finite in both the ultraviolet
and infrared regions. If the integrals defining

f (P'/k') of Eq. (2.7) possessed infrared diver-
gences when k =0, then f could have contained
terms like [ In(P'/k')]" n ~ 1 and the above argu-
ment leading to a finite theory could not have been
carried out.

The arguments of this section leading to the pos-
sibility of a finite mass-zero electrodynamics de-
pended only upon the explicit properties of pertur-
bation-theory integrals. In Sec. III we will ex-
amine the properties of this finite theory using
some results which follow from the operator rep-
resentations of scattering amplitudes in field theo-
ry. Such results are not explicitly visible from the
perturbation solution for these amplitudes and
hence the theoretical basis for the simplifications
to be obtained in Sec. III is fundamentally different
from that for the results obtained above.
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III. PROPERTIES OF MASS-ZERO ELECTRODYNAMICS

We now assume there exists a positive root x,
of Eq. (2.10). Then the quantum electrodynamics
of photons interacting with massless electrons
with coupling constant x, is a finite relativistic
quantum field theory. In this theory the exact pho-
ton propagator D(k) is proportional to the free
propagator, and hence the absorptive part of D(k)
vanishes. However, the absorptive part of D(k) is
determined by the Fourier transform of
&Olj„(x)j,(y)l0), where j„(x) is the electromagnet-
ic current operator. %e then conclude that the
current operator in mass-zero electrodynamics
satisfies the equation

&0 lj„(x)j„(x)lo) =O.

But we now apply the theorem"

&0Ij,(x)j.(x) Io& =»mp»es

&0 lj„(x,) ~ ~ j„(x„)l 0) =0.

(3.1)

(3.2)

Thus all amplitudes involving only external photon
lines (real or virtual) vanish. The result (3.2),
unlike the previous ones of our discussion, cannot
be understood from an examination of the proper-
ties of perturbation theory. That is, in perturba-
tion theory an n-photon amplitude is expressed as
a sum of all closed-loop diagrams with n external
photon lines. Of course, to a given order in per-
turbation theory these diagrams do not vanish.
The mechanism by which the sum over all dia-
grams vanishes is not at all clear. However, this
vanishing must occur if one accepts the general
principles upon which it is based.

If this theorem" could be extended to include
processes where there are external electron lines,
then all transition amplitudes would vanish. This
would mean that the finite quantum electrodynamics
of zero-mass electrons would be equivalent to a
free-field theory. We would thus conclude that in
the absence of an electron mass there are no in-
teractions, i.e., interactions are a consequence of
the nonvanishing electron mass. The difficulty of
this extension is caused by the absence of a posi-
tive metric in the portion of the Hilbert space as-
sociated with external charged lines. However, in
this paper we will not make any use of this specu-
lation about the zero-mass theory.

We now show that the vanishing Eq. (3.2) of the
n-photon amplitudes implies that x, satisfies the
simpler Eq. (1.2). The vanishing of the four-pho-
ton amplitude means that the sum of all graphs of
the type depicted in Fig. 4 which involve an inter-
nal fully interacting four-photon amplitude must
vanish. Likewise the sum of all diagrams of the
class of Fig. 5 vanishes because the multiphoton

(b)

FIG. 4. Examples of contributions to f (x) from graphs
involving interacting photons.

d—d, f(x) =e'2lA(0; e)], (3 3)

+ ~ ~ ~

+ ~ ~ ~

(c)

FIG. 5. Further examples of contributions to f (x)
from graphs containing a subgroup of interacting photons.

interaction on the right vanishes when all the dia-
grams for that interaction are included. In gener-
al the diagrams for f (x) break up into subclasses,
each of which involves some subset of photons
fully interacting with each other. Hence each of
these subclasses must vanish separately. There
remains the class of diagrams which involve no
photon-photon interactions, namely those diagrams
involving a single closed fermion loop, depicted in
Fig. 1. These graphs give the contribution f, (x) to
f (x). Since all other contributions to f (x) vanish at
x = x„we see that f,(x) must also vanish at x =x,.

If we apply the above argument to the n-photon
amplitude, we immediately conclude that the sin-
gle-closed-fermion-loop contribution to the n-pho-
ton amplitude vanishes by itself.

