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A stationary distribution of matter outside a Kerr black hole will cause the angular momen-
turn of the black hole to decrease with time provided the distribution is not symmetric about
the axis defined by the black hole's angular momentum. The rate of decrease of angular
momentum is calculated in the case that (a} the effects of the exterior matter can be treated
as a perturbation to the Kerr geometry and (b) the angular momentum of the black hole is
small.

I. INTRODUCTION

The detection and observation of black holes
will depend not so much on an understanding of
the properties of a black hole in isolation but on
an understanding of how a black hole interacts
with a realistic astrophysical environment. It is
appropriate, therefore, to examine in detail the
interactions of a black hole with matter which is
exterior to it. In this paper we examine one as-
pect of this interaction —the decrease in angular
momentum of a Kerr black hole caused by the
presence of a stationary exterior distribution of
matter which is not symmetric about the axis de-
fined by the black hole's angular momentum.

That exterior matter could slow down a rotating
black hole was already strongly suggested by a
theorem of Hawking' which shows that any station-
ary nonstatic black hole must also be axially
symmetric. It seemed reasonable to conclude
that a nonaxisymmetric black hole, such as a
Kerr black hole perturbed by nonaxisymmetric
exterior masses, could not be stationary but must
tend towards a static black hole, that is, the angu-
lar momentum must tend to zero. A simple pic-
ture of the origin of the effect may be presented in
the following way'. One knows that if there is a
relative rotation between infinity and a body which
is not symmetric about the axis of rotation then
the body will emit gravitational radiation to null
infinity. ~ The gravitational radiation causes the
relative rotation between the body and infinity to
decrease with time. There is a close analogy
between Penrose's concept of null infinity and the
event horizon of a black hole. Both the event hori-
zon and null infinity are null surfaces. Both have
the "one-way" property that radiation which reach-
es or crosses them can never reemerge. Pursuing
the analogy, one would expect that if there is a
relative rotation between an event horizon and a
distribution of matter which is not symmetric

about the direction of rotation, then there would
be gravitational dissipation which would act to
decrease the relative rotation of the matter and
the black hole. In particular, even if the matter
is stationary with respect to infinity it would slow
down a rotating black hole.

The slowing down of a rotating black hole due to
the gravitational dissipation produced by exterior
matter is analogous to the slowing down of a rota-
ting planet by viscous dissipation due to tides
caused by an exterior moon. In effect the gravita-
tional attraction of the exterior matter raises a
tide in the event horizon of a black hole. As the
black hole rotates under this tide its rotational
energy is dissipated gravitationally. Even the form
of the expressions for the rate of decrease in the
angular momentum in the two cases are similar.
It is this close analogy which leads us to call the
slowing down of black holes by exterior matter
gravitational tidal friction.

In a previous paper a simple general expression
was found for the rate of decrease in angular mo-
mentum of a Kerr black hole due to a stationary
gravitational perturbation,

da
dt 4am

a«M. (1.2)

Here, a is the Kerr angular momentum parameter,
M is the black hole's mass, A its area, and 0' the
shear of the properly normalized null generators
of the perturbed event horizon. The area integral
extends over the intersection of the perturbed
event horizon and a surface of constant t.

This simple and elegant formula is not so simple
to evaluate. In this paper we will evaluate E|I. (1.1)
for the particularly simple limiting case when the
angular momentum of the Kerr black hole is small,
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The equations governing the perturbations can then
be expanded simultaneously in powers of the per-
turbation and in powers of a/M and solved in the
lowest relevant orders. The rate of decrease in
angular momentum can then be calculated to the
lowest nonvanishing order which is second order
in the perturbation and first order in a.

In Sec. II we briefly review the derivation of the
expression for da/dt. In Sec. III the analogy to
tidal friction is pointed out. In Secs. IV and V the
general perturbations of the Kerr metric are eval-
uated to the relevant orders. In Secs. VI and VII
the rate of change of angular momentum is eval-
uated for a general perturbation, and in Sec. VIII
the effect for the case of a stationary point particle
located outside the black hole is treated. Finally
in Sec. IX we discuss possible astrophysical con-
sequences of our results.

II. RATE OF DECREASE OF ANGULAR MOMENTUM

(M2 a2}1/2

dt Bma dt (2.2)

In turn the rate of increase in area is given by

d4—= -2 pdA. (2.3)

p=l„.„m"m" . (2.4)

The convergence, p, can be calculated from one
of the Newman-Penrose' equations. In the absence
of sources the relevant equation is

Here, p is the convergence of the null geodesic
generators of the event horizon and the integral is
over the two surface formed by the intersection of
the event horizon with a surface of constant t. If
l" is the normal to the horizon, normalized so that
l" t &=1 and m" and m" are complex conjugate null
vectors chosen so that m" 1„=0and m"m„= -1, then

Q = 8 11M[M ~ (M2 a2)1/2] (2 1)

The rate of decrease of angular momentum, J, is
thus related to the rate of increase in area by

The expression for the rate of decrease of angu-
lar momentum of a black hole due to a station-
ary perturbation [Eq. (1.1)] is so simple to de-
rive that it is appropriate to briefly sketch that
derivation here as a guide to making our explicit
calculation. The details are in Ref. 4.

A Kerr black hole is characterized by two param-
eters: the total mass, I, and the specific angu-
lar momentum, a. We want to calculate the rates
of change of these parameters with respect to any
time t such that 8/St is a timelike Killing vector
at infinity caused by a stationary exterior pertur-
bation. A stationary perturbation cannot cause a
rate of change of the mass. To see this we can
invoke the familiar argument of Edelstein': Find
that solution of the everywhere source-free per-
turbed Einstein equations which agrees with the
stationary perturbation under consideration at the
horizon. At infinity, this solution must be a super-
position of ingoing and outgoing gravitational waves.
The energy which is crossing the horizon is the
difference between the energy which is being car-
ried inward and that which is being carried out-
ward at infinity. A stationary perturbation, how-

ever, will contain no radiation at infinity either
ingoing or outgoing. The energy crossing the ho-
rizon is, therefore, zero.

