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A modular application of the integration by fractional expansion method for evaluating Feynman

diagrams is extended to diagrams that contain loop triangle subdiagrams in their geometry. The technique

is based in the replacement of this module or subdiagram by its corresponding multiregion expansion

(MRE), which in turn is obtained from Schwinger’s parametric representation of the diagram. The result is

a topological reduction, transforming the triangular loop into an equivalent vertex, which simplifies the

search for the MRE of the complete diagram. This procedure has important advantages with respect to

considering the parametric representation of the whole diagram: the obtained MRE is reduced, and the

resulting hypergeometric series tends to have smaller multiplicity.
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I. INTRODUCTION

The integration by fractional expansion technique
(IBFE) constitutes a rather simple method that allows to
evaluate Feynman diagrams starting from the correspond-
ing Schwinger’s parametric representation, and whose
main advantage is to transfer the complexity of the direct
calculation of multidimensional integrals to the evaluation
of linear systems of equations that the method generates.
This technique is particularly useful when the propagator
exponents are arbitrary, and the general solutions obtained
are sums of generalized hypergeometric functions, whose
number of variables depends on the number of invariants in
the diagram and also on the topological family to which the
diagram belongs.

As is the case with any integration technique, although
IBFE can be applied to any diagram, it is not always
possible to obtain simple solutions due to the number and
multivariability of the resulting hypergeometric series.
Nevertheless, for certain families of diagrams its applica-
tion is particularly simple and optimal. In a previous work
[1] we showed that a modular application of IBFE is a tool
that simplifies considerably the complexity of the solu-
tions; specifically, we considered bubble-type modules or
subgraphs. Here we extend this modular application to
cases in which the modules are triangular loops, which
then provides a rather simple procedure to find the solu-
tions to a large number of Feynman diagrams.

This work is divided in the following way. In Sec. II we
apply the IBFE technique to the massless triangular mod-
ule, and find its representing multiregion expansion for the
case of off-shell external lines. Here we define the one-loop

function GT , which allows to describe the multiregion
expansion (MRE) of this module as the sum over this
loop function and a vertex, thus effectively reducing the
loop to a node. One of the main characteristic features of
the Feynman diagram general solutions, when the propa-
gators have arbitrary powers, is that they are given by sums
of multivariable hypergeometric functions. The arguments
or variables in these functions are ratios between invariants
associated to the graph, and given the structure of the
resulting hypergeometric function, the convergence condi-
tion requires that at least this ratio of invariants be less than
unity. Therefore from a particular diagram MRE different
solutions can be extracted, each of them associated to a
particular kinematical regime, where the differentiating
element is determined by the ratio of two invariants. This
form of differentiating the solutions is direct for certain
families of diagrams [1]. Once all terms associated to a
specific region of interest are found, summing them will
give us the desired solution. Nevertheless, for topologies
that do not belong to the previously mentioned family, and
which is the most general case, this criteria for finding the
correct terms of the solutions extracted from the MRE
actually fails, because in the general case the application
of IBFE can generate solutions which contain hypergeo-
metric functions with a particular argument, the unity.
Given the structure of the diagram solutions, this value
corresponds to the ratio of two invariants ðA=BÞ or ðB=AÞ,
when A ¼ B. Nevertheless, both ratios are associated to
different regions (different solutions) and the fact that they
are equal does not allow to differentiate them. Here we
present a method that solves this problem, and apply it to
the specific case of diagrams that contain triangle
subdiagrams.
In Sec. III we evaluate two different two-loop diagrams

which contain the triangle subgraph in their topology. The
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first corresponds to a correction to a three-point function,
with six propagators. We find the general solution for
arbitrary propagator powers, and then particularize it to
unity. In order to validate this technique, we compare the
solution with the one obtained from a conventional method
IBP (integration by parts) [2]. The second diagram is a self-
energy correction with five propagators, for which we
present a new solution for the case or arbitrary values of
the propagator powers. Finally in Sec. IV we describe some
cases in which this massless triangle function can be used
and the generalization to massive loops.