Adler' has made the important observation that
the vanishing [(3.2)] of the n-photon amplitudes im-
plies that all derivatives of f (x) and f,(x) vanish at
x xp Another way of obtaining this result is to
use the fact that the nth derivative of f (x) is re-
lated to the forward n-photon- n-photon amplitude.
The latter can be seen by differentiating Eq. (2.9)
with respect to x. This yields the relation'
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where K(k; q) is the asymptotic Bethe-Salpeter
kernel for the forward scattering of photons of
momenta q and k. However, since when x = x, the
scattering amplitude T for this process vanishes,
so must the kernel K, since T and'K are related
by the usual linear scattering integral equation.
Similarly differentiation of Eq. (3.3) with respect
to x relates d 'f/dx' to the kernel for the forward
3- 3 photon amplitude. Likewise differentiating
Eq. (2.9) n times with respect to x relates d"f (x)/
dx" to the kernel for the forward n- n photon am-
plitude which vanishes at x =x,. We then conclude

d"f (x) =0 at x=xo.
dx (3.4)

(b)

+ ~ ~ ~

The above reasoning also relates the nth deriva-
tive of the single-closed-loop function f,(x) to the
single-closed-loop contribution to the forward n-
photon- n-photon amplitude which vanishes at x
=x,. As a consequence, we obtain Adler's result, D-'(k) =k'[I+nil, (k)], (4.3)

FIG. 6. Graphs representing the perturbation ex-
pansions of S(p) and D(k).

dn

„f,(x) =0 at x=x, .dx" (3.5)
where

(4.4)
Thus both the functions f (x}and f,(x) have essen-
tial singularities at x =x,. Hence in order to test
for the existence of a finite theory of mass-zero
quantum electrodynamics, we must calculate the
single-closed-loop function f, (x) and look for a
value of the coupling for which f,(x}and all its
derivatives vanish.

We would like to emphasize that the simplified
eigenvalue Eq. (1.2) and the essential singularities
of f(x) and f,(x) are basically consequences of the
theorem" of Eq. (3.2).

IV. QUANTUM ELECTRODYNAMICS
OF FINITE-MASS ELECTRONS

We now turn to the theory of physical interest,
ordinary quantum electrodynamics of electrons
with mass m c0. This theory will be consistent if
the renormalized electron propaga'. or S(P) and the
renormalized photon propagator D(k) behave like
free propagators at high energy, i.e.,

lim S(p)- const/y p, (4 1)

lim nD(k) —n, /k',
Q2 ~oo

(4.2)

where n is the fine-structure constant and o., by
definition is the bare fine-structure constant. We
will see that the high-energy behavior of this theo-
ry is determined completely by the properties of
mass-zero electrodynamics.

We first study the perturbation expansion for
D(k) which is generated from the vacuum-polariza-
tion function II(k) by the equations

For convenience we have removed from the defini-
tion of II the factor n which may be associated with
the coupling to the external photon lines. The per-
turbation expansion for II(k) can be obtained from
the sum of all diagrams of the type of Fig. 3 by
replacing all electron and photon lines in each dia-
gram by the renormalized electron and photon
propagators S(P) and D(k) of Fig. 6, and by asso-
ciating with each internal vertex the renormalized
charge e. The electron lines on the right-hand
side of Fig. 6 of course stand for 1/(y p+ m),
where m is the physical mass of the electron. The
resulting expression for II„(k), Eq. (4.4), is the
usual series of convergent renormalized pertur-
bation-theory integrals, which for k'/m'» 1 takes
on the form

II„(k)=c,(n)+c,(n)ln
k'
m'

(4 6)

The coefficients c„(n) are power series in the fine-
structure constant n, obtained by evaluating the
asymptotic form of the perturbation-theory inte-
grals. The requirement (4.2) means that II„(k)
must remain finite as k'- ~. This condition is
equivalent to the requirement that the unrenormal-
ized theory is finite or, equivalently, that Z, is
finite.

We must thus evaluate the high-k' limit of II„(k).
We first do this according to the procedure of Ref.
3. We make the following assumption (later to be
checked by self-consistency):
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(A) We can replace o.D(k) by its limiting form
o.,/k' in the expression for II(k) in order to calcu-
late the dominant large k-behavior of II~(k). That
is, we assume that the leading corrections to the
asymptotic limit (4.2) fall off sufficiently rapidly
that they yield contributions to II(k) which will van-
ish as k- ~. Furthermore, if we choose the gauge
in which Z, is finite, the electron self-energy cor-
rections are unimportant. Thus with assumption
(A) the large-k behavior of II(k) is obtained from
the sum of the diagrams of Fig. 3 by replacing
each internal photon line by 1/k', each vertex by
v' n„and each internal electron line by 1/(y P
+ m). We are then left with a series for the as-
ymptotic behavior of II(k) which is the same as the
series for II(k) in the mass-zero theory except for
the presence of the electron mass m in the denom-
inators.