The mass, angular momentum, and area of a
Kerr black hole are related by

Dp=l"p „

= p +(T(T + (e+ 6) p (2.5}

Here,

(2.6}

and

e = 2 (t„„n"l'+m„„.m"l"). (2.7)

where n" is a real null vector orthogonal to rn" and

satisfying l"n& = 1. The vector m" is not determined
up to a rotation nz"-e'@m", and, by proper choice
of the function P, c can always be made real. If
all quantities in Eq. (2.5) are now expanded in

powers of the perturbation the lowest-order (the
unperturbed Kerr metric) values on the horizon
are a =p =0 and

(M2 a2)1/2

4[++(M2-a2)'/2] ' (2.8}

To first order in the perturbation p vanishes. This
is reasonable since the flux of angular momentum
should be second order in the perturbation [cf. Eqs.
(2.2) and (2.3)]. Further, to second order in the
perturbation the rate of change of angular momen-
tum and area due to a stationary perturbation
should themselves be stationary. Taking Eq. (2.5)
to second order in the perturbation, and integrating
it over the two-surface formed by intersection of
the event horizon and a constant t hypersurface,
one finds
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0 ~(j) 2 ~~2&( ) p(2) (2.9)

Here, o' is the shear calculated to first order in
the perturbation. The left-hand side of the equa-
tion vanished because it is d'A/dt' and the rate of
change in area is stationary. Using Eq. (2.3) one
has for the rate of increase of area to second order
in the perturbation [and thereby through Eq. (2.2)
the rate of decrease in angular momentum]

(2.10)

III. CONNECTION WITH TIDAL FRICTION

Equation (2.10) is the expression which we wish
to evaluate to lowest order in a. The calculation
can be done in the following steps: (1) Expand the
metric about the Schwarzschild metric simulta-
neously in powers of a and the perturbation. To keep
track of the orders in this expansion we introduce
a formal parameter ~ to keep track of the orders
in a and a parameter f to keep track of the orders
in the perturbation. (Thus, order er means first
order in a and first order in the perturbation. )
(2) Calculate the metric to order e and order f
(Sec. IV). The metric to order c is simply the
Kerr metric. Order f contains the stationary per-
turb3tions of the Schua~zschild geometry caused
by the stationary exterior sources. The calculation
of the perturbations to order g is not difficult be-
cause the perturbations separate in the spherically
symmetric background Schwarzschild geometry
into perturbations transforming under rotations
like spherical harmonics with quantum numbers
(l,.m). To both order e and order 0 the shear will
vanish on the horizon; the Kerr geometry is sta-
tionary and a stationary perturbation will not cause
evolution of a nonzotating Schwarzschild black hole.
(3) Write out and solve Einstein's equations in
order e g which is the lowest order in which 0 is
nonvanishing (Sec.V). The equations for the per-
turbations of this order will contain driving terms
which are products of order e and order g. The
terms of order e transform like (l =1, m=0). An
exterior perturbation transforming are (l, m) can
therefore produce driving terms in the equations
of order er which transform only like (1+1,m),
(l, m), (l-l, m). It is this simple coupling which
makes the calculation of the perturbation in this
order feasible. (4) Locate the position of the per-
turbed horizon (Sec. V). (5) From the perturba-
tions of order eg calculate the shear cr" on the
perturbed horizon (Sec. VI) and evaluate the rate
of decrease of angular momentum (Sec. VII).

briefly the theory of viscous tidal friction in a
moon-planet system to bring out the close analogy
between the two cases.

Consider a rotating planet covered with a shal-
low sea of incompressible viscous fluid and pos-
sessing a stationary external moon. The gravita-
tional pull of the moon will raise a tide in the sea
and the tidal friction between the sea and the ro-
tating planet underneath will cause the rotation of
the planet to decrease. We can estimate the rate
for this process from the expression for the rate
of energy dissipation in a viscous fluid,

d8 = ——,
'

pv (o;&a'j) dV. (3.1)

Here, p is the fluid density, v is the viscosity co-
efficient, and 0;z is the volume shear of the fluid,

(3.2)

The integral extends over the whole volume of the
sea.

The dissipation of the planet's rotational energy
means a decrease in its angular momentum, J. If
I is the planet's moment of inertia then h= J /2I
and

o gag (3.3)

y'
54= p, —,P,(cosy), (3.4)

where y is the angle between the direction of the
moon and the direction where 64 is evaluated and
x is the distance from the planet's center. This
perturbing gravitational force will change the
height of the sea from its original radius R, to a
new radius A, +M, . The change M, must be such
that the gravitational potential energy of a fluid el-
ement as it rises in the tide remains unchanged,

M—2M, —(64)A,
s

Equation (3.3) is similar to Eq. (1.1) except that
here the integral is over a volume shear rather
than a surface shear.

Suppose that the mass of the planet is M and its
angular velocity is Q. Let the mass of the moon be
p. and let it be located a distance A away from the
planet's center. If the moon is sufficiently far
away only the quadrupole part of the perturbing
gravitational potential will significantly influence
the tides on the surface of the planet. This per-
turbing potential is (we are still using 6= 1)

Before proceeding with the calculation of tidal
friction in black holes it is appropriate to review

Rs
A

(3.5)
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Here we have neglected all angular dependence to
obtain the simplest dimensional arguments.

The typical excursion of a given fluid element as
it rotates through the tidal distortion will be &R,
and the velocities in the fluid will be of order of
magnitude A6A, . Derivatives of the velocity will
then be of order of magnitude QOR, /A, , and we
have for the square of the shear

(dd'), =
(1

——)d('-. (1-—) dv'

r~(d-8'+ sin~8dp') . (4.1)

the angular momentum. To lowest order the met-
ric may be taken to be the familiar Schwarzschild
metric,

~y ~2 &&s

s g2

The last line follows from E(I. (3.5). If M, denotes
the mass of the sea, then we have for the rate of
decrease of J from E(I. (3.3)

dv ( M, J)v(d ) (d, ) (3.7)

A more detailed analysis bears out these simple
dimensional estimates and yields the character-
istic sin'6 angular dependence.