II. TRIANGULAR MODULE

In this section we will find the MRE associated to the
one-loop triangular subgraph or module, considering a case
in which the propagators are massless and the external
lines are off-shell. From the MRE of this graph we will
define the one-loop function GT , which will allow to
represent this module as a particular sum of three line
vertices. This formulation will then be applied as examples
to a self-energy and a three-point function diagram, both
with two loops. The self-energy example will show quite
clearly the advantages of this modular procedure.

A. Obtaining the MRE of the triangular module

We start from the momentum integral representation for
this graph, which is given in the massless case and in D
dimensions by

G ¼
Z dDq

i�D=2

1

ððp1 þ qÞ2Þa1ððp1 þ p2 þ qÞ2Þa2ðq2Þa3 :
(1)

When the propagator powers faig are integers, this expres-
sion can be easily reduced to simpler topologies using the
integration by parts technique [2]. The situation is more
difficult for arbitrary indices faig, which we are consider-
ing in this work. Graphically the integral can be repre-
sented by the following diagram:

(2)

The IBFE integration technique is applied to Schwinger’s
parametric representation of the diagram, which can be
obtained from the matrix of parameters [3] associated to
Eq. (1). In the present case this matrix can be easily
obtained and it is given by

M ¼
x1 þ x2 þ x3 x1 þ x2 x2

x1 þ x2 x1 þ x2 x2
x2 x2 x2

0
@

1
A; (3)

which allows to express Schwinger’s parametric represen-
tation as

G ¼ ð�1Þ�D=2

�ða1Þ�ða2Þ�ða3Þ
Z 1

0
d~x

expð� C11p
2
1
þ2C12p1:p2þC22p

2
2

U Þ
UD=2

;

(4)

where d~x¼xa1�1
1 xa2�1

2 x
a3�1
3 dx1dx2dx3 andU¼ðx1þx2þ

x3Þ. The coefficients Cij can be obtained from the deter-

minants of the submatrices of the matrix of parameters (3):

C11 ¼
�������� x1 þ x2 þ x3 x1 þ x2

x1 þ x2 x1 þ x2

��������¼ x3ðx1 þ x2Þ;

C12 ¼
�������� x1 þ x2 þ x3 x2

x1 þ x2 x2

��������¼ x2x3;

C22 ¼
�������� x1 þ x2 þ x3 x2

x2 x2

��������¼ x2ðx1 þ x3Þ:

(5)

Replacing in (4) and remembering that p2
3 ¼ ðp1 þ p2Þ2 ¼

p2
1 þ 2p1:p2 þ p2

2, we get after a little algebra Schwinger’s
parametric representation of (4):

G ¼ ð�1Þ�D=2Q
3
j¼1 �ðajÞ

�
Z 1

0
d~x

expð� x3x1
U p2

1Þ expð� x1x2
U p2

2Þ expð� x2x3
U p2

3Þ
UD=2

:

(6)

Now we will deduce the MRE of the parametric integral
(6). For this purpose we expand the exponentials that are
present in the integrand, which leads us to the following
multiple series:

G ¼ ð�1Þ�D=2Q
3
j¼1 �ðajÞ

X
n1;::;n3

�n1;::;n3ðp2
1Þn1ðp2

2Þn2ðp2
3Þn3

�
Z 1

0
d~x

xn1þn2
1 x

n2þn3
2 x

n1þn3
3

UðD=2Þþn1þn2þn3
; (7)

and this allows us to obtain the MRE of the polynomial
U ¼ ðx1 þ x2 þ x3Þ. For the denominator in the integral
we have that

1

ðx1 þ x2 þ x3ÞðD=2Þþn1þn2þn3

¼ X
n4;::;n6

�n4;::;n6x
n4
1 x

n5
2 x

n6
3

� hD2 þ n1 þ n2 þ n3 þ n4 þ n5 þ n6i
�ðD2 þ n1 þ n2 þ n3Þ

; (8)

and then, integrals already separated in factors of the formR
dxx�þ...�1, can be replaced by the equivalent constraints

h�þ . . .i. This is the final step of the fractional expansion
process, and we have finally obtained the MRE of the
diagram from its parametric representation (6):
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G ¼ ð�1Þ�D=2Q3
j¼1 �ðajÞ

