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Neglecting all nonelectromagnetic interactions, nonperturbative techniques'are used based
on an effective quantum-electrodynamic Lagrangian. A semiclassical argument leads to a
finite "classical" electron radius xmm of the order of exp[-37t/(20. )) times the CoInpton wave-
length, and to a corresponding maximal field strength Ema„1/rm, -„(in natural units). The
charge renormalization constant Zs computed with the cutoff thus suggested consequently
has a minimum value of n/3m, corresponding to a finite bare charge. The bare mass is
estimated to be of order n2 or possibly zero.

I. INTRODUCTION AND SUMMARY

The following considerations are highly specula-
tive. However, we believe that the results are
of sufficient interest to warrant wider distribution.

Within the framework of special relativity there
is no natural limit below the velocity of light for
the relative speed of two inertial systems. Con-
sequently, there is no upper bound for the energy
of radiation traveling in a particular direction;
one only needs to view it from an appropriately
moving Lorentz frame.

The situation is quite different for the Coulomb
field (which can be separated invariantly from the
radiation field). The quantum-field-theoretic mod-
ifications of the 1/x' law have been explored little
beyond the lowest orders of perturbation expan-
sion. In particular, the question of the existence
of a maximum electrostatic field strength is left
open. While it is obvious that nonelectromagnetic
interactions modify the emerging picture, it is
nevertheless of considerable interest to explore
this question for a theory which recognizes only
electromagnetic interactions.

Such a study must clearly use nonperturbative
techniques. These are rather difficult to come by
and one must resort to semiclassical methods,
with the understanding that the results must be
viewed with suspicion and only as a possible indi-
cation of what might be the actual situation.

One of the very few nonperturbative results of
quantum electrodynamics is the effective electro-
magnetic field Lagrangian first derived by Weiss-
kopf. ' It was later rederived in a different way
by Schwinger. ' This Lagrangian utilizes the exact
solution of the Dirac equation for an electron in an
external, almost constant field. The polarization
of the vacuum due to electron pairs described by
this solution is fully taken into account (to all
orders of the external field, but excluding radia-
tive corrections due to virtual photons) and the

expansion in powers of n yields the usual well-
known result.

If one wishes to restrict this. Lagrangian to an
electric field (which can be done invariantly) one
finds that it is a complex-valued functional of the
field, the imaginary part describing the probability
of pair pioduction by the field. In the following we
shall concentrate our attention on the real part.

For large fields the Lagrangian is highly non-
linear, and it is far from trivial to determine
whether it implies an upper bound on the field. At
this point a method comes to mind which had been
forgotten for a number of years: the classical
model of Born and Infeld. ' In this model a Lagran-
gian was invented with the express purpose of
yielding a maximum field strength and with it a
finite classical electron self-energy. Obviously,
this Lagrangian was entirely ad A,oc.

In contradistinction, the present Lagrangian is
an exact consequence of quantum electrodynamics
and is a nonperturbative result as far as the ex-
ternal field is concerned. Does this Lagrangian
lead to similar qualitative features as the Born-
Infeld model' ?

Before answering this question we note an essen-
tial difference between the Born-Infeld model
(and similar models) and our case here: In the
Born-Infeld model the electromagnetic field La,-
grangian was intended to describe the electron as
well, so that no separate matter field need to be
introduced; the electron is stable as a purely
eleetromagnetie particle derived from that non-
linear Lagrangian. The Weisskopf Lagrangian
does not describe a closed system but only the
pair-production effects of an external field.

It is therefore not surprising that the present
Lagrangian by itself does not describe a stable
electron. The matter terms are essential for a
closed electromagnetic system, in that the "ex-
ternal" field has a source and becomes part of
the system and its dynamics.
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But if we restrict quantum electrodynamics to
the static limit of a single electron, which limit is
essentially a classical system, then we find a
surprising result: The vacuum polarization ef
fecis modify the Coulomb field to such an extent
that these is a minimum electrostatic electron
radius r;„and an associated maximum electro-
static field strength Emax.