Since II„(k) is a function of k'/m', we can calcu-
late the lim, „II(k) by taking the limit m-0. By
our previous discussion of Eqs. (2.7)-(2.9), we

know that all integrals for II~(k) are finite when m

is set equal to zero except for the final integration
over P, which with m =0 would be infrared-diver-
gent because of II(0) in Eq. (4.4). The presence of
the electron mass in this final integration cuts off
this divergence, and the subtraction in (4.4) makes
the final integration over P ultraviolet-convergent.
Thus we can set m =0 everywhere except in the fi-
nal integration over P. This effectively replaces
the P' in the denominators of the integrals in Eqs.
(2.7) and (2.9) by p'+ m'. Then, using (2.9) and

(2.4), we conclude that

lim II~, = lim II~

k2- ——f (o'. ) ln + constant .
2m

' m'

(4.6)

We can understand the relation between Eqs.
(4.5) and (4.6) by first noting that from the previ-
ous discussion it follows that the higher powers of
In(k'/m') in Eq. (4.5) come only from diagrams
which include the vacuum-polarization corrections
of Fig. 6(b) in the internal photon lines of Fig. 3.
Thus, for example, when the internal photon line
in Fig. 3(b) is replaced in the diagrams of Fig. 6(b)
for D, we obtain the diagrams depicted in Fig. 7,
which individually. behave asymptotically like high
powers of In(k'/m'). However, if we first sum
over all diagrams of Fig. 7, then from (A) it fol-
lows that the high-k' limit of these diagrams is
the same as that of Fig. 3(b) with o. replaced by
np. Thus if we take the limk- ~ of the individual
terms in Fig. 7 we generate a series of the struc-
ture (4.5), while if we first sum over all diagrams

+ ~ ~ ~

FIG. 7. Examples of contributions to II+(k) from
diagrams having vacuum-polarization insertions in
internal photon lines.

and then go to the limit k- ~ we obtain a result
proportional to f (n, ) ln(k'/m'). There is a similar
relation between the full series (4.5) and the re-
sult (4.6).

From (4.6) we conclude that under assumption
(A) Eq. (4.2) can be self-consistent only if the bare
charge n, is chosen to be a root x, of Eq. (2.10).
If we choose n p xp we find

lim Ilz(k') =constant
P2 -+oo

(4.7)

for n, =x„and Eqs. (4.2) and (4.3) are consistent.
It remains to verify (A), namely, to show that
(4.7) is still valid when the corrections to the limit
(4.2) are included in the calculation of II„(k). This
was done in Ref. 3 using the incorrect assumption
that f'(x, )+0. However, Adler' showed that this
conclusion is still valid by using the fact [Eq. (3.2)j
that the n-photon amplitude vanishes. %e hence
conclude that there exists a self-consistent solu-
tion for the photon propagator which behaves for
large k' like the free propagator provided the bare
coupling constant np is chosen to be a root of Eq.
(2.10). Furthermore, it can be readily seen"
that the physical fine-structure constant n is left
undetermined except that it must be less than np
=xp. This latter fact is more easily seen from the
Gell-Mann-Low equation, ' which we will use in
Sec. V of this paper in order to determine the cor-
rections to Eq. (4.7) at finite values of k'. Finally,
we note that np xp is of course also a root of the
simpler equation (1.2).

Adler' has pointed out that a different order of
performing the summation over the diagrams for
II~(k) and taking the limit k'- ~ can lead to the
conclusion that a consistent solution for D exists
when the physical fine-structure constant n is cho-
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sen equal to x,. The first step in Adler's proce-
dure is to sum all diagrams in the renormalized
perturbation expansion for Iiz(k) which contain a
single fermion closed loop. There is no prior
summation of vacuum-polarization insertions in
internal photon lines. This series can thus be rep-
resented by the graphs of Fig. 1 where each vertex
corresponds to the renormalized charge e and each
internal photon line corresponds to free photon
propagator 1/k'. From our previous discussion,
it is clear that this series of diagrams gives a
contribution to II„(k) which for k'-~ behaves like

1 k2 m'
Ii~(k) ~ ——f,(n) ln, + constant+0

217 m

f,(~) =o (4 9)

Adler assumes that e =x, and considers contri-
butions to IIs(k) from diagrams containing two
fermion closed loops, examples of which are de-
picted in Fig. 8. Since the individual diagrams of
Fig. 8 contain vacuum-polarization insertions,
they behave like higher powers of In(k'/rn') for
large O'. However, the sum of all diagrams of
the type in Fig. 8 contains an inner closed loop
with all possible photon exchanges. Because of
the eigenvalue condition I(4.9)], this gives a con-
tribution to internal vacuum polarization in Fig. 8
which is asymptotically finite. The sum of the dia-
grams of Fig. 8 is thus equivalent to the diagram
of Fig. 9. The crosses at the internal vertices of
Fig. 9 indicate that the effective constant at these
vertices differs from e because of the contribution
of the finite part of the vacuum-polarization inser-
tions in Fig. 8. By our previous argument, Fig. 9,
and hence the sum of the diagrams of Fig. 8, then
behave like a single power of In(k'/m').