The moment of inertia of the planet will be of
order of magnitude MR, ' and its angular momentum
is IQ. Using this, one has

V~sR J (3.8)

If we were to apply this result to guess the rate of
slowing down of a black hole by gravitational tidal
friction caused by an external moon, it would seem
reasonable to put M, -R, -M and for v/M, the di-
mensionless measure of viscosity, a number of
order unity. One would then have

dJ Jp. M
dt R' (3 9)

for an estimate of the tidal friction effect in a black
hole. In Sec. VIII we will see that this estimate is
borne out by the detailed calculation.

We choose initially to perturb about the metric ex-
pressed in these Schwarzschild coordinates even
though the coordinates are singular on the horizon.
Their advantage is that the expression of time-
reversal symmetry has the simple form t- —t and
this is useful in restricting the form of stationary
perturbations. Later the coordinate system will
be transformed to one which is not singular on the
horizon.

The perturbation of order e is simply the Kerr
metric. Expressed in terms of Boyer -Lindquist
coordinates, the perturbation in this order has the
form

(ds'), = sin'8d(I) dt .2Ma
(4.2)

~ym ~pm
(ds )z od()))adit)v = /dr . d8+sin8

sin8 Bp 88

To calculate the perturbations due to the exteri-
or stationary sources we can draw on the exten-
sive previous studies of the perturbations of the
Schwarzschild geometry. ' 9 The perturbations
may be decomposed into terms which transform
under rotations like the appropriate scalar, vector,
and tensor spherical harmonics with quantum num-
bers (I,m). They may further be decomposed into
so-called odd- [(-1)"']and even- [(-I)' ] parity
parts. Of interest here, however, are not the gen-
eral perturbations of the Schwarzschild geometry
but only the static, time-reversal-invariant per-
turbations arising from static, time-reversal-
invariant sources. These perturbations are in-
dependent of t and have vanishing components
g«. In the standard Regge-wheeler gauge these
perturbatjons have the form

IV. THE METRIC TO FIRST ORDER IN THE ANGULAR
MOMENTUM AND FIRST ORDER

IN THE PERTURBATION

To begin the program outlined in Sec. II for cal-
culating the slowing-down rate of a slowly rotating
black hole we must expand the metric simulta-
neously in powers of the exterior perturbation and

(4.3)

(dv')v „„„.„„- (1— )Bd('+(1——) 8 dv'

+r K(d8'+sin 8dg) 1', .
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Here A„HO, B,, and E are functions of r alone.
The index l which should properly label these func-
tions has been suppressed. The vacuum field equa-
tions for these functions may easily be found by
specializing the appropriate equations of Ref. 9.
From Eqs. (Sd) and (B3) of Ref. 9 one finds in
this static case

(4 5)

(4.6)

Thus, the odd-parity perturbations do not occur in
this problem. Combining Eqs. (Sa) and (9a) of Ref.
9 to eliminate second derivatives, using Eq. (8c),
and making the definition V(r)=iC(r)-H(r), one ar-
rives at the following two first-order equations for
the unknown metric coefficients:

At r=2M, Q,
' (r/M-1) is infinite while the be-

havior of I', andI", is given by

1 (!+2)!
P[ (r/M 1) (! 2)

[' (r 2M) (4.13)

(1+1)!
P) (r/M 1)

q2M (1 1) [ (r 2M) (4.14)

(4.15)

Im order for the perturbation to be finite at x=2M
and in order to avoid a real singularity there the
coefficient 8 in Eqs. (4.10) and (4.11) must vanish
inside the sources.

Let the multipole moments M& of the source at
infinity be defined by an expansion of g« in inverse
powers of r,

dB . R(r M) I' -1(l+I)
)dr r(r-2M) (4 !)

In the Newtonian limit the M, become the usual
Newtonian multipole moments. The solution out-
side the sources then has the form

dV 2M
dr r(r-2M) (4 8)

The solution of these equations is most readily
found by writing a single second-order equation
for H in terms of the variable z=r/M-l,

(I-r'),. --Rr
4

+ I (I + I)—,)M 0. (4.3)=d'H dH

(RM)'" I'( —')I'(I+3) ' M ) ' (4.16a)

2M", 1'(1 +~),g~ ~ r
(RM)' I'(-')r(l I) ~' iVl ) '

(4.16b)

This is a form of Legendre's equation so that the
general solution for H is '

It is convenient to define horizon multipole mo-
ments 8, such that

H(r) =WP,' (r/M -1)+By,'(r/M-1 ), (4.10) I~(r) 6;, r-2M. (4.17)

where A and 8 are unknown constants. The asso-
ciated solution for V can then be found from Eq.
(3.7),

I'(r)=RM[r(r RM)[ ' A-l'[ —-I)M

rB()', (—-I) . (4.11)

The constants A and B are determined from the
distribution of energy and stresses in the sources.
Outside the sources H and V must decrease at large
r so that space becomes asymptotically flat. At
large r, P,' behaves like r' while Q', behaves like

M '+ I' /+3 T' -'

(4.12)

The coefficient of P&~ in H must therefore vanish
outside the sources.

In terms of these the solution inside the sources
has the form

H(r) =[!(1+1)] ' 8, P,'(r/M-l),

V(r)=(4'M)' '[l(l+1)] '8" [r(r-2M)] ' '
(4.18a)

x P,'(r/M-l). (4.18b)

As a consequence of Eqs. (4.15) and (4.16) H van-
ishes on the horizon while V (and hence E) remains
finite there.

The constants && and M& are determined by in-
tegrating the perturbed field equations through the
source. If the source is confined to a thin shell
they are determined by the jump conditions on the
metric and its first derivatives there. An example
of determining 8, and M, will be given in Sec. VIII,
but for the present we will confine ourselves to
evaluating the rate of increase in area of the hori-
zon in terms of these characteristic parameters
of the source.
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V. METRIC AND EVENT HORIZON IN ORDER ef'

The lowest order in which the shear is nonvan-
ishing is ef-first order in the perturbation and
first order in the angular momentum of the black
hole. To calculate 0 ' in the approach being used
here we must calculate the relevant parts of the
metric in this order and locate the event horizon.
In this section the form of the metric in order eg
is given and the event horizon located. The rele-
vant parts of the metric and the shear are calcu-
lated in the next two sections.