The physical picture that brings this about is
not well understood. At very large distance from
a static charge e the Coulomb field D = e/(4n'x')
coincides with the field strength E. At low fields
(i.e., not too close to a static charge) we know
from perturbation expansion that a test charge
would see a field strength E which is less than
D, i.e., less than what would be present without
the polarizability of the vacuum; thus, at these
low field strengths the vacuum acts like a dielec-
tric with a dielectric "constant" e =D/E&1—. This
was known to the earliest authors. '

However, as the test charge approaches further
the semiclassical picture tells us that the effective
polarization diminishes again until e reaches e =1;
then the polarization changes sign, yielding an
e &1. The smallest value e reaches is o/(3r), at
which point D as a function of E has a maximum.
This maximum is responsible for the fact that the
test charge cannot come closer than a certain
minimum distance z,„. Mathematically, Max-
well's equations derived from the Weisskopf La-
grangian have no solutions for values of x less
than r,„;„.The double-valuedness of E as a func-
tion of D (and therefore r) permits us to accept
only one branch (the lower one) as physically
meaningful. Thus, there is no D larger than Dm.x.

Alternatively, this situation can be viewed in
terms of a bare charge eo surrounded by vacuum
polarization which diminishes its effectiveness, Bs
measured by E, i.e., by the force it exerts on a
test charge. At very large distance one sees the
physical charge e&e, (Z, &1). As one approaches,
one sees at each distance a different effective
charge which is at first less than e (e &1) and
then, at smaller distances, greater than e. The
effective charge increases until the minimum
radius is reached.

If we accept this result we find a number of
interesting consequences:

(a) The field-theoretic modifications of the
Coulomb potential energy between two static point
charges are such that this energy reaches a maxi-
mum corresponding to a minimum distance be-
tween the charges. The Coulomb behavior persists
in shape but is scaled (by a factor 2) since the
(larger) bare charge is more effective at this
distance.

(b) If one uses the above minimum distance

(maximum momentum) as a cutoff on divergent
integrals, the charge renormalization constant
Z, so computed cannot reach zero, but reaches
a finite lower limit.

(c) The bare electron mass is of order n and
could be zero, corresponding to the fact that all
or almost all of the physical electron mass is
electromagnetic.

In Sec. II we shall derive the maximum field
strength, followed by a discussion in Sec. III.
Then in Sec. IV we shall explore its consequences
for quantum electrodynamics. Section V contains
concluding remarks.

II. DERIVATION OF THE MAXIMUM
FIELD STRENGTH

As a preliminary which will also introduce our
notation we summarize the pertinent results pre-
viously obtained.

The Weisskopf Lagrangian is a functional of the
two invariants

and

9=—'F E"' =B EPII

where the star indicates the dual. It does not
depend on the derivatives of these invariants; these
are assumed to be negligible. 4 By means of the
complex variable X defined by

X' = (B+iE)' = 2(F +i 9)

Schwinger' has written this Lagrangian in the form

1 &" ds „2, , „Recosh(esX)
8~' „0 s' Im cosh(esX)

—1 —-', (es)'F .
The invariant electric field limit 9-0, 5 & 0 leads
to a complex g. Schwinger showed that Z can be
separated into its real and imaginary parts by
integrating along s =x+i&, just above the real
axis. One finds an imaginary part P, which de-
scribes the probability of pair creation per unit
space-time volume; this part is of no concern to
us at the moment. The real part becomes' with
8=0

2 oo

Z, (E) = ,E'+
2

t —,c-ospt(t cotht —1 ——', i'),
~o

(2.1)

where o. —= e'/4w =1/137 is the renormalized fine-
structure constant and P = m'/eE is dimensionless.

We have investigated this integral in some de-
tail, but only the limiting cases are of interest
here. When E is sufficiently small (P»1) the
integral in (2.1) yields the well-known perturba-
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tion-expansion result

4n'
Z, (E)=-',Z'(1+, E') (E«m'l. (2.2)

—cosPt =-,' In(yPn ) +O(P'm').

But when E is large (P «1) the situation is com-
pletely different. In that case the dominant con-
tribution to the integral comes from the last term
in parentheses, yielding

Q
Dm~ ~ Emsx p38 (2.8)

where E is that value of E for which D attains
its maximum,

If e is defined as D/E we see that c & I for small
fields and e &1 for large fields.

The result (2.7) shows that, as y decreases, D
and E both increase monotonically up to the point
where D has a maximum as a function of E; there,

The contribution of the remaining integral is O(1).
Thus

z, (E)=lE'(I+
~

ln(yPw't+o(a)).

2Sl 37'/~ 3/2
max =

K

This occurs at a radius

(2.8)

(2.10)

Z, (E) =2E 1 —
3

ln 2 (E»m },
~E

(2.3}

where a is a constant of order 1 which takes into
account all terms of order n.