X
n1;::;n6

�n1;::;n6ðp2
1Þn1ðp2

2Þn2ðp2
3Þn3

�
Q

4
j¼1 �j

�ðD2 þ n1 þ n2 þ n3Þ
: (9)

Where we have summarized the constraints f�jg in the

following identities:

�1 ¼
�
D

2
þ n1 þ n2 þ n3 þ n4 þ n5 þ n6

�
;

�2 ¼ ha1 þ n1 þ n2 þ n4i;
�3 ¼ ha2 þ n2 þ n3 þ n5i;
�4 ¼ ha3 þ n1 þ n3 þ n6i:

(10)

From expression (9) we see that the composition of sums
and Kronecker deltas ( � �k) of the MRE of this module
or graph is 6�=4�.

B. Definition of the one-loop function GT

In order to generate a systematic reduction procedure of
interior triangle subgraphs of a more complex topology, we

define from Eq. (9) a loop function denoted GT , such that
(9) can be written as

G¼ X
n1;::;n3

GTða1;a2;a3;n1;n2;n3Þ 1

ðp2
1Þ�n1

1

ðp2
2Þ�n2

1

ðp2
3Þ�n3

;

(11)

where the one-loop function GTða1; a2; a3; n1; n2; n3Þ by
comparison is given by the expression

GTða1; a2; a3; n1; n2; n3Þ

¼ ð�1Þ�D=2Q3
j¼1 �ðajÞ

X
n4;::;n6

�n1;::;n6

Q
4
j¼1 �j

�ðD2 þ n1 þ n2 þ n3Þ
: (12)

Let us look at the propagator structure of Eq. (11). It is
clear that it can be represented pictorially as a sum whose
argument contains the original diagram with the loop
reduced to an effective vertex where the external lines
reach, as inverse propagators. The cost of this topological
minimization is a multiple sum. Graphically the represen-
tation of the MRE of the triangular module is given by

(13)

Therefore we have shown that it is possible to reduce
topologies which contain this type of vertices, just as was
done with the reduction of propagator bubbles [4].

C. Method for differentiating series
of unitary argument

Before going into the actual application of IBFE to
diagrams with triangle subgraphs, it is necessary to imple-
ment a method that allows to discriminate whether a uni-
tary argument in the series that comes from the MRE
corresponds to the limit of the ratio of invariants in a
particular region or to its complementary region. This is
based on multiplying the external momenta by certain
constants (fictitious invariants) Ai ði ¼ 1; 2; 3Þ. Once the
solution to the diagram is found, the arguments of the

obtained hypergeometric series correspond now to ratios
of these constants, allowing to separate the solutions asso-
ciated to different regions of the hypergeometric functions

whose arguments are ðAi

Ak
Þ and ðAk

Ai
Þ, with i � k. Once these

structures have become separated, we take A1 ¼ A2 ¼
A3 ¼ 1, and the correct solution is obtained. This simple
method solves the problem of summing hypergeometric
series, with the same argument, that actually belong to
different solutions of the original problem. In the triangle
case, we transform the external momenta in (9) as follows:

p2
i ) Aip

2
i : (14)

This transformation allows to obtain the modified expres-
sion of (13):

(15)
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III. APPLICATIONS

The topological reduction formula (15), which corre-
sponds to an MRE of the triangular module, will be useful
for finding the MRE of generic graphs that contain in their
geometry one or more of these triangular modules. We will
now explain how to use formula (15) in specific cases,
showing the advantages of this procedure.

