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Van Holten’s covariant Hamiltonian framework is used to find conserved quantities for an isospin-

carrying particle in a non-Abelian monopolelike field. For a Wu-Yang monopole we find the most general

scalar potential such that the combined system admits a conserved Runge-Lenz vector. In the effective

non-Abelian field for nuclear motion in a diatomic molecule due to Moody, Shapere, and Wilczek, a

conserved angular momentum is constructed, despite the nonconservation of the electric charge. No

Runge-Lenz vector has been found.
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I. INTRODUCTION

In a recent paper van Holten [1] outlined an algorithm
for deriving conserved quantities for a particle in a given
external field, based on the use of Killing tensors. An
example is provided by an isospin-carrying particle in the
field of a Wu-Yang (WY) monopole [2–8] for which the
conclusion is that no Runge-Lenz type vector exists. This
reminds one to an earlier result by Fehér [9], who proved
that a charged particle in a Dirac monopole field can not
have a globally defined Runge-Lenz vector. In the latter
case there is a way out, though [10–14]: adding a fine-
tuned inverse square potential removes the obstruction,
providing us with a conserved Runge-Lenz vector. Below
we find, using van Holten’s recipe, the most general addi-
tional potential, which allows for a conserved Runge-Lenz
vector in non-Abelian monopolelike fields.

Similar results hold in the effective field of a diatomic
molecule, considered before by Moody, Shapere, and
Wilczek [15–17]. Despite the nonconservation of the elec-
tric charge, we can construct a conserved angular momen-
tum. No Runge-Lenz vector exists in general, though.

II. CONSERVED QUANTITIES

We start with the equations of motion for an isospin-
carrying particle in a static non-Abelian gauge field [18]

_� i ¼ IaFa
ij _x

j �DiV; _Ia ¼ ��abcI
b

�
Ac
j _x

j � @V

@Ic

�
;

(1)

where �i ¼ _xi, and a scalar potential, V ¼ Vð ~r; ~IÞ has also
been included for later convenience. Defining the covariant
Poisson bracket and Hamiltonian as [1]
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@g
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H ¼ 1
2 ~�

2 þ Vð ~r; ~IÞ; (3)

where Dj is the covariant derivative

Djf ¼ @jf� �abcI
aAb

j

@f

@Ic
: (4)

Let us record the commutation relation of the covariant
derivatives

½Di;Dj� ¼ ��abcI
aFb

ij

@

@Ic
: (5)

Equations (1) can be obtained in a Hamiltonian frame-
work _xi ¼ fxi; Hg, _�i ¼ f�i;Hg, _Ia ¼ fIa;Hg.
Following van Holten [1], constants of the motion can

conveniently be sought for in the form of an expansion into
powers of the covariant momentum

Q ¼ Cð~r; ~IÞ þ Cið~r; ~IÞ�i þ 1

2!
Cijð~r; ~IÞ�i�j þ . . . (6)

Requiring Q to Poisson commute with the Hamiltonian
yields a series of constraints,
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þ�abcI
a @Cij

@Ib
@V
@Ic ; order2

..

. ..
. ..

.

(7)

The expansion can be truncated at a finite order, provided
the covariant Killing equation is satisfied, Dði1Ci2...inÞ ¼ 0

when we can set Ci1...in... ¼ 0. For n ¼ 1, we have a Killing

vector. For example, we have, for any unit vector n̂, the
generator of a rotation around n̂,
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~C ¼ n̂� ~r: (8)

Then van Holten’s recipe yields a conserved angular mo-
mentum. Similarly, for any unit vector n̂,

Cij ¼ 2�ijn̂ � ~r� ðnixj þ njxiÞ (9)

is a Killing tensor of order 2, associated with the Runge-
Lenz vector of planetary motion.

III. WU-YANG MONOPOLE

The WY monopole is given by the non-Abelian gauge
potential with a ‘‘hedgehog’’ magnetic field [7],

AaWY
i ¼ �iak

xk
r2

; Fa
ij ¼ �ijk

xkxa
r4

: (10)

Let us now consider an isospin-carrying particle moving
in a Wu-Yang monopole field augmented by a scalar
potential, and inquire about conserved quantities. For an
arbitrary potential, van Holten’s procedure yields that

Q ¼ ~I � r̂
�
r̂ ¼ ~r

r

�
(11)

is covariantly constant, ~DQ ¼ 0, and Q is, therefore, a
constant of the motion. It is identified with the electric
charge. A similar calculation yields, for the Killing vector
(8), the angular momentum [1],

~J ¼ ~r� ~��Qr̂: (12)