The Maxwell equations which derive from the
Lagrangian (2.1) for a source-free region are

D=O,

v D=O
(2.4)

This expression can be written more conveniently
as as follows by an easy calculation. (Note that e

here is 2.718. . . , while the electron's charge
occurs only in n. )

Thus, a minimum radius emerges from the
double-valuedness of E =E(x) at very small x,
because this function has a domain of v~x,„, and
only the lower branch can have physical meaning.

The numerical value of x;„ is much smaller than
any length of physical interest. Its meaning lies of
course in the field-theoretic interpretation of x-
as a cutoff length corresponding to a momentum
cutoff

(u = I, 2, 3).

For a point singularity at the origin (point charge
e) the spherically symmetric solution which van-
ishes at infinity is uniquely

D = er/4nr'

a -- — =WC me"'".1

~min

This cutoff refers to static interaction only.

III. DISCUSSION

(2.11)

Here e is the renormalized charge, as seen by a
test charge at large distance. Since we have
spherical symmetry, D„=(D[=Dand E„=(E(=E. —

The last relation (2.4) then gives D as a function
of E, i.e., it gives the constitutive equation of
the vacuum,

Bgi
BE

(2.5)

(2.8)

while for large fields (2.3) gives

e =D
4ny

=E 1 — — ln 2
E»m~ . 2.7

6m 3n m'

For small fields this becomes with (2.2) the well-
known

An obvious objection to the results of the pre-
ceding section is that they were obtained under
assumptions for which the Weisskopf-Schwinger
Lagrangian is not applicable. This Lagrangian
was derived for almost constant fields. Near the
Coulomb singularity such an assumption is clearly
violated. 4 V E does not vanish and for small
distances can easily exceed m~E~. In fact at Emax

one finds that V ~ E diverges.
Since this argument seems very convincing let

us look at a physical system for which the Vfeiss-
kopf Lagrangian certainly does hold. Consider
a parallel-plate capacitor of infinite plate size
producing a constant homogeneous electrostatic
field. If the voltage difference is large enough the
expression (2.3) for g, will be valid, and so will
be the field equations (2.4) as well as the relation
between D and E, the second equality (2.7). Thus,
all these equations hold quite independent of the
boundary conditions for which the field equations
are solved.
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This implies that D(E) will have a maximum also
for the constant-field case and Eqs. (2.8) and (2.4)
still hold. The difference becomes apparent only
when we ask how D is determined by the external
conditions. In the parallel-plate capacitor we
have D=a, the charge density on the plates, in-
stead of Coulomb's law. As we increase o, i.e.,
D, we see that E will also increase. But this
continues only up to Dm~ . The equations do not
allow for an increase of the charge density o be-
yond amax =Dm~. Thus the only liberty we have
taken in the preceding section was to apply this
rigorous consequence of the Weisskopf-Schwinger
Lagrangian to the Coulomb case.

Another question that may be raised is whether
the spin of the electron (and the associated Fermi
statistics) may have something to do with this
impossibility to exceed a maximum field.

It is not difficult to show that for charged par-
ticles of spin re~0 the real part of the Weisskopf
Lagrangian, the analog of (2.1), is

where

m2
(3.5)

For small B this leads to

g=--'B' 1 — n'B'
45m

(3.8)

so that

=B(1—,B). ' (3.7)

in this approximation.
For large magnetic fields one finds

This is completely analogous to the electrostatic
case (2.2) and (2.6}, yielding

I3 8n'
p, —=—=I + 2 B &1a 45m'

oE' ""d t
Z, (E) =-,'E' — —,cosPt . —1+-'t' .

4m .0
t' slnht

(3.1)
The low-field limit now becomes Thus,

1 — ln
n t&B

3r m2 (3.8)

Z, (E) = ,'E'
(1 ~ E, E'-) {E &m'), (3.2) (3 8)

which is a known result. The high-field limit is

K'E
E, (E)=-,'E'(1 — ™{n,) (E I'), (3.3)

(ea)'—-2 , e '(tcotht —1- ', t'), —

(3.4}

with I!."' having the same significance as ~.
Thus, all high-field results of spin —,

' remain
valid for spin 0 if only one replaces n by ~o. and
a by K'.

The ability of the electric field to permit the
production of zeal pairs in addition to virtual pair
production is of course responsible for the com-
plex nature of the Weisskopf Lagrangian. And
since we ignored the imaginary part, it can well
be argued that our result is meaningless, being
associated with a highly unstable system in which
a more careful calculation would be necessary to
be convincing.