Now consider the sum of diagrams of Fig. 10(a)

(4.8)

Thus this subset of diagrams yields an asyrnptotic-
ally finite contribution to II~(k) if we choose o. =x„
i.e., if n satisfies the equation

FIG. 9. Graph representing contribution of the sum
of the graphs of Fig. 8.

where the outer closed loop contains an additional
internal photon line. The sum of all diagrams of
Fig. 10(a) is then equivalent to the diagram of Fig.
10(b). Likewise the sum over all diagrams which
contain any number of internal photons in either
closed fermion loop is equivalent to the sum of
diagrams depicted in Fig. 11. From our previous
discussion we see that each diagram of Fig. 11 be-
haves for large k' like a single power of ln(k'/m')
with a coefficient which is determined by setting
m=0 and performing all integrations except one.
Let us then carry out all integrations in each dia-
gram of Fig. 11 except for the integration over the
photon line which joins the two crosses. These in-
tegrations generate diagrams for the single-loop
contribution to photon-photon scattering. " (See
Fig. 12.) (The external lines for this photon-pho-
ton amplitude are the two external photons of the
diagrams of Fig. 11 and the two crosses. ) Thus
the coefficient of In(k'/m') in the sum of the dia-
grams of Fig. 11 is proportional to the single-
closed-loop contribution to photon-photon scatter-
ing in mass-zero electrodynamics with coupling
constant n. However, since n satisfied Eq. (4.9),
it follows from Eq. (3.2) that this photon-photon
amplitude vanishes. Hence the coefficient of
In(k'/m') in the sum of the diagrams of Fig. 11
vanishes. Thus the sum of the two-fermion-
closed-loop diagrams represented by Fig. 11 gives

(a)

+ ~ ~ ~

(b)

+ ~ t ~

(c) (b)

FIG. 8. Examples of diagrams for IIR(k) which contain
two fermion closed loops.

FIG. 10. Further examples of graphs containing two
fermion closed loops.



SOME SPECULATIONS ON HIGH-ENERGY QUANTUM. . .
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(b) (c)

(b)

(d) (e}
FIG. 12. Graphs representing two-closed-loop

diagrams which contain an electron self-energy in-
sertion.

+0 ~ ~

FIG. 11. Graphs representing sum of diagrams with
two closed loops, each of which contains any number of
internal photons.

a contribution to the vacuum polarization II„(k')
which for k'/m'»1 has the behavior

m'
tl„(k) = constant+0, ) .

Q 2~ao
(4.10)

Therefore if n satisfies (4.9), the sum over all
diagrams in which the inner and outer fermion
loops of Fig. 8(a) contain any number of internal
lines gives a finite asymptotic contribution to the
vacuum polarization.

The basic ingredients in the above argument are
the following:

(a) diagrams for II+(k) without vacuum-polariza-
tion insertions behave like a single power of
In(k'/m') for large k', and

(b) amplitudes with n external photons in mass-
zero electrodynamics and coupling o. vanish if o.'

xaam

Using (a) and (b) it is easy to see that if we sum
over all diagrams containing a fixed number of
closed fermion loops then II„(k') will have the be-
havior (4.10) if a is chosen equal to x,. In our
previous vacuum-polarization insertion summation
procedure based upon assumption (A), we summed
over diagrams containing an infinite number of
closed loops at the first stage when we replaced
D by n, /k' as in the example of Fig. 7. Thus in
order to go from this procedure which leads to
(4.10) and an eigenvalue equation for n, we must
interchange the limit k- ~ with the summation
over all diagrams.

If Adler's loopwise summation procedure for
calculating II(k) yields the physically correct so-
lution of quantum electrodynamics, then the fine-
structure constant e is fixed and equal to x,. Now
it follows from general arguments that the bare
fine-structure constant n, is greater than n. Since

the function f,(x) has an essential singularity at
x = x„and n, n = x„ the point n, lies outside the
radius of convergence of the function f,(x). Thus
the rearrangement of diagrams and the interchange
of the limit k-~ with the summation over all dia-
grams which is necessary to convert the "loop-
wise" summation procedure into the vacuum-po-
larization insertion procedure [assumption (A)] is
not justified. Hence one cannot deduce Eq. (4.6)
and the eigenvalue condition for np Conversely,
suppose that the vacuum-polarization insertion as-
sumption (A) yields the physically correct solution
for II~(k); then o., =x, and n is left undetermined
except for the requirement that it be less than n, .
In this case the loopwise summation procedure
will not work since f,(n) does not vanish and hence
the single-closed-loop diagram is not finite as k'

We now turn to the equation for the renormalized
electron propagator S(P). We assume

(1) that there exists a consistent finite solution
for D which has the behavior (4.2), and

(2) that we can replace nD by its limiting form
o.,/k' in the expression for the electron self-ener-
gy function Z(P) in order to calculate the dominant
high-energy behavior of 8(P).