A. Metric in Order eg

An important boundary condition on the pertur-
bation of order ef is that it be regular on the fu-
ture component of the event horizon. Regularity
on the past component is not necessary since if the

dt-du dr (1--2M/r) ',

dP - dP —(a/r ) dr (1-2M/r) '

(5.1a)

(5.1b)

transforms the metric for a particular multipole
(f, m) accurate to orders e and g into the form

black hole arises from a realistic collapse that
component will be unphysical. ~~ It is, therefore,
convenient to discuss the perturbations in a coor-
dinate system which is itself regular on the future
horizon. The Schw'arzschild, Boyer-Lindquist, and
Regge-%heeler coordinates used to discuss the
lower-order perturbations in Sec. Iv do not have
this property. We will transform the lower-order
perturbations to coordinates w'hich are regular on
the future event horizon before discussing the per-
turbations of order eg.

The transformation

ds'= (1 2M/r)-(1+HF()du -2(1+Hi() dudr+2HV, '(1-2M/r) 'dr~

r'(1 -ZY, -) (d8'+ sin'6dp') + (4M a/r ) sin'8dpdu -2a sin'6dr d(t) + O(eg) . (5.2)

In order e this is just the standard form of the Kerr
metric. The coordinates and metric in Eq. (5.2)
are clearly regular on the surface r=2M since
H(r) vanishes there [Eqs. (4.19) and (4.13)].

The perturbations of order eg may also be ex-
panded in spherical harmonics and decomposed
into even- and odd-parity parts. The perturbations
may be written in the Regge-%heeler gauges using
the coordinates used in Eq. (5.2). We then write
for a particular multipole (l, m)

therefore in order &, it will combine with the l=1,
m=0 terms of order e to give multipoles (1+1,m),
(I,m), and (I -l, m) in order ~j according to the
familiar law of addition of angular momenta. The
parity of the terms in order g is w =(-1)~whi]e
order e has m=+1. Thus, the (I+1,m), (L-l,m)
terms will occur only in the odd-parity [w= (-1)~"j
part of the expansion of order e g, while the (I, , m)
terms will occur only in the even-parity part.

(ds')„= (ds'),„,„+(ds')~„ (5.3a) B. Location of the Perturbed Event Horizon

2M
)

2M(ds'),„,„; 1-—iAdu'+ 28dudr + C 1-

+ Dr' (d8'+ sin'8d4)') 1 l, (5.3b)

(5.3c)

(d+) 2(ada ()a.r=) sine —' u(- ' de),87,
88 sin8 8$

The information obtained above and in Sec. III
about the perturbation to order & is already enough
to find the coordinate location of the perturbed
event horizon to order & f. The event horizon is,
to order zf, the largest closed, stationary null

surface. If the equation of the horizon to this
order is written

F(r, 6, P) =r 2M+ (f,(8-, (I))+elf~(8, y)

where &, &, f:, D, N, and 9 are functions of r alone.
The complete metric to order eP is given by the

sum of Eq. (5.2) and (5.3a) then summed over all
(l, m). Tile fllllc'tlons of r wlllc11 are involved, 4,
B, „, H, X, . . . , depend on (l, m) but these indices
have been suppressed. Which multipoles occur in
order f depends on the structure, of the source. If
a given multipole (I,m) occurs in the source and

then the condition that the surface is null is

g~+ P —O

To evaluate this relation let us first write

g»" = y»" + ra»" + ~ gL»",

(5 4)

(5.5)

(5.6)



1016 J. B. HAH TLE

The metric coefficient h","can be found from Eq.
(5.3) and is

h",'= (I-2M/r)H(r) F,"(6,P) . (5.8)

The function H is regular at r= 2M [Eq. (4.19)] so
that h"," vanishes at r=2M. Thus, f,(e, Q) =0 and

the coordinate position of the event horizon does
not change to order (.

The situation is similar in order &g. Taking
account of the result that f, = 0, Eq. (5.5) in this
order is

where y"" is the Kerr metric to order ~, h,""are
the perturbations of order f found in Sec. IV and
g" are the as yet undetermined perturbations of
order ef whose form is discussed in Sec. V A.
Written out to order g, Eq. (5.5) becomes

(5.7)

S,' = 4p3f'/R—' . (5.13)

The equation for the surface of the horizon then
becomes

The shape of the horizon is clearly distorted by
the perturbation. To obtain some insight into hose
a given perturbation distorts the horizon we antic-
ipate the result of Sec. VIII [Eqs. (8.11) and (8.2)]
for the horizon multipole moments due to a point
particle of mass p. located a coordinate distance A
away from the center of the black hole. The polar
axis in Eq. (5.10) can be oriented in the direction
of the particle. If we further consider the case
that R/M» 1, then only the quadrupole (L = 2) mo-
ments are significant and the only nonvanishing one
of these is

= -[(I-2M/r) 2 (r)]„„Y,(8, Q). y = 2M [1+2 p(M2/R ) P~ (cos 8)]

(5.9)

The functions(x) must be regular at x=2M in order
that the perturbation be regular there. " Thus f,
(6, p) =0 and the coordinate position of the event
horizon does not change to order ~g. To the accu-
racy necessary for this calculation the event hori-
zon is the surface ~=2M.

This is the equation for an axially symmetric ellip-
soid elongated along the axis connecting the center
of the black hole and the point particle. The exter-
nal point particle thus causes a distortion in the
event horizon similar to the tide raised by a moon
in an ocean on the surface of a planet.