For this reason it is of interest to consider the
limit E-0 in Z. The case of a purely magnetic
constant field leads to a zeal Lagrangian for which
the above objection cannot be raised: A constant
homogeneous magnetic field cannot produce real
pairs.

One now takes the limit 9- 0, 7- -2B and finds
for spin —,

'

n n KE zE
D =E 1 — — ln, —~c„ ln

6m Stt m' „2 " m'

(3.10)

In order to see what this may do let us assume
that

an-1

3))' (n —1)! (3.11)

where a must clearly be of order n. Then the
sum can be carried out and one obtains

and we see that the purely magnetic case is com-
pletely analogous to (the real part of) the purely
electric case also for very large fields: One finds
an Hm~ despite the fact that no real pairs can be
produced in a constant magnetic field. The maxi-
mal fields are equal: Hm~ =Dms, Bmax =Emax .

Finally, the approximate nature of the Weisskopf
Lagrangian should be recalled: It neglects radia-
tive corrections to electron propagators. How-
ever, it is difficult to believe that this approxi-
mation would cause a qualitative change in the
results presented here.

As an illustration how this physically reasonable
assertion may emerge mathematically one can
consider the following example. It is plausible
that radiative corrections modify (2.7) as follows:
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Q Q KE KED=E 1— ln
6m 3m m2 m2 (3.12)

A simple calculation shows that the factor (xE/m')'
has little effect and that the maximum obtained
from (3.12) is qualitatively the same as the one
obtained from (2.7). We shall return to this ques-
tion at the end of the following section.

IV. CONSEQUENCES

If we take seriously the high-momentum cutoff
suggested by (2.11) then all calculations of radia-
tive corrections must take this cutoff into account.
In the following we shall do so for the estimate of
radiative corrections to the photon propagator, and
we shall obtain a corresponding potential energy
between two static charges. We shall also apply
it to the estimate of the radiative corrections to
the charge renormalization constant Z, and to the
electron self-energy. These results will of course
be speculative, depending on (2.11).

We define our free causal photon propagator as
D,(k') = (4m'k') ', with the usual Feynman contour.
We also have the well-known relation between the
renormalized propagator D'„and the unrenormal-
ized one D,',

(4.1)

where for very large O', D,'=-D, . The one-photon
exchange contribution to the potential energy be-
tween two static point charges then becomes'

where

3w, ik.'[
m

and k ' is the cutoff on the divergent integrals.
If we substitute

k B=m2Ce "~", C =
3K

(4.6)

we find x =-lnC and

a (C —1)lnC
3m 1+C(lnC —1)

' (4.7)

This function is monotonically decreasing and
reaches Z, = o./3m asymptotically for C -~. It
ha.s the value Z, =2n/3w for C = l. One finds that
Z, &1 for all values of C greater than exp(-3m/n).
The latter value is of course unreasonably small,
since it would mean r,„-1/m. . Thus we are led
to the result

g
37'

(4.6)

with the most likely value near the lower limit.
The estimate (4.6) for C yields less than 10 ' when
K = 1, a small enough value for S, to be well ap-
proximated by (n/3m)(lnC).

The best closed expression for the electron self-
energy known to us is the one derived by Landau
et al. ' which gives the bare mass m, in terms of
the physical mass m as

V(r) =2m D'„(k') e'" "d'k, (4.2) m, =m 1 — ln —,

V (r..) = [I +O(n) j
rmin

(4.4)

This is to be compared with V(r) = n/r at large
distances. Vacuum polarization therefore in-
creases the Coulomb potential energy between two
charges at small distances until it reaches exactly
twice its classical value.

The renormalization constant Z, can be esti-
mated' by a partial summation of diagrams which,
one can argue, ' give the leading contributions,

(4.5)

where Q is the renormalized fine-structure con-
stant, a=1/137. For small n this yields asymp-
totically'

Q 2Q 1
V(r) = —1+ ln ——' —Iny +O(o.')

3m mr

(4.3)

With our result (2.10) the maximum value is
reached at r =r, viz. ,

where A is the upper cutoff. Using km~ for A,
(2.9) yields

mo=m ln—

i.e., suggests C &1 and a very small and possibly
vanishing bare electron mass.

Conversely, if we require m, =0 we obtain a
cutoff

A=me"~

which is very close to the value kmax of (2.11),
and which gives Z, = o./3m from (4.5).

