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Stability of the Classical Electron
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In this paper we show that in the classical theory of the electron, with the introduction of
a shadow electromagnetic field, the electron is stable in the point-particIe limit.

INTRODUCTION

It is wel1 known that the classical theory of elec-
trons suffers from some fundamental difficulties
such as the divergences of the self-energy and the
self-force. The divergence of the self-force im-
plies the instability of the electron. The usual
way to avoid the difficulty of these divergences
is based on the idea of renormalization. It has
long been considered as proper to assume that the
infinite self-energy of isolated electrons is phys-
ically meaningless, and can be subtracted away
by the renormalization method. '

The concept of renormalization has been ex-
tensively used in quantum field theory to eliminate
divergent quantities computed from the theory.
The results obtained are in remarkable agreement
with experiments. Nevertheless there are rea-
sons not to be satisfied with the conventional treat-
ments of the renormalization procedure. For ex-
ample, not all field-theoretical interactions are
renormalizable. Furthermore, the computed
mass difference due to electromagnetic interac-
tion is infinite, while experimentally it is finite.
Therefore, a genuine finite theory seems to be
favorable, although the renormalization proce-
dure might still be necessary.

The failure of having a finite theory is usually
attributed to the fact that within the usual frame-
work of quantized fields it does not seem possible
to describe a system with a local interaction. In
fact many of the difficulties caused by the use of
a local interaction are shared by both the classical
and the quantum field theories. One of the ex-
planations for the occurrence of the divergences
is that classical considerations indicate that for
any kind of matter coupled to the metric field in
the Einstein way, there are limitations on the en-
ergy densities and masses which can be concen-
trated or built up in a given region. Consequently,
the space-time loses its physically meaningful
character beyond such limiting densities, and
singularities then appear in the solutions. ' This
explanation seems appealing. However, it is not
yet clear whether the existence of the singu-

larities is essential in the problem of elementary
particles. It might be that gravitation does not
play an important role as far as the divergence
problem is concerned.

Recently it has been emphasized that the introd-
uction of states with negative norm provides a way
out of the divergence difficulties in quantum field
theories. ' In order to ensure the probability in-
terpretation, the concept of shadow states has
also been introduced. ' In the electrodynamic
theory, there is always an analogy between the
classical and quantum theories. However, it is
not yet clear w'hat is the counterpart of the shad-
ow field in the classical field theory. In this note
we show that in the theory of classical electro-
dynamics the introduction of a shadow field make
the self-energy of the electron finite and the elec-
tron stable.

LAGRANGIAN AND ENERGY - STRESS
TENSOR DENSITY
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M is the mass parameter of the shadow fieM.
The field equations for A„and A„are obtained
by variational methods as usual:
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Following the idea of the shadow field in quan-
tum field theory, we introduce a massive vector
field A„as the shadow field accompanying the
ordinary electromagnetic field A„. W'e may write
down the Lagrangian for the system of the fields
A„and A„ interacting with a current as follows:
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Here the Lorentz condition B„A."=0 is assumed.
The condition 8„A"=0 already follows from the
field equations.

The energy-stress tensor densities for A. „and
A „are respectively
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Similarly, from (6), (11), and (13), we have

The total energy-stress tensor density Z'„' is
the sum of T„"and T„',
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ELECTROMAGNETIC ENERGY - MOMENTUM
AND STABILE'Y OF THE ELECTRON
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The integration of (14) and (15) over 3-dimensional
space yields

The electromagnetic energy-momentum of the
electron is defined as
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where o is a spacelike plane. If P„defined in (8)
is indeed a proper definition for the electromag-
netic energy-momentum contributing to the elec-
tron's energy and momentum, it is supposed to
transform as a 4-vector under Lorentz transfor-
mation. It is well known that this is not true
when we replace T„' by T„" in (8).' In order that
P„defined in (8) be a covariant 4-vector and the
electron be stable, the following conditions have
to be satisfied:
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The subscript (0) means that the quantities are
computed in the rest frame of the electron.

From the field equations (3}and (4} we have

With (7), (16}, and (17), it is easy to see that the
conditions (9) are indeed satisfied. Note also
that the self-energy of the electron in the rest
frame of the electron is finite,
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all other components of the fields vanish. The
nonvanishing components of E""and EI"" are
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From (5), (10), and (12), we have

E(p) is inte rpr eted as the elee tromagnetic mas s of
the electron. The observed mass m is the sum
of the electromagnetic mass and the bare mass,
Sl py

1m =mp+ 2 M.

From (ll), we see that the range of the force
due to the shadow field depends on mass I, i.e.,
for small M the shadow field initiates a long-
range force and for large M it initiates a short-
range force. Therefore, if I is very small we
should be able to detect its effect easily. As we
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know, classical electrodynamics is in general in
fairly good agreement with experiments in low-
energy experiments. We might, therefore, ex-
pect M to be rather large, such that its effect
could be detected only in high-energy experiments.
The test of a very-short-range force effect will be
in the domain of quantum theory. In the experi-
mental test of the validity of quantum electrody-
namics, M is estimated to be of order of Ge7 or
larger. ' Apparently this energy is outside the
domain of classical measurements. Although the
test of the shadow effect might be outside the do-
main of classical systems and classical measure-
ments, as far as the stability problem is con-
cerned, the introduction of a shadow electromag-
netic field gives us a consistent result. This in-
teresting result gives us some support for the
efforts to test the shadow effect in high-energy ex-
periments.

CONCLUDING REMARKS

We have shown that with the introduction of a
shadow field the electron is stable in the point-
particle limit. This is due to the fact that the
shadow field provides an attractive force to keep
the electron together. The idea of introducing an
additional "nonelectromagnetic" force to compen-
sate for the Maxwell stress, producing stability
of the charged particle and making the total self-
energy finite in the rest frame, was first sug-

gested by Poincare a long time ago. ' Except for
the nonelectromagnetic character of the force,
as it was postulated, the origin of this Poincare
tensor was not clear. In contrast to the nonelec-
tromagnetic character of the Poincare tensor, the
interaction between the shadow field and the
charged particle is, in terms of the strength of
the coupling constant, electromagnetic in charac-
ter. Physically, the presence of the shadow field
is to introduce a small nonlocal effect in a mani-
festly local fashion; therefore the electromagne-
tic character of the interaction is understandable.

Another difficulty encountered in the classical
theory of electrons is the existence of the so-
called "runaway" solution. A way to avoid it is
to impose proper boundary conditions on the solu-
tion of the equation of motion. The runaway solu-
tions have also been found in a number of simple,
exactly soluble quantum field theories. In a sep-
arate paper, ' it has been shown by the author that
in the quantum electrodynamics with shadow fields
the runaway modes do not occur in the dipole ap-
proximation. Whether the runaway solution can
also be avoided in the classical theory with the
introduction of the shadow field is not yet clear.
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