C. The Shape of the Perturbed Event Horizon

VI. EXPRESSION FOR THE PERTURBATION
OF THE SHEAR

(5.10)
where the 8, are the horizon multipole moments
of the source. In a flat space with polar coordi-
nates (r, 8, Q) the line element has the form

do'=dr'+r'(de'+sin'8'dg') . (5.11)

The fact that the coordinate position of the event
horizon remains unchanged by the perturbation is
a convenient property of the gauge being used here.
The geometry of the event horizon, however is
changed by the perturbation. A convenient way to
describe this change is to embed the two-surface
formed by the intersection of the horizon and a
constant-time surface in a flat three-dimensional
space. The metric on this two-surface is given by
[Eqs. (5.2) and (4.18)]

lp =I
q + 6lq +0 (t'2),

mq ——Mq+ bm~ +0(g )

(6.la)

(6.1b)

Not every metric coefficient of order e f given
in Eq. (5.3) need be calculated in order to deter
mine the perturbation in the shear o' of order eg.
To determine what information is needed we use
this section to express o~' in terms of the per-
turbed metric.

The shear, o, is defined by Eq. (2.6). For typo-
graphical reasons we introduce an alternate no-
tation 6f for that perturbation in any quantity f
which is first order in the source (first order in t)
and contains all orders in the angular momentum
of the black hole (all orders in e). We will let I"
and M" denote vectors of the unperturbed tetrad
associated with the Kerr geometry and a stroke
denote covariant differentiation with respect to the
Kerr metric. Thus,

To order g a surface which has the intrinsic geom-
etry of Eq. (5.10) is

The perturbation in the shear on the horizon is
then
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0"» -=60 = —gI'~„M"M" L~+ M„

+Lg„(M"Sn' + Sn"M" ). (6.2)

82 gymgI'r QPr 2~ l
sin'8 ~e 8/88 sin8 88

-aK ' +O(&2) (6.9a)
To order cg the horizon is the surface r=2M. The
vector l„being normal to the horizon has only l„
as a nonvanishing covariant component. Thus, we
can put

1 1 82 Fi
sing 8@2

5lq =A I
q

+0 (e'), (6 3)
+ 2 sin28 —aKF,"+,N

1 BP," +o(~ ),2

86) ' '

sin& 80

SrP I,„+ O(e') =0

Sn"Mq + 0 (em) = 0

(6.4a)

(6.4b)

for some function A. The second term in Eq. (6.2)
then must vanish in the interesting order since the
shear of the Kerr metric vanishes on the horizon
and L"Mp =0.

Perturbation of the relations l"m& =m"m& =0 and
Eq. (6.3) gives

(6.9b)

all quantities being evaluated on the horizon &= 2M.
Thus to evaluate 0 to order op the only metric

coefficient of order e g which need be known is N
and that only on the horizon. This greatly simpli-
fies the computation. In the next section we will
evaluate N on the horizon from the Einstein equa-
tions of order e&.

The vector Sn" can then be generally written

(6.5)

VII. THE RATE OF INCREASE IN AREA

A. Evaluation of Ni

5o= -5r"„„M~M'+O (~') . (6.6)

An explicit form for the vector M" accurate to
order e is

M"=M"=0,
(6.7)

2&2M ' 2&2M sin8

Thus, for evaluating 0 to order ef, we can write

for some functions B and C. Inserting this in Eq.
(6.2), recalling that L„ is tangent to the null
geodesic generators of the Kerr metric, and that
the shear vanishes on the horizon in the Kerr met-
ric, one finds that the last two terms in Eq. (6.2)
vanish.

The vector L" is normalized so that J"=1. This
implies L„=1[Eq.(5.2)]. The expression for 5o
may thus be written

The value of N on the horizon may be obtained
from the two Einstein equations It„=0 and A = (8, P).
Since 8"„ transforms as a vector under rotations
these equations in order c( must have the general
form

~gft+ p [gm@nA+emc, mA] C0+ —0 (7.1)

Here, the terms in the brackets (the homogeneous
part) involve the metric perturbations of order cg
while the term 5) (the driving term) involves prod-
ucts of the perturbations of order e and order g
already determined in Sec. IV. The quantities 4'&

and 4, are, respectively, the even- and odd-
parity vector spherical harmonics defined in Ap-
pendix A. The coefficients 8, and 6, therefore
involve, respectively, only even- and odd-parity.
radial functions of the expanded metric. In the
present case only the odd-parity function N is of
interest and it is appropriate therefore to consider
only the odd-parity part of Eq (7.1). Th. is may be
separated out by multiplying Eq. (7.1) by 4 &x inte-
grating over solid angle dQ and using Eq. (A10),

1 „1 „2i5o= —
2 5Iee — . 2 5rge + . 5re~ +0 (E ) .

sin28 sin& l (l + 1 ) 6, = fd ll @,„ll" (7 2)

A short calculation expresses the perturbed
Christoffel symbols in terms of the metric of
order eg [Eq. (5.3)]:

(6.8) Using modern algebraic computer languages'4
it is not extremely difficult to evaluate the various
pieces of Eq. (7.2). The quantity 8$, for example,
is most simply found by writing out A„ in the case
m=0. We find
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The driving terms will be sums over as many

(7.3)
multipoles as are contained in the source. For
simplicity let us focus on a particular multipole
(L, m} and later perform the sum. The driving
terms are then

88 888$

aM e, . 2M d'e audie rrP Ha~= —,-4z —(cos6r, )+sr'sinai, I—,+——+ &(&+&)+&-
y 86 sin'6I

(V.4a)

(V.4b)

2M 88
(7.5a)

Substituting Eqs. (7.3) and (7.4) into Eq. (V.2) will
give us a simple second-order differential equa-
tion for ¹ The boundary conditions for its solu-
tion are that N vanish at infinity and be regular at
the horizon x=2M. On the horizon the driving
terms are regular and their form is greatly
simplified because H vanishes there. From Eqs.
(4.19) and (4.20) we have

It&
& iy& & & &g&

= (1—2M/t') (Hsin8) R

-(1-2M/r) I 8 g /8r

(1 -2M/-r)

near the horizon. ] The general solution therefore
must consist of a homogeneous solution which van-
ishes on the horizon and the particular solution
whose behavior near v'=2M is given in Eq. (V.6).
Thus, one concludes that on the horizon

aSi 8 Fz, L(l + 1}S@=---
2 -cos8 + Fz sxn6 N, = K" + 0 (r-2M) . (7 6)

+ 0(r-2M). (7.5b)
The angular integral [Eq. (7.7)] can be evaluated
to yield the following result for N, on the horizon:

The above behavior of the driving terms near r
= 2M shows that the differential equation formed
from Eqs. (7.2) and (7.4) will have as a particular
solution a power series which is regular at r=2M.
Let this particular solution be denoted by N& The
first term in this series is easily found from Eqs.
(7.2) and (7.3) and is given by

aS, I.-m+ j

N, =0, l ~L~1.