Let us now turn to quadratic quantities. Inserting (9) into
(7), from the 2nd-order equation we find, therefore,

~C ¼ ~n� ðQr̂Þ: (13)

Now we identify the ‘‘good’’ potentials. For this, we
observe that the first-order constraint in (7) can be written
as

DiC ¼ Q2

r2

�
ðn̂ � r̂Þ xi

r
� ni

�
þ CijDjV: (14)

Putting V ¼ V0 þ V1, the first term on the right-hand side
can now be removed by choosing a fine-tuned potential, V0

~DV0 ¼ �Q2

r3
r̂ ) V0 ¼ Q2

2r2
: (15)

Assuming that V1 only depends on r, V ¼ V1ðrÞ, ~DiV1 ¼
~rV1 is radial. This leaves us with

DiC ¼ Cij@jV1 ¼ �r2V 0
1
~rðn̂ � r̂Þ; (16)

where V 0
1 ¼ dV1=dr, which can be solved by

V1 ¼ �

r
þ �; C ¼ �ðn̂ � r̂Þ: (17)

Hence,

V ¼ Q2

2r2
þ �

r
þ � and C ¼ � ~n � r̂; (18)

where � and � are arbitrary constants. Collecting our
results,

~K ¼ ~�� ~J þ �r̂ (19)

is a conserved Runge-Lenz vector for an isospin-carrying
particle in the Wu-Yang monopole field combined with the
potential (18) [19].
The physical interpretation of the previous result is for

large r, the field of a self-dual non-Abelian monopole of
charge m is that of Wu-Yang, Eq. (10), augmented with a
hedgehog Higgs field

�a ¼ ð1�m

r
Þ x

a

r
:

The equations of motion of an isospin-carrying particle in
such a field are precisely those considered above [12].

IV. DIATOMIC MOLECULE

In Ref. [15] Moody, Shapere, and Wilczek have shown
that in the Born-Oppenheimer approximation nuclear mo-
tion in a diatomic molecule can be described by the effec-
tive non-Abelian gauge field and Hamiltonian

Aa
i ¼ ð1� �Þ�iaj

xj

r2
; H ¼ 1

2
~�2 þ V; (20)

where � is a real parameter. This can be achieved by
applying a suitable gauge transformation with respect to
the original form [16].
The field strength

Fa
ij ¼ ð1� �2Þ�ijk xkxa

r4

resembles that of the monopole aligned into the third
internal direction F�� ¼ ð1� �2Þ sin�T3, except for the

parameter � being unquantized. The potential (20) is that
of a Wu-Yang [i.e., an imbedded Dirac] monopole of unit
charge when � ¼ 0; for other values of �, it is a truly non-
Abelian configuration—except for � ¼ �1, when the field
strength vanishes and (20) is a gauge transform of the
vacuum.
Turning to the conserved quantities, we note that when

� � 0 the used-to-be electric charge Q in (11) is not more
covariantly conserved in general,

fH;Qg ¼ � ~� � ~DQ; DjQ ¼ �

r

�
Ij �Q

xj
r

�
: (21)

Nor is Q2 conserved, fH;Q2g ¼ �2�Qð ~� � ~DQÞ. Note for
further reference that unlike Q2, the length of isospin I2 is
conserved, fH; I2g ¼ 0.
The gauge field (20) is rotationally symmetric and an

isospin-carrying particle moving in it admits a conserved
angular momentum [15,16]. Its form is, however, some-
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what unconventional, and we rederive it, therefore, in
detail.

Our starting point is the first-order condition in (7). We
take first V ¼ 0; then this is the only condition. Evaluating
the right-hand side with Fa

jk as given in (20), the equation

to be solved is

DiC ¼ ð1� �2ÞQ
r

�
ðn̂ � r̂Þ xi

r
� ni

�
: (22)

In the Wu-Yang case, � ¼ 0, this equation was solved by
C ¼ �n̂ �Qr̂. But for � � 0 the electric charge Q is not
conserved, and using (21), as well as the relations

DiI
j ¼ ð1� �Þ

r

�
Q�ij � Ii

xj
r

�
;

DiðQn̂ � r̂Þ ¼ Q

r

�
ni þ ð ~n � r̂Þ

�
�Ii � ð1þ �Þ ri

r

��
;

IaFa
ij ¼ ð1� �2ÞQ�ijkxk

r3
; (23)

we find

ð�� 1ÞDiðQn̂ � r̂Þ ¼ �DiI
jnj þ ð1� �2Þ

�
ðn̂ � r̂Þ xi

r
� ni

�
:

Comparing with (22) allows us to infer that

C ¼ �n̂ � ðð1� �ÞQr̂þ �~IÞ: (24)

The conserved angular momentum is, therefore,

~J ¼ ~r� ~�� ~�; (25)

~� ¼ ð1� �ÞQr̂þ �~I ¼ Qr̂þ �ðr̂� ~IÞ � r̂; (26)

consistently with the results in [15,16,20]. Note the ‘‘re-

placement rule’’ Qr̂ ! ~�.
For � ¼ 0 we recover the Wu-Yang expression, (12).

