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Motivated by quantum gravity (where multiloop and in particular one-loop corrections pose
large problems) we study the zero-space dimension P4 model. A nonperturbative solution in
the one-loop approximation for the relative vacuum amplitude is obtained. This amplitude is
found to be nonanalytic in A,. This has possible implications for the gravity-modified quantum
electrodynamics as proposed by Salam. The gravity Green's functions (at least the two-point
functions) have a logA. -type behavior. We discuss why it is plausible that summation over all
orders in perturbation theory may change this logk dependence. We use an approximate con-
nection between the Schwarzschild radius of the electron and the behavior in A, to suggest
plausible effects of quantum-loop corrections on the Schwarzschild solution.

I. INTRODUCTION

Ever since field theory was formulated it has
been a major problem to go beyond perturbation
theory. There are innumerable questions of inter-
est which require a nonperturbative treatment for
their solutions. However, we have been mainly mo-
tivated by attempts in quantum gravity to under-
stand quantum Quctuations about the classical so-
lutions (for the metric).

Intuitively we can see why nonperturbative treat-

ments are required. The classical solution can be
built up by summing all tree graphs. " In fact in
a recent work Duff' has explicitly shown this for
the Schwarzschild solution using an extended
source (since point sources give divergent tree
diagrams in his case); so we see that the classi-
cal solution is already a nonperturbative one. The
natural extension of this program is to sum up all
diagrams with one loop. The eventual hope is that
a correct treatment of quantum fluctuations will
remove the genuine singularities occurring in
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classical gravity. We have a nontrivial example
of this action given by the action functional

I= ~
LP(f)4(~) —P(~)e'(&) —& [P(f)])~f

[with P(t) &0]. This example has been studied by
Klauder4 and he calls it an elementary model of
quantum gravity. The classical solution of this
model exhibits singularities but these disappear
in the quantum theory.

The Einstein functional is however incomplete
since it gives rise to a nonunitary theory. Ficti-
tious particle contributions are needed. Alterna-
tively this latter contribution can be thought of as
a consequence of the presence of the non-Abelian
gauge symmetry. One way of summing all one-
loop corrections to the tree graphs is to use Feyn-
man path integrals and make a particular approx-
imation for the action. This is a program sug-
gested by Blokhintsev. ' We now give the form of
this approximation. Following DeWitt' we adopt
the notation below.

S: classical action (without source term)

quantum field where i denotes a label rep-
resenting all the indices both continuous
and discrete,

J;: source function,
iw[JJ

v w[z]

where

5
, ig ih

Owing to the extreme algebraic complications of
the Einstein and gauge-breaking parts of the action
functional we will not deal with this case. Instead
we shall deal with the model

where I; denotes time. This obviously does not
have gauge symmetries, and also no problems of
renormalization arise, but it is a nonlinear inter-
action and gives rise to a Hamiltonian with positive
definite spectrum. This requirement is quite
closely connected with the fact that the signature
of the space-time manifold is an invariant under a
classical or a quantum action and hence we have a
tie-up with Klauder's model [where P(t) &0 ensured
the invariance of the signature].

We manage to obtain a closed form for the path
integral for paths between configurations at time
t, and at time tb. Some of the finite number of pa-
rameters in the solution are given implicitly (i.e.,
are determined by certain complex equations).
However unrealistic the Lagrangian is, it still
throws light on possible behaviors of quantum field
theories. However, it must be stated that an in-
crease in dimensions may change the nature of the
solutions drastically. At the moment unfortunately
there is no prospect of solving I,;„,= X/ (x) with x
a 4-vector. Symanzik's' Euclidean field theory,
although an interesting approach, still has difficul-
ties with renormalizations. It is easy to obtain an
expression for the self-energy functional as a de-
terminant of a continuous matrix. The usual Fred-
holm methods just reproduce the perturbation dia-
grams of Feynman. Hence the program suggested
by Blokhintsev for calculating quantum fluctuations
to gravity needs more powerful methods to work
out determinants. Our success is that in the case
we have considered we have managed a nonpertur-
bative solution for the determinant. Our methods
are drastically different from those used by
Simon. s