(7.9a)

(7.9b)

(7.9c)

aS
KP =

( )
IP(L) +O(r 2ht)- (7 6)

where I, is the angular integral [Eqs. (7.5} and

(A5b)]

As expected a multipole (L, m) of the source pro-
duces an odd-parity perturbation in order cf with

only multipoles (L+1,m). This result is now to be
used with Eqs. (6.8), (6.9), and (2.10) to find the
rate of increase in area of the horizon.

„( ) ~T BP" 81, f(l, 1) ~)
PA yfS

~

sin 8
(7.7)

The most general solution of the differential equa-
tion is a sum of this particular solution and a lin-
ear combination of the two independent solutions
to the homogeneous equation 6& =0. Near the ho-
rizon the two independent solutions of the homoge-
neous equation behave like (r-2M) and like [con-
stant + (r-2M) ln (r-2M)]. The latter behavior
leads to a divergence in the physical component of
the Riemann tensor on the horizon. [For example,

B. Evaluation of the Perturbation in the Shear
and the Rate of Increase in Area

aSI . 8 P~"Z~i~i=
( )

sin6' (V.10)

The expression for 50 —= o may then be evaluated.
Reinstating the sum over the source multipoles
(L,m), one has"

The important quantity in Eqs. (6.8) and (6.9) is
the sum P, NPV, '. Equations (V.9) and elementary
identities for the derivatives of spherical harmon-
ics can be used to evaluate this as
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imasl,
4L(L+1)~s [ I(e) (9) + I(e)(e)]

(7.11)

where T~& &~~ are the physical components of the
tensor spherical harmonics defined in Appendix A
[Eqs. (A14)]. This result is now to be inserted in
the expression for dA/dt, Eq. (2.10). The result-
ing angular integral can be done using Eqs. (A14a)
and (A13),

L(L+ 1}-2
dt 8M ~ L(L+ 1)

(7.12)

Equation (7.12) is the central result of this paper.
It expresses the rate of increase of area of the
horizon in terms of the horizon multipoles SL, of
the source. Several features of this expression
should be noted: (1) When the source is axially
symmetric Sl, vanishes for mWO anddA/dt there-
fore vanishes as expected. (2) The source multi-
poles I =0 and L = 1 do not contribute to dA/dt.
The I- = 0 multipole is of course axially symmetric
and therefore could not contribute. The L, = j. multi-
pole does not contribute because it represents a
uniform gravitational field perturbation of the hori-
zon; only the "tidal" I )2 multipoles contribute to
the rate of area increase.

VIII. THE RATE OF SLOWING DOWN DUE
TO AN EXTERNAL MOON

A. Boundary Conditions

The general result of the previous section for
the rate of slowing down of a slowly rotating black
hole due to an external perturbation will be applied
in this section to the simple case when the pertur-
bation is due to a stationary point particle of mass
p. , i.e., an external moon.

A point particle will not remain stationary in the
gravitational field of the black hole without some
stresses to support it. If the particle is located at
Schwarzschild coordinates x=R, 8=6, and @=4,
we will take these stresses to be localized in the
spherical shell of radius R. The radial gravita-
tional pull of the black hole is then to be balanced
by the tangential stresses in the shell. The radial
components of the stress vanish. The stress-ener-
gy tensor for the source is then, to order p,

(8.1b)

p = p 1- —
~ F~(e, c) 5(r-R)

-=o~ 5(r-R) . (8.2)

The expansion of the t& we will simply denote by
(~~)7.

The horizon multipole moments, SI., which enter
into the expression [Eq. (7.12)] for the rate of in-
crease in the area of the black hole must be found

by matching at the shell the perturbation which is
regular on the horizon [Eq. (4.18)] to one which is
regular at infinity [Eq. (4.16)]. The matching con-
ditions at the shell could, of course, be found from
an examination of the Einstein equations using the
stress energy given in Eq. (8.1). We prefer to use
the equivalent general results of Israel" on the
boundary conditions across thin shells because of
their ease of application.

The Regge-Wheeler gauge is not suitable for
applying Israel' s boundary conditions because the
coordinates are singular on the shell. Perils the
easiest way to see this is to evaluate

Re -R~ = -87((tg f ee) 5(r-R)—

and notice that this requires H, -H, ~ ()(r-R) so
that some of the metric coefficients must be sin-
gular on the shell. %'e therefore first make a
transformation to what Israel calls "natural coor-
dinates" in which the perturbation in g„„vanishes.
If we write the transformation

x"-x"+ ))"(x), (8.3)

where q" is of order f, then the vector g" which
makes g vanish has in a particular multipole the
components

@~=0, (8.4a.}

(8.4b)

where A and B run over the tangential directions
8 and P and all other components of T"„vanish. The
multipole moments of this source may be found by
expanding T"„ in the appropriate spherical harmon-
ics. In particular,

Tt p

+2Q@Nl (8.4c}

X/2
6r-A 5 8-6 5 -4,

R R2s inc
Here, I' and G are functions of t alone defined by

(8.1a)
4F, 2M (8.5)



1020 S. B. HARTLE

dG=-y 2 I-2M F (8.6)
ghA

Disc '" =-&6m~,
87

(8.9)

The perturbation in the metric of order j(h»„)
then becomes

h = 1 ——H- 1-— E F~ 8.7a

where the indices on h», are raised with the un-
perturbed metric and the summation is over A=0,

Using Eqs. (8.V) these conditions may be trans-
lated into discontinuity relations for our functions
Hand&,

h~A~=H E+— 1-— F @'gAg+27 6+I,Ay' y
Disc [H] +—Disc [K]=0,~ ~2M . M

(8.10a)

where all other components vanish and C»~ and

+»~ are the standard Regge-Wheeler tensor spher-
ical harmonics discussed in Appendix A. In these
coordinates Israel shows that h»„ is continuous
across the shell. The discontinuities in the deriv-
atives are given in terms of the stress energy in
the shell S&,

(8.8)

where T»=S„„t](r R), S—=S~&, and Disc [ ] denotes
the discontinuity of a function. That part of the Eq.
(8.8) which involves p alone serves to determine
the discontinuity in the derivatives of the metric in
terms of the mass p, . The rest of the relations
may be thought of as fixing the stresses tA in the
shell necessary to support the moon. The relation
which involves p alone is from Eq. (8.1),

dK 1 l(t+1) 2M
Disc —+-

dr M 2 A
+1-—Disc [H] =8m~ .