Eliminating ~� in favor of ~p ¼ ~�þ ~A allows us to rewrite

the total angular momentum as ~J ¼ ~r� ~p� ~I making
manifest the celebrated ‘‘spin from isospin term’’ [21].

Restoring the potential, we see that, again due to the
nonconservation of Q, DjV � 0 in general. The zeroth-

order condition ~C � ~DV ¼ 0 in (7) is, nevertheless, satisfied

if V is a radial function independent of ~I, V ¼ VðrÞ, since
then ~DV ¼ ~rV, which is perpendicular to infinitesimal

rotations ~C. Alternatively, a direct calculation, using the

same formulae (21)–(23), allows us to confirm that ~J
commutes with the Hamiltonian, fJi; Hg ¼ 0.

Multiplying (26) by r̂ yields, once again, ~J � r̂ ¼ �Q, as
in the Wu-Yang case. This is, however, less useful as
before, since Q is not a constant of the motion so that the

angle between ~J and the radius vector ~rðtÞ is not more
constant.

Let us now turn to searching for a Runge-Lenz vector.
Inserting the Killing tensor (9) into the 2nd-order equations
in (7) yields

~C ¼ n̂� ~�: (27)

Our next step would be to identify a good potential. The

first-order constraint in (7) can be written as

DiC ¼ ð1� �2ÞQ
2

r2

�
ð1� �Þðn̂ � r̂Þ xi

r
� ni

�

þ �ð1� �2ÞQ
r2

ðn̂ � r̂ÞIi þ CijDjV: (28)

In the WY case, � ¼ 0, our clue has been to remove the
first term by a fine-tuned term in the potential. This could
again be attempted, namely, by putting V ¼ V0 þ V1,

~DV0 ¼ �ð1� �2ÞQ
r3

~�: (29)

Assuming that such a potential does exist, CijDjV0 would

cancel the upper term in (28) [but contributes to others],
leaving us with

DiC ¼ �ð1� �2ÞQ
r2

ðn̂� ðr̂� ~IÞÞi þ CijDjV1: (30)

Our remaining task would now be to integrate Eqs. (29)
and (30)—which we have not been able to do yet in
general, except for � ¼ 0 when the integrability of Eq.
(30) can also be studied as follows: By (5), we must have

� �abcI
aFb

ij

@C

@Ic
¼ ðnixj � njxiÞ�V1: (31)

Assuming that C only depends on ~r, the left-hand side
vanishes, and this condition merely requires

4 V1 ¼ 0 ) V1 ¼ �

r
þ �; (32)

as we found before.
We should remark, however, that even if we succeeded

to integrate (29), the resulting potential would break the
rotational invariance. The zeroth-order condition in (7)

requires in fact that the DjV be perpendicular to ~C. But

the ~C of angular momentum and the one appropriate for the
Runge-Lenz vector, namely, the infinitesimal rotation in
(8) and (27), respectively, have different orientations, so
that the two conditions can not be simultaneously satisfied.

V. DISCUSSION

It is worth mentioning that van Holten’s algorithm is
equivalent to the approach of Forgacs-Manton-Jackiw
[5,22,23], as has been proved in an earlier version of this
paper.
Our results have a nice interpretation in terms of fiber

bundles [24]. For � � 0, �1, it is truly non-Abelian, i.e.,
not reducible to one on an Uð1Þ bundle. No covariantly
constant direction field, and, therefore, no conserved elec-
tric charge exists in this case.
The field is nevertheless radially symmetric, but the

conserved angular momentum (26) has a nonconventional
form [16].
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In the truly non-Abelian case, the consistency condition
involves the covariant, rather than ordinary derivative and
covariantly constant sections only exist in exceptional
cases, namely, when the bundle is reducible. Thus, only
some (noncentral extension) act on the bundle.

We have not been able to derive a Runge-Lenz vector for
diatomic molecules, except for � ¼ 0.

Let us emphasize that the derivation of the non-Abelian
field configuration (20) from molecular physics [15] indi-
cates that our analysis may not be of purely academic
interest. The situation could well be analogous to what

happened before with the non-Abelian Aharonov-Bohm
experiment [25,26], which became recently accessible ex-
perimentally [27,28].
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