We know that assumption (1) is justified if there
exists a positive root of the equation f(x,) =0. In
the case o. =x„ the asymptotic corrections to
II„(k) [Eq. (4.10)] are of order m'/k' and so as-
sumption (2) is justified. In the case o., =x„we
will see in Sec. V that the asymptotic corrections
to II+(k) vanish more slowly as k' =0. In this case
Adler has noted that assumption (2) will still be
valid if the theorem of Eq. (3.2) can be extended
to amplitudes containing external fermion lines.

Using (1) and (2) the Schwinger-Dyson equation
for 8 then becomes an integral equation whose ker-
nel is the Bethe-Salpeter kernel for electron-posi-
tron scattering. This equation was treated in de-
tail in Ref. 5 and we will only state the results of
that analysis here, since our main concern in this
paper is the photon propagator. It was shown there
that the solution of this equation for S(p) for p'
» m' depended crucially upon the behavior of the
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kernel for m=0. Moreover, the kernel is suffi-
ciently well behaved so that in a suitably chosen
gauge the solution for S(P) takes on the form

m m2'
S(P) = constant x + —2a

P /nt »1 rP P'

(4.11)

3 QfO 3 Q
+ — ~ + ~ ~ ~

2 2m 8 2m
(4.12)

where a and e are constants. The parameter e is
determined from the expansion of the kernel for
the scattering of zero-mass electrons and posi-
trons with coupling constant o, To order n, ', q

is given by'

proven.
There are then the following alternatives:
(i) A positive root x, exists and o.,=x,.
(ii) A positive root x, exists and o. =x,.
(iii) No positive root x, exists (in this case we

have found no finite consistent solution of electro-dynamicss).

The best way to decide among the above alterna-
tives is to calculate f,(x). We have been trying to
find ways to calculate f,(x) exactly for the past
five years, but no real progress has been made
since Rosner's" sixth-order calculation which in-
cludes all the diagrams of Fig. 1. There has not
even been a satisfactory explanation of the sim-
plicity of Rosner's result"

We see that Eq. (4.11) is consistent with (4.1}if
e&-—,'. If e&-2, the mass term dominates the 1/
y P term and there are no consistent finite solu-
tions for electron propagators.

If we introduce a cutoff A, then the bare mass
m, (A) is given in terms of the physical mass m by
the relation'

m, (A) =

am�

(m'/A')'. (4.13)

Thus if e &0, then 5m= m —m, (A) is finite as the
cutoff A- ~. The usual perturbation-theory diver-
gence for 5m arises from putting the second term
in Eq. (4.11) with e =0 into the equation for Z.
This "divergence" is thus clearly not intrinsic to
quantum electrodynamics but is the result of the
inapplicability of perturbation theory.

Although e is positive to order no', we have no

general proof of positivity. We cannot rule out the
possibility that e might lie in the range ——, &e& 0.
In this case Eq. (4.11) would still be a valid as-
ymptotic solution of the renormalized equation for
S, although from Eq. (4.13) we would find 5m =~."

V. EXPERIMENTAL IMPLICATIONS OF
ALTERNATIVES (i) AND (ii) OF SEC. I

We have thus shown that quantum electrodynam-
ics can be a consistent finite theory with electron
and photon propagators which behave like free
propagators at high energy, provided there exists
a positive root x, of the equation f (x,) = 0. (x/2m)
x f(x) is the coefficient of the divergent logarithm
in the sum of the m=0 diagrams depicted in Fig. 3.
If f(x, ) =0, then f,(x,) =0, where (x/2w) f,(x) is the
coefficient of the divergent logarithm in the sum of
the simpler set of diagrams of Fig. 1. Further-
more (d" /dx ")f (x) = (d" /dx ")f,(x) = 0 at x = x,. Con-
versely, if we calculate f,(x) and find a positive
value of x for which f,(x) and all its derivatives
vanish, we can be fairly sure that f (x) also van-
ishes at this point. However, this has not yet been

(5.1)

Rosner carried out his calculation in the gauge in
which Z, is finite. The sixth calculation of f,(x) in
the Feynman gauge has been carried out by
Brandt. " The importance of Brandt's calculation,
aside from explicitly verifying the gauge invari-
ance of f, (x), was to show that the calculation in
the Feynman gauge possessed the following great
simplicity: The sum of the nontrivial graphs (d)
and (e) of Fig. 1, which involve crossed photon
lines, gives no contribution to f,(x) when calcu-
lated in this gauge. Thus the sixth-order result
(5.1) for f, (x} is obtained by evaluating in the
Feynman gauge the uncrossed 2-photon diagram
1(c) and the internal electron self-energy correc-
tions, both of which are trivial to calculate. How-
ever, the reason why Figs. 1(d}plus 1(e) do not
contribute in the Feynman gauge has not been un-
derstood, and there has been no successful use of
this simplicity to calculate the higher orders of
f,(x).