(8.10b)

Thus in the Regge-Wheeler gauge the metric coef-
ficients themselves are not continuous across the
shell. In the Newtonian limit when 2M/R«1 and R
and E approach twice the perturbation in the New-
tonian potential 54 these relations imply correctly
Disc [54]=0, Disc [d(54)/dr]=4m/.

B. The Rate of Slowing Down

The relations (8.10) are sufficient to determine
the two unknown constants Sz, and Mz, [Eqs. (3.16)
and (3.18)] in the solution for the perturbation of
order f. A tedious calculation yields

(8.11)

where U~(z) is the function

(8.12)

Inserting (8.11) into the expression for dA/dt [Eq. (7.12)] and using Eq. (8.2) for oP, we find the sum over
m may be done. The relevant sum is

2L+ 1
, p~( co' se+i s' necosx)

2L+1 L(L+1)
sin 6 . (8.13)

The final expression for dA/dt due to a point ex-
ternal mass p, at (R, e) is %(~)=( ) r (2K+1)[L(L+()-21]U(g)]' (8 16)

where 6'(z) is the sum

(8.14)
and U~(z) is given by Eq. (8.12). We have evaluated
the function 6:(z) numerically and the results are
given in Fig. l and Table I.

The factor sin 6 appearing in the result means
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10— TABLE I. The function P(z).

0
2 3 4 5 6 7 8 9 IO

Z

FIG. 1. The function F(z) which governs the magnitude
of the tidal-friction effect due to a single external moon
at a distance of a Schwarzschild coordinate radius
R =M(z +1) from the center of a slowly rotating black
hole. P is defined in Eq, (8.15). For large values of z
it falls off as 1/z~ leading to the 1/R6 falloff in the rate of
slowdown of the black hole characteristic of tidal-
friction processes. The horizon is located at z =1. If
the moon is close to the horizon the tidal-friction effect
becomes large.
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that the slowing down rate vanishes when the mass
p, is on the axis of rotation (axial symmetry} and
is a maximum when the source is at the equator.

The limiting cases which are of interest are
when the source is far from the horizon and when
it is close to it. For large values of x/M, z is
large and Q7 behaves like z '. The I =2 (quad-
rupole) term becomes the dominant one in the sum
for 8' and using Eq. (4.12}one finds

dominant behavior near z =1 of the relevant sums
of products of Q~(z)'s is calculated in Appendix
B. Using the results of Appendix B one finds

sin e ln —-2 1—

A-2M. (8.18)

The slow-down rate thus becomes large when the
perturbation approaches the horizon.

IX. CONCLUSIONS

This is precisely the combination of a, p, , M and
R predicted in Ref. 4 on simple dimensional
grounds. Translating the result in Eq. (8.16) into
a result for dJ/dt through Eq'. (2.2) one has

2 Jg~M'
dt 5 A ' R

sin'6 —«1. (8.17)

This result has the same form as the expression
[Eq. (3.8)] for the slowing down of a planet due to
the tidal friction caused by a stationary external
moon in the case that the planet's radius and mass
are comparable and when the dimensionless mea-
sure of viscosity is a number of order unity. Both
expressions have the same dependence on J, p. , M,
R, and e characteristic of tidal-friction processes.
This similarity justifies the use of the tidal-fric-
tion analogy for the slowing down of a rotating
black hole due to exterior matter.

When the source is close to the horizon z is near
unity. Near z=1, Qz~(z) =(z-1) and Q~(z) =[2(z
-1)]'~' so that the series for 6: diverges. The

The interactions of a black hole and its exterior
environment is an important class of problems for
astrophysics and for relativity as well. Only
through a study of such interactions will the role,
if any, which black holes play in puzzles such as
quasars, x-ray sources, and Weber's pulses of
gravitational radiation be understood. Further, it
is only through such interactions that the black
hole will be detected. Recently great progress has
been made in the st«y of the motion of test parti-
cles in the field of black holes and the possible
astrophysical consequences of the resulting elec-
tromagnetic and gravitational radiation. '

In this paper the slowing down of a slowly rota-
ting black hole due to an exterior moon has been
calculated. This effect represents a dynamical
coupling between the black hole and its exterior
environment. As has been emphasized by Press"
(see also Ref. 4) the slowing-down effect is unlike-
ly to be detectable in binary systems in which the
components are widely separated R»M. In such
systems the gravitational radiation provides a
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much more efficient mechanism for the dissipa-
tion of the system's angular momentum. When A
becomes close to 2M however the slowing-down
effect becomes large (cf. Fig. 1). The evolution
of binary systems so closely spaced is likely to
be rapid and therefore the slowing-down effect
difficult to disentangle from the observations.