A. Example I: Two-loop triangle

As the first example of the modular reduction technique
and of the topological formula (15), let us consider a
diagram g with three external lines, two loops, and six
propagators. We take a massless theory, with mass shell
external lines K1 and K2 (K

2
1 ¼ K2

2 ¼ 0). The diagram is

(16)

1 Getting the diagram MRE

The first step in order to find the diagram MRE with the
modular procedure is to reduce the subgraph associated to
the indices fa1; a2; a3g, using formula (15). In this way we
obtain an expression where we have eliminated one of the
loops of the diagram, which has been replaced by an
effective vertex where the three propagators associated to
the indices f�n1;�n2;�n3g meet. In detail:

(17)

In Eq. (17) we can see that one of the external lines, the one
associated with the momentum K1, is affected by the
modular reduction on g. It is possible to actually extract
this propagator ) 1

ðK2
1
Þ�n1

from the diagram, since it is not

involved in the loop integration, and write it as a factor that
multiplies this graph. Looking at Eq. (11), and its pictorial
equivalent (13), we conclude that it is possible

to eliminate from the graph the information related to the
index of summation n1. Rewriting (17) we thus have

(18)

×

The resulting triangle allows us to apply the reduction
formula (13). We then get the MRE of the topology g as

(19)

Since each function GT is associated to six summation
indices, in order to use the same notation for these indices
fng, the second function GT starts with the summation
index n7. Therefore we get

g ¼ X
n1;::;n3

ðA1Þn1ðA2Þn2ðA3Þn3ðK2
1Þn1þn7ðK2

2Þn9ðK2
3Þn8

�GTða1; a2; a3;n1; n2; n3Þ �GTða6 � n2; a5; a4

� n3; n7; n8; n9Þ; (20)

where after replacing the functions GT by their respective
MRE, we obtain the expression
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g ¼ F
X
fng
�n1;::;n12ðA1Þn1ðA2Þn2ðA3Þn3ðK2

1Þn1þn7ðK2
2Þn9ðK2

3Þn8

�
Q8

j¼1 �j

�ðD2 þ n1 þ n2 þ n3Þ�ðD2 þ n7 þ n8 þ n9Þ�ða6 � n2Þ�ða4 � n3Þ
: (21)

We have defined the factor:

F ¼ ð�1Þ�D

�ða1Þ�ða2Þ�ða3Þ�ða5Þ : (22)

The constraints f�jg are given by the following identities:

�1 ¼
�
D

2
þ n1 þ n2 þ n3 þ n4 þ n5 þ n6i; �5 ¼

�
D

2
þ n7 þ n8 þ n9 þ n10 þ n11 þ n12

�
;

�2 ¼ ha1 þ n1 þ n2 þ n4i; �6 ¼ ha4 � n3 þ n7 þ n8 þ n10i; �3 ¼ ha2 þ n2 þ n3 þ n5i;
�7 ¼ ha5 þ n8 þ n9 þ n11i; �4 ¼ ha3 þ n1 þ n3 þ n6i; �6 ¼ ha6 � n2 þ n7 þ n9 þ n12i:

(23)

Finally, applying the conditions of the problem ðK2
1 ¼

K2
2 ¼ 0Þ, the summation indices n1, n7, and n9 must vanish

in order to have a nonzero solution. Replacing these values
and eliminating the sums in (21), we have obtain the MRE
of the diagram.

After renaming the indexes fng ) flg so that they be-
come consecutive, the multiregion expansion is finally
given by

g ¼ F
X
flg
�l1;::;l9ðA2Þl1ðA3Þl2ðK2

3Þl6

�
Q8

j¼1 �j

�ðD2 þ l1 þ l2Þ�ðD2 þ l6Þ�ða6 � l1Þ�ða4 � l2Þ
;

(24)

and now the constraints are given by

�1 ¼
�
D

2
þ l1 þ l2 þ l3 þ l4 þ l5

�
;

�5 ¼
�
D

2
þ l6 þ l7 þ l8 þ l9

�
; �2 ¼ ha1 þ l1 þ l3i;

�6 ¼ ha4 � l2 þ l6 þ l7i; �3 ¼ ha2 þ l1 þ l2 þ l4i;
�7 ¼ ha5 þ l6 þ l8i; �4 ¼ ha3 þ l2 þ l5i;

�6 ¼ ha6 � l1 þ l9i: (25)

Therefore the multiplicity of the hypergeometric series that
can be extracted from the MRE is one ) hypergeometric
series of the type qFðq�1Þ and at most C9

8 ¼ 9 series of this

type whose argument for this case is one.