Another class of attempts to calculate f,(x) have
made use of coordinate-space methods. " Since
f, (x) is calculated from a theory in which the elec-
tron mass m is equal to zero, the integrals for f,
are all conformally invariant. We have attempted
to exploit the conformal invariance in order to
calculate f, to all orders. Although a little prog-
ress has been made, the method has been plagued
with certain subtleties. " We will report on this
work in a separate publication, hopefully to stimu-
late further attempts to overcome our present dif-
ficulties.

The fact that f,(x) has an essential singularity
suggests a third approach to calculating f,(x). We
note that in the power-series expansion of f,(x)

f,(x)= ga, x' (5.2)
/=0

only the coefficients az for large j are relevant for
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calculating f, near the point where it has a singu-
larity. Before discussing our conjecture for cal-
culating a, for large j, .we will decompose II„(k)
into a sum of terms II„(k, n) having the n electron-
positron pair threshold. This decomposition will
be useful for our discussion of the experimental
implications of alternatives (i) and (ii) of Sec. I as
well as for our treatment of the coefficient a~ for
large j.

We thus write

n, (k) = Q 11„(k,n),
n=o

(5.3)

for which the state ~N) contains n electron-posi-
tron pairs and any number of photons. Clearly

imil„(k, n) =- 0,
4 2&gm2n ~

while

k2
II„(k,n) ~ II„'(n) + II„'(n) ln

k 2» 4m2n2
m'

(5.5)

k'
+ II'„(a) (ln —, + . . (5, 6)

Equations (5.3) and (5.6) combine to yield a reor-
dered version of the asymptotic expression (4.5)
for II„(k). Equation (5.6) is more precise than
(4.5) in that it makes explicit the fact that as n in-
creases one must go to larger and larger values
of k in order to be in the asymptotic region.

The contribution to II„(k, n ) which is of lowest
order in n comes from the terms in the sum (5.4)
for which the state ~N) contains n electron posi-
tron pairs and no photons. The lowest-order per-
turbation value of (0~j"

~
N) for these states is pro-

portional to 0|" '. This gives a, contribution to
II„(k,n) proportional to n'" '. For example, the
lowest-order contribution to II,(k, n) comes from
tree-graph contributions to (0

~ j„~3e, Sp) like those
depicted in Fig. 13. Higher-order contributions to
II,(k, n} come from radiative corrections to

(a) (b)

FIG. 13. Tree graphs for (O~j&(3e, 3P).

where ImII„(k, n) includes all terms in the sum

lmil, .(k)-Z «lj, (O) l»&Nlj. (0)10&, (5 4)

(a)

FIG. 14. Graphs for real and virtual radiative cor-
rections to the graph of Fig. 13(a).

f,(x) = Q x'" 'b„(x) .
n=1

(5.7)

Comparison of (5.7) with the power-series expan-
sion (5.2) shows that the n-pair state contributes
to all terms in the series (5.2) for which j ~ 2n —2.
That is, every time j increases by 2, the coeffi-
cient az is increased by the contribution from a
state with one additional pair.

We now conjecture that the dominant contribution
to the coefficients a& for large j =2n —2 arises
from the n-pair state in the sum (5.7), that is,
for large n we can write

a,„,—b„(0) . (5.8)

Of course a,„,also receives contributions from
radiative corrections from states having fewer
than n pairs via the diagrams depicted in Fig. 14.
The assumption is that these radiative corrections
do not contribute substantially to the growth of a~
for large j. We know that the contribution of these
corrections in the infrared region cancels, and we
see no physical reason why they should be impor-
tant for large j. Thus our assumption (5.8) is that
the origin of the essential singularity in f,(x) is
the rapid growth of the lowest-order n-pair con-
tribution b„(0) as n, the number of pairs, in-
creases. That is, the essential singularity in

f,(x) is due to the presence of the infinite number

(0
~ j„~Se, SP) such as that depicted in Fig. 14(a) as

well as from lowest-order matrix elements
(0

~j„~Se, SP, 1 photon), depicted in Fig. 14(b). The
amplitude of Fig. 14(a) gives a contribution to
II,(k, n) containing infrared divergences which can-
cel the infrared divergences arising from the con-
tribution to II,(k, n) of the amplitude of Fig. 14(b).