Of course the implications for quantum gravity
from the study of such a model by necessity have
to be somewhat intuitive. The effect of quantum
gravity in hadronic and leptonic interactions has
recently been stressed by Isham, Salam, and
Strathdee. ' In gravity-modified quantum electro-
dynamics the effect of gravity is to remove ultra-
violet infinities and instead have a factor ln~
(where A. is the gravitational coupling constant).
However, no summation in perturbation theory was
attempted in our sense. Only the two-point func-
tions were considered, and it was hoped that high-
er-order calculations, if ever done, would not
change the result. We will see in the next section
why the behavior with respect to A, may change.
Now Weisskopf (as noted by Salam et al. in Ref. 9)
has interpreted the infinity suppression in electro-
dynamics as connected with the limiting frequency
of a standing photon wave in the curved space-time
around an electron. Such a photon has the wave-
length given by the Schwarzschild radius and it is
not unreasonable to regard this as the definition
of the latter. From general relativity this limiting
frequency is I/3m, (where m, is the electron
mass). Using Weisskopf's formula for 5m, /m,
we get something proportional to ln(1/3m, A.). In
this we have a sort of connection between the
Schwarzschild solution and the analyticity of our
S-matrix elements. We can perhaps get some idea
about the effect of higher-order quantum correc-
tions on the Schwarzschild solutions from this. If
for example the A. behavior becomes (Ink)A. "'
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owing to quantum-loop corrections, the Schwarz-
schild radius behaves like X exp(-X '~').

II. THE PATH INTEGRAL

We consider

with

na = (1 —xc')y, ',
k' = -2~C2(n2)-'

L = --' ~'[ q(T)] ' +-'.
I. q(~)] ' +-' &[ q(~)l ' .

The equation of motion is

q'(~)+ I"q(T) = &[ q(~)l '.
A class of solutions"'" is given by

q.(T) = ce(n~),

(3)

(4)

and

e(y) —= cn(y, k) + i sn(y, k) .

As A.- 0, k- 0, e(y)- e". We define q(t) by

q(r) = q, (T) + I '"q(T) .

Hence

t~
s,[ q(T)] =s[ q.(T)l+ @Jt ~7 4[ i(T)] '- -'t '[ n(~)l'+-'&q. '(~)n'(7)}

ta

since

(8)

d7' (-~ p, [ q(T)] + 2 [ q(T)] + 4 X[ q(T)]

~At~
s[ q, ] = — d(n7)(-,'c'n'[e(n7)]' ——,'q'c'[e(n~)]'+-,'~c'[e(n7)]'}.

& Qtg

The details of the calculation of S[q,] are somewhat long but straightforward and so will be given in an
appendix.

nS[q, ] =[F(u)]„„,—[F(u)]„„,, (8)

F(u)=Z(u) ~C'n'1 ——, —,+2~C'

k'2
+u —,'C'n', ——', p.'C 1- k, + 4(14k" +k' —3k'k''+2) +snucnudnu -3'C'n'+

and where

It is known that"

u~(q)e ' ""F(q}=Jt u (q)e ' ""'F(t'"q}
where B~(q) is Wiener measure and u~(q) is Peynman "measure. " Now

J
t

~,h)e """"'»g(! «Qx') l~f(0)l "'=
for the conditional integral where

f"( )TQ+(~)f(~)= 0, f(t)=o, f'(t)=-1

(10)

(12)

(We can take the initial and final times as 0 and t, i.e. , t, =0 and t, =t, without loss of generality. ) We are
interested in
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t~
K(&; ~) = &E(rl) exp — ~[ q.]+@ (~2[ r)(r)l' +n'(r)[ 2/iqc'(r) —2V'1 ]«Jt

t
= exp —S[q,] J( g)~(q) exp i (—,'[ r)(r)]'+rt'(r)[ ~/lC'e'(Qr) —~ t/, '] j dr. (13)

Strictly speaking (10) is a valid equality when

(q(t) = q(0) = 0} or (q(0) = 0, q(t) unrestricted). How-

ever, the original approach of C. M. DeWitt" does
not make this restriction and for our consider-
ations this is of no interest. The relevant version"
of (12) for us is

f "(7)+[ii/,
' .—SAC'e'(Qr)] f(r) =0.

The singularities of e(u) within the period paral-
lelogram (4K, 4K+4K') are simple poles at

We require

m+m' 2mP
d)~

—
)

+ ~ ~ ~ = SAC'e'(Qr) —m'.