2. General IBFE solution

Now we proceed to find the general solutions associated
with the diagram (16) coming from the MRE (24) which
represents it. We maintain all the indexes fajg with arbi-

trary values, and for notational simplicity make A2 ¼ A
and A3 ¼ B.
The solutions we present here correspond to two regions

that can be differentiated according to the ratio of the
fictitious invariants used in order to separate them: the
region where A> B and the region where B> A. Both
are solutions of g, related by analytical continuation. In
particular, in the limit A ¼ B ¼ 1 they become identical,
as will be seen later on.
Analytical solution in the region j AB j � 1

Let us first define the following simplifying notation for
the indexes fajg:

aijk... ¼ ai þ aj þ ak þ . . . : (26)

Moreover, since in practice each constraint h. . .i eliminates
a sum in the MRE, the remaining or free sum at the end of
the elimination process generates the corresponding hyper-
geometric representation qFq�1, which we will identify as

Gj, since it is the contribution obtained when the summa-

tion index nj is free in the multiregion representation of

diagram g.
With these definitions we can write the solutions for this

region as

g ¼ g

�
A

B

�
¼ G1 þG5; (27)

where the terms inside the sum correspond to the following
functions:
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G1 ¼ ð�1Þ�DðK2
3ÞD�a123456

�ða123 � D
2Þ�ða123456 �DÞ�ðD2 � a13Þ�ðD2 � a12Þ�ðD2 � a56Þ�ðD� a12346Þ

�ða2Þ�ða3Þ�ða5Þ�ðD� a123Þ�ða1234 � D
2Þ�ð3D2 � a123456Þ

BðD=2Þ�a123

� 3F2

a123 � D
2 ; a1;

D
2 � a56

a1234 � D
2 ; 1þ a12 � D

2

jA
B

 !
; (28)

and

G5 ¼ ð�1Þ�DðK2
3ÞD�a123456

�ða12 � D
2Þ�ðD2 � a2Þ�ðD2 � a13Þ�ðD� a12346Þ�ða123456 �DÞ�ðD� a1256Þ

�ða1Þ�ða2Þ�ða5Þ�ðD� a123Þ�ða34Þ�ð3D2 � a123456Þ
AðD=2Þ�a12B�a3

� 3F2

D� a1256; a3;
D
2 � a2

a34;
D
2 þ 1� a12

jA
B

 !
: (29)

Analytical solution in the region j BA j � 1

Analogously we have that in this fictitious region the solution is given by

g ¼ g

�
B

A

�
¼ G2 þG3 þG7; (30)

with

G2 ¼ ð�1Þ�DðK2
3ÞD�a123456

�ða123 � D
2Þ�ðD2 � a23Þ�ðD2 � a13Þ�ða123456 �DÞ�ðD� a12356Þ�ðD� a12346Þ

�ða1Þ�ða2Þ�ða5Þ�ða4Þ�ðD� a123Þ�ð3D2 � a123456Þ
AðD=2Þ�a123

� 3F2

a123 � D
2 ; 1� a4; a3

1� D
2 þ a23; 1� D

2 þ a12356
jB
A

 !
; (31)

G3 ¼ ð�1Þ�DðK2
3ÞD�a123456

�ða23 � D
2Þ�ðD2 � a13Þ�ðD2 � a2Þ�ða123456 �DÞ�ðD2 � a156Þ�ðD� a12346Þ
�ða2Þ�ða3Þ�ða5Þ�ðD� a123Þ�ða234 �DÞ�ð3D2 � a123456Þ

A�a1BðD=2Þ�a23

� 3F2

a1;
D
2 þ 1� a24;

D
2 � a2

D
2 þ 1� a23; 1þ a156 � D

2

jB
A

 !
; (32)

and finally

G7 ¼ ð�1Þ�DðK2
3ÞD�a123456

�ða23 � D
2Þ�ðD2 � a13Þ�ðD2 � a2Þ�ða123456 �DÞ�ðD2 � a156Þ�ðD� a12346Þ
�ða2Þ�ða3Þ�ða5Þ�ðD� a123Þ�ða234 �DÞ�ð3D2 � a123456Þ