The single-closed-fermion-loop contribution to
II„(k,n) for k'»(2mn)' behaves like a single power
of In(k'/m') with a coefficient n'" 'b„(n) which is
the n-pair-state contribution to f,(n). To calcu-
late b„(n) and hence f,(n), we must evaluate the
single-closed-loop contribution to the sum (5.4}
with m set equal to zero. " Clearly states

~
N)

which contain only photons do not contain any sin-
gle-closed-loop contribution, i.e., b,(n) =0. Fur-
thermore the lowest-order n-pair contribution
n'" 'b„(0) to f,(n) arises from tree diagrams such
as those depicted in Fig. 13. We can thus write
f,(x) as a sum over n-pair contributions:
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of multiparticle thresholds which is characteristic
of a relativistic theory.

The above paragraph is of course pure specula-
tion and is an attempt to give physical motivation
for calculating the coefficients b„(0) for large n.
To calculate b„(0) we must calculate the tree-
graph contribution to the matrix element
(O~j„~n pairs), project the single-closed-loop
contribution out of the product (0

~ j„~m pairs)
x(n pairs

~ j„~0), and finally integrate over 2n-

particle phase space. In carrying out this proce-
dure, we, of course, use mass-zero electrons
and positrons. We have shown that states in which

each electron-positron pair is produced with zero
total momentum contributes nothing to b„(0). The
calculation of the contribution to b„(0) from more
complicated kinematic configurations of n elec-
tron-positron pairs may be feasible, but we have
not progressed very far with this calculation.

This concludes a summary of our current mea-
ger theoretical knowledge of f, (x) and we now spec-
ulate briefly on the implications of this discussion
for high-energy experiments.

The question we pose in confronting alternatives
(i) and (ii) of Sec. I with at least conceivable future
experiment is the following: The renormalized
perturbation expansion for II~ contains terms
which behave asymptotically like n ln(k'/m'). Such
terms modify the photon propagator in a way that
can be experimentally detected in sufficiently ac-
curate high-energy electron-electron or electron-
positron scattering or electron-positron annihila-
tion. On the other hand we know that if quantum
electrodynamics is a finite theory via either mech-
anism (i) or (ii), then II+(k)-constant, i.e. , nD
-n, /k' as k'- ~. Hence, in such a case the
n ln(k'/m') terms must not be present for suffi-
ciently high energy. We then ask at what energy
these logarithmic terms disappear. Our answer
is the following: If the physically correct solution
corresponds to alternative (i) with n, ' =x, '«n
-137 (e.g. , if u, =-,'), then nD will not approach
its asymptotic limit u, /k' until we reach experi-
mentally unattainable superhigh energies of the
order me"'. Thus we should expect no deviations
from the renormalized perturbation-theory pre-
dictions due to electrodynamic effects in any fore-
seeable experiment. However, in alternative (ii),
n =x„we cannot rule out the possibility that aD
attains its asymptotic limit at an energy which
may be experimentally accessible. Very roughly
we might expect this energy to be of the order of
magnitude mnp where states with n, electron-posi-
tron pairs give important contributions to f,(n).
(Perhaps n, -137.) However, in lieu of a calcula-
tion of f„we have no indication of what this ener-
gy is. However, if perturbation-theory logarithms

disappear in accurate high-energy experiments,
then this might be interpreted as information in
favor of alternative (ii) and might at the same time
give us some information about f,(n).

The basic reason for the above distinction be-
tween (i) and (ii) is that the mechanism by which

II„(k) is made finite as k'-~ is completely differ-
ent in the two cases. In alternative (ii) the asymp-
totic expansion (4.5) gives a finite result for Il„(k)
as k'-' ~ because the coefficients c;(n) of [In(k'/
m')]~ all vanish when n =x,. In alternative (i) no
conclusion can be drawn directly from (4.5) be-
cause one must sum the infinite set of diagrams
corresponding to vacuum-polarization insertions
in internal photon lines before taking the limit k2

When this is done, the different powers of
ln(k'/m') in Eq. (4.5) combine to form a new ex-
pression for II in terms of n„which, for np=xp,
is asymptotically finite. In this case the simplest
way to find the rate at which II~(k') approaches its
limiting finite value is to use the Gell-Mann-Low
equation, which we will now briefly describe.