However, we already know the singularity structure
of the right-hand side of (21). The solutions of (14)
are doubly periodic —at least of the second kind.
Hence one possibility is

~ 3
+Z2 (d

1P

(4K+i3K') with residue 2i/k
m+m =-

2 2AC,2=- 12 2 (22)

~/0
(1 jP sin~8) i/~dg

W/2

K' —= (1 —k' ' sin'8) ' d 8
0

(6K+iSK') with residue -2i/k,

where

(16)

6Z . . . 12~C2
-2mp = —A((u+ i—,

' (d')XC' ————
kQ k'0 0

The other possibility is

13d —= —(—,
' e +i ~ e ') -=d,

m+ m' = -12k.C'/O'Q', (23)

For convenience we let &o =4K and &d' =2K'. e'(u)
has of course double as well as single poles. From
above, within the fundamental parallelogram
(id, CO+2(d )

2i/k 2i/k
e(u) —— ., —,—— —. . . +A(u) (17)

Q —(d —Z —(d g ——(al —Z —402 2 2

[where A. (u) is analytic and free from singularities
within the parallelogram]. Consequently within the
fundamental parallelogram the double-pole terms
are given by

6iXC2 3, , 12XC2
-2mp =--& A( —,'sr +i—', id')

It is necessary that m be a positive integer if we
are to have doubly periodic solutions. Now

12ZC2
m2+m+ 2 2 =0.

p2g2

This implies that

1 48~C' '/'-
m= — -1+ 1—

2 $2g2

z [ u —(cd +Squad )] —
& [ u —(q(d +t~cd )]

and the single-pole terms are given by

—A(u)(u —id —i—,~ ') ——A(u)(u ——,(u —i—,(u')
2i -I 2Z 3 «3

(18a)

Thus we need

48~C»/2
k'0' —1 =positive integer .

Now k is a variable parameter and so can be taken
imaginary (say) to make (25) realizable. We will
introduce Weierstrass's cr function:

+ —(u —hl —lK(d') '(u —(d-l —,&d') '. (18b)

We consider

f(r) =- ——[1+P(r -d)+q(r-d)'+" ] (18)(r -d)

( )
—

1 e«/K«K /2K
l«4 4 ~ i««i K

where v=2m++2m'o. ', the ratio of n':n not be-
ing purely real; we have

1 d'f m+m' 2mP
f dr' (r —d)' (r —d)

+positive powers of (r —d). (20}

v(z+2mn) =(-1)"e'"' """' c(z),

o(z +2'm)n=(-1) e'"' ' ' " 'v(e},
(27)

where r/' =5(n ')/o(n) and rt =o(n)/a(n); in our case
n =e, n' =++2''. Every doubly periodic function



1064 S. SABKAR

of the first kind must have zeros and infinities
within the fundamental parallelogram unless it is
a constant. If f(t) is a function with its set of in-
finities given by ( c;

~

1 & i & n]. in parallelogram of
periods containing t and with a set of zeros given
by [y, ~

1 - p - n] (repeated zeros and infinities ap-
pearing the relevant number of times in the above
sets), we associate a function

—md'(t d,)- (35)

df 2 ill

—d—= p+ p g(t —y, ) —mg(t-d, ) —mg(t d-, ),
s=1

(34)

1 d'f 1df ' 2™

f dt' fdt Q (P(t —y, ) —m(P(t - d, )

(t) 1 2o(t- r )o(t- r ). o(t- r )fi ePt
o (t —c,)o(t —c,) ~ ~ o(t —c„)

where p is a constant.

f(t+2n) =f(t)e'""" "'"'"
f (t +2n I) f (t)e22 {zc(- gzj~+2P tx

If we choose

(28) The next steps should now be clear. We obtain an
expansion of (1/f)d'f/dt' in the vicinity of t=0
and then compare the coefficients of this expansion
with the coefficients of the known expansion of
3&C2e'(QT) —m' about the origin. Now

1 (P'(u) -(P'(v)
(P(u+v) =-(P(u)-(P(v)+ —

( ) ( )

Z ;c-Zr;= (( &(u+ v) = K(u) + g(v) +
2

1 (P'(v) -(P'(u) (36)

2'gc +2 p Q

2n'a+2 p n' We shall consider the case m=1. This will illus-
trate the method of solution adequately.

f (t+2n) =v f(t),
f(t+2n') =v'f(t)

since

f(t+2n) =vf(t),

(29')

o(T —r, ) (o~ —y2)J(~) =
o(7 d, )a(r -- d2)

~ ep'.