Aa56�ðD=2ÞBD�a12356

� 3F2

Dþ 1� a123456;
D
2 � a56; D� a1256

Dþ 1� a12356;
D
2 þ 1� a156

jB
A

 !
: (33)

3. Particular case: Unit indexes

In the actual Feynman diagram evaluation, in general the corresponding momentum integral has indexes or propagator
powers that are equal to unity. From the previous results, making aj ¼ 1ðj ¼ 1; . . . ; 6Þ, we obtain the solution:

Analytic solution in the region j AB j � 1

The solutions in this region are given by

g ¼ g

�
A

B

�
¼ G1 þG5; (34)

where now

G1 ¼ ð�1Þ�DðK2
3ÞD�6

�ð3� D
2Þ�ð6�DÞ�ðD2 � 2Þ3�ðD� 5Þ

�ðD� 3Þ�ð4� D
2Þ�ð3D2 � 6Þ � BðD=2Þ�3

2F1

1; D
2 � 2

4� D
2

jA
B

 !
; (35)

and
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G5 ¼ ð�1Þ�DðK2
3ÞD�6

�ð2� D
2Þ�ðD2 � 1Þ�ðD2 � 2Þ�ðD� 5Þ�ð6�DÞ�ðD� 4Þ

�ðD� 3Þ�ð3D2 � 6Þ AðD=2Þ�2B�1
2F1

D� 4; 1
2

jA
B

� �
: (36)

Analytical solution in the region j BA j � 1

In this region the solution is

g ¼ g

�
B

A

�
¼ G2 þG3 þG7; (37)

where the hypergeometric representations G2;3;7 are now given by

G2 ¼ ð�1Þ�DðK2
3ÞD�6

�ð3� D
2Þ�ðD2 � 2Þ2�ð6�DÞ�ðD� 5Þ2

�ðD� 3Þ�ð3D2 � 6Þ � AðD=2Þ�3
2F1

0; 1
6�D

jB
A

� �
; (38)

or equivalently

G2 ¼ ð�1Þ�DðK2
3ÞD�6

�ð3� D
2Þ�ðD2 � 2Þ2�ð6�DÞ�ðD� 5Þ2

�ðD� 3Þ�ð3D2 � 6Þ � AðD=2Þ�3; (39)

G3 ¼ ð�1Þ�DðK2
3ÞD�6

�ð2� D
2Þ�ðD2 � 2Þ�ðD2 � 1Þ�ð6�DÞ�ðD� 5Þ�ðD2 � 3Þ

�ðD� 3Þ�ð3D2 � 6Þ�ð3� D
2Þ

A�1BðD=2Þ�2
2F1

1; D
2 � 2

4� D
2

jB
A

 !
; (40)

and finally

G7 ¼ ð�1Þ�DðK2
3ÞD�6

�ð2� D
2Þ�ðD2 � 2Þ�ðD2 � 1Þ�ð6�DÞ�ðD2 � 3Þ�ðD� 5Þ

�ðD� 3Þ�ð3D2 � 6Þ A2�ðD=2ÞBD�5
1F0

D� 5
� jB

A

� �
: (41)

4. Analytic continuation and dependence between the solutions obtained with IBFE

It is possible to show that in the limit A ¼ B ¼ 1 the solutions (34) and (37) are equal, and therefore both are related by
analytic continuation. For this purpose we use the following identity:

2F1

a; b
c

j1
� �

¼ �ðcÞ�ðc� a� bÞ
�ðc� aÞ�ðc� bÞ : (42)

Using this formula we easily find that the summed series have the following form:

G1 ¼ ð�1Þ�DðK2
3ÞD�6

�ðD2 � 2Þ3�ðD� 5Þ�ð5�DÞ
�ðD� 3Þ�ð3D2 � 6Þ ; (43)

and

G5 ¼ ð�1Þ�DðK2
3ÞD�6

�ð2� D
2Þ�ðD2 � 2Þ�ðD2 � 1Þ�ðD� 4Þ�ðD� 5Þ�ð5�DÞ

�ðD� 3Þ�ð3D2 � 6Þ : (44)