Making certain plausible assumptions about the
behavior of perturbation theory integrals for the
photon propagator when nz = 0,4 Gell-Mann and Low'
derived the following equation for the asymptotic
behavior of the photon propagator D(k'):

y2 ( k nD{0 )

m' „,( ) x'q(x)
' (5.9)

p2 1/8 d+ k nD

m', ( ) x')))(x) „, x'g(x) ' (5.10)

Since g(x) is positive for 0&x&x, =-,', we conclude
from Eq. (5.10) that

k2 ~ I/8
ln m'„2 D, l„.q( ) x'P(x)

1 1

4(0) e(n )
(5.11)

that is, if np=xp= —,', the photon propagator will
not come within a factor 2 of its asymptotic limit

In Eq. (5.9), q(n) is the constant in the asymptotic
expansion of k'D(k'). q(n) =n +O(u'). The function
g(x) is a function which vanishes at root x, of the
equation f (x) = 0. In case (i) as k'- ~, k'n D- n,
=x„and the integral in (5.9) diverges at the upper
limit since P(x, ) =0. For small values of x, g(x)
=-,')(('; +x/2)(+ ~ ~ ~ ). For concreteness let us as-
sume xp = —,'. Let us then ask, "How large does k'
have to become before 02nD reaches a value which
is greater than —,'?" We rewrite Eq. (5.9) in the
form



SOME SPECULATIONS ON HIGH-ENERGY QUANTUM. . .

until

k2 1
m' $(0) q(a)

137
0

Thus we conclude that if o.p =xp is not very small,
then the photon propagator does not start approach-
ing its asymptotic limit until superhigh unattain-
able energies. Thus in alternative (i) we do not
expect deviations from renormalized perturbation
behavior at any experimentally attainable energy.
Of course if xp is small, i.e., only slightly greater
than n, one cannot arrive at the above conclusion.
This is because the factor 8 on the right-hand side
of Eq. (5.18) would have to be replaced by a factor
of order 1/x, -137 and hence could not be neglected
in comparison with that factor 1/q(n) - I/n -137.

Now let us consider the alternative (ii), n = x, .
In this case we can use directly the high-energy
expansion (4.5) of perturbation theory. However,
we must first make the decomposition (5.3) of
II+(k), since as the thresholds become higher, one
must go to higher values of k to reach the asymp-
totic region (5.6). If o. =x„ then from (5.3), (5.6),
and (4.5)

(5.13)

(5.13) is the condition that the coefficient c,(n) of.
[In(k'/m')]' in the high-k expansion of II+(k) van-
ishes. The coefficients (5.13) vanish as a conse-
quence of (a) the condition f,{o.) = 0 and (b) the van-
ishing of the n-photon amplitudes in m=0 electro-
dynamics. Let us rewrite Eq. (5.3) in the form

II~(k) ~ Q II„'(o.)
k »(2 ff p) ff ]

+ g II„(k, n) -II„(n)
n =n p+1

k-II'(o. ) lnn m2

(5.16)

The first summation on the right-hand side of Eq.
(5.16) gives the asymptotic value II„(~). For each
value of n the sum of the terms in the bracket un-
der the second summation in Eq. (5.16) vanishes
as k'-~. Denoting this sum by s„(k, n), we can
write (5.16) as

11(o.) ~ II„(~)+ Q s„(k, o.),
n2»(2mn p) 2 n=np+1

(5.17)

where s„(k, n)-0 for k fixed as n-~ and for n
fixed as k- ~. s„(k, o.) is the n-pair contribution
to the asymptotically vanishing part of the vacuum
polarization. If we assume that the dominant con-
tribution to s„(k, n) comes from the same pair
states that are important for f,(o.), we conclude
that

s„(k, o. ) & e independent of k',
n=np+1

(5.18)

where e is of the order of magnitude of
P„"-„,„n'" 'b„(o.), which is small by our choice
of no. In writing {5.18) we have assumed that the
convergence is uniform, i.e., c does not depend
upon 0'.

Thus if we carry out an experiment at an energy
which probes values of k'&(2mn, )', the logarith-
mic behavior of perturbation theory disappears and

np

II„(k)= Q II„(k, o.)+ Q II„(k, u), (5.14)
Iis(k', n) ~ II+(k', o.)+e.

0 »(2mn )
(5.19)

n=1 n=n +1p

II„(k) g II'„(o.)+II„'(n)ln, + ~ ~ ~

»(2fftn ) n = 1
m'

+ P II(k n).
5 =tf p+ 1

Then if we use Eq. (5.13), (5.15) becomes

(5.15)

where np is the number of pairs which is impor-
tant in the expansion of f,(n) Then for k'.

»(2mn, )' we have, using (5.6),

As of now we have no way of estimating np. It also
may be that the value of np that enters into Eq.
(5.19) is not the value of n, that is important for
f,(o')

In any case it is not impossible that the transi-
tion from the perturbation-theory behavior (4.5)
to the behavior (5.19) could show up at experimen-
tally accessible energies. If in fact the behavior
(5.19) were observed, we could rule out alterna-
tive (i) with n, not close to o. , and it would be
likely that alternative (ii) is the physical solution
of quantum electrodynamics.
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