It is easy to show that

1 df——= U+Xt+ Ft2+Zt3+ ~ ~ ~

dt

where

(37)

(38)

f(t)/f(t) =constant. (30)

These considerations will form the basis of our
solution of (14). Using the quantities defined by
(22) and (23) we consider

f (t + 2n ') = v' f(t), by supposition .
f(t)/f(t) is a doubly periodic function of the first
kind with no zeros and infinities in the finite part
of the t plane. Hence

x =(P( d, ) +(P-( d2) (P-( r,—) (P-( r2—), -
Y = 2[(P(-y, ) +(P( r2) - (P-(-d, ) —(P(-d2)]

Z =(P'( d, ) +(P'(-d, ) (P'(-r, )—(P'(-r.)—, -
V=p. ~( r, )+~-(-y.) ~(-d,—) ~(-d.—)

Moreover, in a neighborhood of t=0

3AC2e'(At) —p,
' =(3AC' —p,') +GiXC2Qt

f(t) =o(t -y, )o(t - r.) .(t - r..)

x[o(t-d, )] [g(t-d )]™e~'.
Now

(31)

—6~C'n2t'+ ~

1d'f
=, =(V'+2X V)+2t(2VY+X'+XV)

(39)

(32)

f(z) =(1/z) —vox, z' - m a'2z'-
z2n-1 P' +-2n

(P(z) =(1/z') + ~2g2z2+ ~g2z4 —~

+(2n —1)z'" 'Q'~ '"+ .
Now

Lno(z) =Lnz -Q —z'" Q'(~ '").—.2"
in a neighborhood of z =0 [cf. (26)] where P' de-
notes summation for all (( (40). Hence in a neigh-
borhood of z = 0

+ 2t 2(3 VZ + 3X Y + VY + 2 X ) + ' ' ' . (40)

Hence the three conditions which determine
p~ p1~ +2 are

3A.C' —p,
' = U2+2XU,

3iAC Q = 2UF+X +X V,

-3AC Q2 = 3UZ + 3 X Ã + UF + ~ X

From general theory we know that (41) gives two
different sets of values for (p, y„y,}. The two
sets are denoted by

(p(J) y(i) y(J)]. j —1 2
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The solution of (12}is given by

f(7) =D,a(7 -y,' )o(r-y2' )[o(T—d, )] '[o(7 —d2)] 'exp(p' ) )

+D2o(7. - y", ) )o(r —y(22) [o(7 d-, )o() —d, )] ' exp(p"'7 ), (42)

where

p(1) 1D = o(t —di)o(t —d2)
[ (2) (1)+ (t (2) ) Z(t (2) ) g (t (1) ) f(t (1) )]

-I
ot —y, -y

e D =- () () [p —p +f(t —y )-&(t-y )+f(t —y ) —0(t —y )]p(2) 1
o'(t —di)(r(t —d, ) (2) (1) (2) (1) (2) (1) -1

o(t-y; ).(t-y: ) 1 I 2 2

Now we have

K(t), a) ='(( '"
exp-S[q,]—

(4')

As )(- 0 we require )1/k'- a (0) as A.- 0. We then
have

2Q
e.(e)-(-—, exp((pe). (4 ll)

However, the kinematics in this one-dimensional
field theory is not interesting. The interesting
thing we can extract (or obtain some idea about) is
analyticity of K(b, a) in A.. Inspecting (8), since 02

is -2/(k' —2/p. ') and C2 is )(. 'k'/(k' —2/)1') we see
that S[q, ] is nonanalytic in X. The other factor
contributing to K should represent nonclassical
effects. We may well expect similar nonanalyticity
in A, to be present.

The Weierstrassian 0 function has no singulari-
ties in the finite part of the complex plane and this
applies also to the exponential function; so singu-
larities occur when the arguments have singulari-
ties (i.e., when y„y„p have singularities). The
factor [o(d,)a(d2)]'~ is unimportant in the sense
that it is solely a function of k which is a parame-
ter which labels the set of classical solutions that
we have used. It is the case, however, that AC'

is independent of A), and so the singularities of y„

[o(di)o(d2)]'"
[D o(y(1) )o(y(1) ) +D o (y(2))o'(y(2) )]1/2

(43}

(43) is an extremely complex expression. We shall
try to understand some of its implications. We
shall first elaborate a little more on the classical
solution given by (4).

y» and p will be in p. and k. It is quite remarkable
that the nonclassical terms do not contribute to the
nonanalyticity in A. here. Of course if we choose k
to be dependent on A. this will no longer hold. We
can make our solution more explicit by calculating
y» y» and p. Taking y» y, small we can replace
the second equation in (41) by

1 1
3ZXC20- —,+ —, (44)