These considerations are related to the work
of Gell-Mann and Low' in tOro respects. First, it
is noted that Z, and m, /m are here found without
any explicit reference to the bare charge. The
high-momentum cutoff which emerges from the
maximal field strength considerations is provided
by the theory itself and is not put in ad hoc. This
intrinsic cutoff depends only on the renormalized
charge.

Gell-Mann and Low also found that the renor-
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malized photon propagator is independent of the
electron mass and its asymptotic form can be
obtained from the limit m -0. Here we find that
the same intrinsic cutoff which makes ma =0 (or of
order o.') also determines Z, and thus fixes the
asymptotic form of the photon propagator.

A vanishing bare mass dominates the electro-
dynamics of Johnson, Baker, and Willey. ' Their
work would correspond to C =1 in the above equa-
tions.

It must be mentioned here that Gell-Mann and
Low' and Johnson, Baker, and Willey' presented
arguments in favor of a finite Z, such that the
coefficient of the logarithmically divergent parts
of this renormalization constant would vanish.
This suggests, but does not imply, that the finite
renormalized vacuum polarization contains no

logarithm for large fields. " While there is no

rigorous proof for such speculations, one may
arrive in this way at the opinion that the higher
radiative corrections modify the results presented
here in a qualitative way and do not permit a k „.

On the other hand„ if one assumes that the exact
solution of the Dirac equation is a qualitative
guide to the exact renormalized solution of quan-
tum electrodynamics, one is led to the result that
vacuum polarization provides a natural cutoff of
the Coulomb field so that the charged particles
are not point singularities, but have an effective
finite size even in the absence of other (e.g. , weak)
inter actlo ns.

Finally, the stability question of the quantum
field-theoretic electron is not affected by these
considerations. The electron is stable (the self-
stress vanishes} simply as a, consequence of having
only one fundamental length in the theory" (viz. ,
1/m). The finiteness (i.e., any cutoff) of the self-
energy suffices to yield a vanishing self-stress.

V. DISCUSSION

The double-valuedness of E as a function of y,
Eq. (2.7), corresponds to a field distribution re-
mindful of a situation in general relativity: Two
(outer) Schwarzschild solutions can be joined to
form a single (double-sheeted) surface which, in
suitable coordinates, is free from singularities"
(Einstein-Rosen bridge). Thus, in vacuum polar-
ization as in the Schwarzschild solution the double-

valuedness of a function leads to a description in
terms of two sheets, only one of which is physical;
these sheets are joined by a "neck" which in some
sense is the radius of the object.

The prevention of the point singularity in electro-
dynamics as a consequence of the highly nonlinear
behavior of the theory for very high fields is a
most desirable feature. As was pointed out re-
peatedly by Einstein, a consistent field theory
should not describe its sources as point singulari-
ties.

We have shown that in order to obtain a singular-
ity-free static field in quantum electrodynamics
reminiscent of the Einstein-Rosen bridge, one
can proceed in two steps. First one shows that
for a constant external field the Weisskopf La-
grangian predicts a maximum field. Then one
assumes" that these results can be extended to
the Coulomb field where the same E leads to
a minimum radius.

If one accepts these arguments then one con-
cludes that at least for static fields quantum elec-
trodynamics provides its own cutoff, replacing
the point charges by finite-size objects.

We conclude with a statement about the nature
of this paper. We are presenting a conjecture,
i.e., something that cannot at the present time be
either proven or disproven. The arguments which
we give in favor of this conjecture are not proofs
and are not meant to be proofs. Their strengths
depends on one's individual prejudices. But an
honest and objective statement can only be "we do
not know" when confronted with unproven asser-
tions. In order to save time and energy to the
readers we summarize here the main open ques-
tions relevant to our conjecture.

(1) We use a Lagrangian for almost constant
fields for a situation in which the fields are not
constant. Whether this leads to qualitatively
incorrect results is not known.

(2) We neglect radiative corrections. Whether
this leads to qualitatively incorrect results is not
known. Some arguments pro and con are presented
in footnote 10.

Despite all this we felt that the conjecture of the
existence of maximal field strengths as a conse-
quence of the (so far hardly explored) nonlinear
nature of quantum electrodynamics is of sufficient
interest to have others think about it.

*Some of the results presented here are contained in
a thesis submitted by M. Greenman in partial fulfillment
for the requirement of the M.A. degree.
Work supported in part by a grant from the National
Science Foundation.
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