The calculations presented in this paper have
been limited to the slowly rotating-black-hole case,
a «M. This limitation did not arise out of any
physical eircumstanee but only because of the
mathematical tractability of solution by expansion
about the Schwarzschild geometry. Simple dimen-
sional estimates of Hawking indicate that the slow-
ing-down effect could be very large if there mere a
resonance betmeen the orbital angular velocity of
a perturbing mass and the effective angular veloc-
ity (1/2M) of a maximal, a=M, black hole. It would
be of great interest to investigate this ease in de-
tail and the recent work of Teukolsky'9 separating
the wave equation for the radiative perturbations
to the Kerr geometry may provide us with a, may to
do this.

are assumed normalized so that

(A3)

r"'~i(~a= -~(I+I)I( (A4)

The Regge-Wheeler vector and tensor harmonics
are constructed from the differentiated scalar har-
monics, the yAB and the ~». In the notation of
Thorne and Campolattaro,

C iA ~gtA ) (A5a)

B ~4iA (A5b)

m
C'l AB YAB ~i p (A5c)

@i» —~i IAB (A5d)

where the integral ranges over all solid ang&e. The
spherical harmonics satisfy
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m jg c mXl AB 2 (eg +
~ c& +KB @lCA). (A5e)
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(A6)

We denote the scalar product of tmo general har-
monics B»B.. .and A, ». . . by

APPENMX A: ORTHOGONALITY AND NORMALIZATION

OF REGGE-WHEELER SPHERICAL HARMONICS

The overlap and normalization integrals for the
Regge-Wheeler spherical harmonics occur fre-
quently in problems in which the Schwarzschild
geometry is perturbed. Here, we show horn a
covariant approach allows these integrals to be
evaluated simply.

Let upper case Latin indices A, B, . . . run over
the tmo coordinates which locate a point on the
surface of a sphere. The metric on the sphere
y» is given in a, standard spherical coordinate
system x'=8, x'=P by

all indices being contracted. %'e now evaluate all
the integrals of the form (A6) for the harmonics
defined in (A5). The technique in every case is the
same. fdQ is written fd'xv y Cova.riant integra-
tion by parts is performed in the sense that when

ABC' ' '
(f ssc ~ ~ ) I A

ABC+ ~ ~

+ t ~BCo o ~

is integrated over the sphere, the left-hand side
vanishes for any two tensors I; ''and SBc.. . .
Where appropriate, use is made of the identities

AB )C Oy NAB jC

~11 ~ 712 (Al)
CB C

&AB& (ASb)

Covariant differentiation with respect to this met-
ric is denoted by a stroke, viz. , vA ~B. The hvo-
dimensional alternating symbol e» is defined by

D
VA IBC = VA

~ CB +8 ABCVD,

+ABCD CAB CCD (ASd)

BA ~AB & ~12 -S108. (A2)

Scalar spherical harmonies are denoted by Y," and

for arbitrary vect:or vA. We will not reproduce the
details of the calculations in every case but con-
fine ourselves to an illustrative case useful here.
For the tensor harmonics 4i A»
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(gill @Sl ) (Pg, g g
i ) = -,'l (l + 1)[l(l + 1)-2] tI

g g
t 5 (A11f)

= ~+ y
' '~~ ~AaYs'IcD

. / AC ED m m'd &'r r x Y&'}ANDY)'

Thus for the particular combination which occurs
in the work of Price and Thorne and here

'x~rr"'y' (~l IBDA +ft BAD1'l IE)1'l Ic

7 'Y Y
g }aaY&

' }Ac — Yt )AY r ' }8

lAB &1( )C'gAB++gAB g

we have

(A12)

=l(l+l)[l(l+l)-1] egg ~ 6 „i .

For the vector harmonics the results are

(0'g, 4'g i)= l (l + 1)tggg ~ 5

(@,, C", ) =0,

(@»C, i) = l (1+ 1)egg ' 5

(A9)

(A10a)

(A10b)

(A10c)

(Tg, Tg I) = Bl(1+1)[l(l+1)-2]egg 5 i . (A13)

The tensor harmonics 4
& Aa &

& r Aa, and X~ A~ form
an orthogonal set in contrast to the Regge-Wheeler
ones. Furthermore, both T»~ and g»~ are
traceless.

The physical components of the tensor spherical
harmonics are defined for example by

Tg~A~ tB~ = (y""~ )y ( T (no sum).

For the tensor spherical harmonics one finds

(Cg, @g,) =25gg ~ 5 „i,
(C'g, +g ') = l (l+—1)6g I ~ 6

(@g Xi I) =0,

(A11a)

(A11b)

(A11c)

The explicit form of these particular harmonics
which are useful in the body of the paper are

Yl(e) {8)
= -Yi(e)(49

(4'l, '0
l i ) = l (l + 1)[l (l + 1)—1) 0 l gi 6 t, (A 11d)

,' l (l + 1)F,"+-
8/2 (A14a)

(@g Xg )=o, (A11e)
~Ym ~ Ym

Tl &E& &ggg
= .

& & ~
— ot6 (A14b)

APPENDIX 8: SUMS RELEVANT TO SLOWDOWN RATE FOR MASS NEAR THE HORIZON

The sum for 6' near the horizon can be decomposed into sums of products of Qz' and QD with themselves
and with each other. At z= 1 the sums diverge like p D(l/4). The divergent behavior of the sums for z
near unity is thus governed by the large-I behavior of the series and is the same as

(z) =Q (1 +1)

gpss(z)

Qi(z) .
L~ p

Using the Rodrigues's formula for the QT [Ref. 11, Eq. (3.6.5)] and the dispersion integral representation
for QB(z) [Ref. 11, Eq. (3.6.29)], we can write

1 1
S„„(z)=-'(-1)'"(z'-1)' '"' ' dx dx' (z-x) '(z-x') " '6'(x, x')

-1 -1
where

4'(x, x') =P(I.+1) le(x)PD(x') .
L=p

Using the addition formula [Ref. 11, Eq. (3.11.1)] and the generating function for Legendre functions [Ref.
11, Eq. (3.6.33)], this can be expressed as

1
1 2 14'(x, x') = — dy dy(1-2yx+ y ) ' ' = — dgln(1-[-'(1-X)] ~ mj,

21T p p 21T p
(B4)
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X = xx' + (1-x')' ' (1-x")' '
co sf .

Near z=1 the divergent part of the integral in Eq. (B2) comes from x and x' near unity. Writing z= 1+@,
x=1+@(, and x'=1+&(', we find that for small e

(m+n )/2 2/&
s d(mn

0

1
2m .d$'(1+ &)

™1(1+$') " ' — dy --,'inc+in e'~'+ —(1-~)26

The last term remains finite and integrable as e-0 so that doing the remaining simple integral we have for
8 n as@-0
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