(We should have 1/y„1/y, y2 terms but we really
wish to obtain qualitative insights and these terms
merely complicate the algebra. ) We can similarly
perform approximations for the remaining two
equations. We feel that the approximations are
meaningful since we have the values of K and K'
somewhat at our disposal (in the sense that they
are just functions of k which we can vary at will)
and basically we can make the d, and d, such that
y, and y, indeed turn out to be small. From (44)
and other similar equations we see emerging a
cut structure in k and p. . Our framework is par-
ticularly appropriate to quantum gravity; in fact
DeWitt' has shown that functional differentiation
with respect to the background field of the func-
tional that we have constructed gives all ampli-
tudes. Since we have been considering a one-di-
mensional model with no analog of gauges, we
must be cautious in extrapolating to quantum grav-
ity and in particular to the infinity suppression in
quantum electrodynamics via, the cutoff supplied
by gravity using an exponential parametrization. '
However, as studied in Ref. 14, the lower-dimen-
sional analogs are generally less singular in A. than
the higher-dimensional cases, and in fact the one-
dimensional analog gives two-point functions which
are analytic with respect to X. The above would
seem to indicate that such an analytic behavior is
destroyed when summation over the major cou-
pling constant is performed. It may well be that
the four-dimensional theory which seems usually
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to be more singular (than lower-dimensional theo-
ries) will also give a behavior more singular than
in'. (when we snm an infinite set of diagrams con-
taining chains of superpropagators}. However,
treatment similar to ours for the three-space-di-
mensional ease seems extremely difficult, and so
we can only make intuitive statements.
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APPENDIX

We give here the details of the calculation of S[q,].
~&t~

S[q, ] =Q ' &(Qt) f —,'C'Q'[ e(Qt)]' ——,
'

p.'C'[ e(Qt)]'+ —,'AC'[ e(Qt)]4).
&At a

We shall often have to use relations of the form"

(A1)

Jl snu cnudu = -(dnu)/k', (A2)

snu cnu dn"u du = „,dn "u, (A3)

cn'u dn'u du =,[ (1+0')E(u) —k "u+k' snu cnu dnu], (A4)

J
P sn" ucn~u

u = — sn" u cn~ 'udn 'udu —P' sn" u cn~ udn udu (A5)

where n+P - 1 —2m 0. Now

e(u) =-snudnu+i cnudnu.

Hence

(A6)

&Qa

where

du[ e(u)]' =
~u a

1 gg

k, A(u)
Q~

( Q~

&u (sn'u dn'u —cn'u dn'u —2i snu cnu dn'u)

(A7)

A(u) =, (k —2)E(u) +2k' u —2k2 snu cnu dnu y dn'u

Now in evaluating the remaining terms in (Al) we shall just expand the integrands as prodncts of snu and
cnu and then use relations such as (A2).

du[e(u)]' = u-
k
2[u —E(u)] —2i

. (dnu)

~u
f4 =Q

a

Similarly

(„)), 8()' -R)@(„)„((4it +).'-3k'I" +2)

8 k'+ 2k" 4i+, snu cnu dnu+4i 4 dnu — —
4 dn'u,

(A8)

(A9)

where we have evaluated f snucn'udu using (A5} with m=0, n=1, and P=3. Finally collecting together
terms, we have

S[q,] =Q-'[Z(u)]"„=„"',~,

where

(A10)
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2k ~ 2 2 2 14k +k 3k k +2

I

+ snu cnu dnu —,'C'0'(-3~) + &,
C'
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The coefficients of the Wick expansion relating ordinary operator products to normal
products define the transformation taking the single-time Tamm-Dancoff 7-function re-
cursion equation into the new Tamm-Dancoff (NTD) Q-function recursion equations. It is
shown that the P -function transformation can be constructed from the ground-state v-func-
tion recursion system for the harmonic oscillator, and that an infinite number of other
energy-level-dependent transformations can be constructed in the same way. The latter
allow for the development of a level-dependent NTD method permitting the accurate deter-
mination of transition frequencies through an accumulative level-by-level procedure, as-
suming knowledge of the ground-state energy. For the sample systems considered, the
procedure is self-contained and self-consisten+, the ground-state energy can be determined
within the context of the NTD method. Numerical results are obtained for several one-
dimensional nonlinear oscillators.

I. INTRODUCTION

The recursion formulas of the single-time new-
Tamm-Dancoff (NTD) formalism linearly and
homogeneously relate the components of an energy

eigenstate in a particular representation, the Q-
function representation. ' ' In the one-dimensional
case the components of the Q representative may
be considered as ground-state-energy-eigenstate
matrix elements of the single-time "generalized