On the other hand we have that

G2 ¼ ð�1Þ�DðK2
3ÞD�6

�ð3� D
2Þ�ðD2 � 2Þ2�ð6�DÞ�ðD� 5Þ2

�ðD� 3Þ�ð3D2 � 6Þ ; (45)

and

G3 ¼ ð�1Þ�DðK2
3ÞD�6

�ð2� D
2Þ�ðD2 � 2Þ�ðD2 � 1Þ�ðD� 5Þ�ðD2 � 3Þ�ð4� D

2Þ�ð5�DÞ
�ðD� 3Þ�ð3D2 � 6Þ�ð3� D

2Þ2
: (46)

The hypergeometric function contained in the termG7 and which has the form 1F0 can be transformed in another one of the
type 2F1, and then we can apply the identity (42),

1F0

�
� j1

� �
¼ 2F1

�; �
�

j1
� �

; (47)

and then we get that
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G7 ¼ 0: (48)

After a bit of algebra, and using known Gamma function
properties, it is straightforward to show that the solutions
(34) and (37) are equal in the limit A ¼ B ¼ 1, giving

ðG1 þG5Þ � ðG2 þG3Þ ¼ 0: (49)

Therefore, defining GIBFE as the solution for the graph in
(16), the final solution in general can be written as

GIBFE ¼
8><
>:
G2 þG3

or

G1 þG5

: (50)

5. Validating the solution GIBFE. Comparison with a
conventional method: Integration by parts (IBP)

When the propagator powers are integers, it is possible
to evaluate such topologies with the integration by parts
method [2]. In the particular case of diagrams that contain
subgraphs, this technique can be quite useful in order to
simplify the integration problem, since it allows to simplify
the geometry of the diagram.
In the particular case of the diagram which contains

triangle subgraphs, this technique can be in order to sim-
plify the integration problem. One very useful formula,
which can be deduced applying IBP to a triangle graph, and
which is known as the triangle identity, is the following:

(51)

where it has been assumed that the indexes a1, a2, and a3 have arbitrary values. We now apply directly this identity to the
diagram depicted in (16), but taking all the propagator powers to be unity. The result that we obtain is

(52)

The third diagram in the left-hand side of the equation vanishes (external on-shell line condition). The second diagram can
be further simplified using again (51), giving

(53)

Now each term of the solution can be easily rewritten evaluating the bubble diagram and then the triangle. For this we need
the general formulae for these graphs, given by
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(54)

where

G ða1; a2Þ ¼ ð�1Þ�D=2

� �ða1 þ a2 � D
2Þ�ðD2 � a1Þ�ðD2 � a2Þ

�ða1Þ�ða2Þ�ðD� a1 � a2Þ :

(55)

In the case of the triangle with conditions P2
1 ¼ P2

2 ¼ 0
one has the fundamental formula

(56)

where the factor Gða1; a2; a3Þ is given by

Gða1;a2;a3Þ
¼ ð�1Þ�D=2

��ða1þa2þa3�D
2Þ�ðD2 �a2�a3Þ�ðD2 �a1�a2Þ

�ða1Þ�ða3Þ�ðD�a1�a3�a2Þ :

(57)

Applying formulae (54) and (56), the solution for the
diagram is then

g ¼ GIBP

¼ ðK2
3ÞD�6

D� 4

�
2Gð1; 3Þ½G

�
1; 4�D

2
; 1; 1

�

� 1

D� 5
Gð2; 2ÞG

�
1; 4�D

2
; 1

�
� 1

D� 5
2Gð1; 3Þ

�
�
G

�
1; 4�D

2
; 1

�
�G

�
1; 1; 4�D

2

���
: (58)

Choosing one of the solutions for GIBFE (50), it can be
easily shown that the solution of this diagram evaluated
using the IBFE technique gives the same result as with
IBP:

GIBFE ¼ GIBP: (59)

This is then a concrete confirmation of the IBFE technique,
applied modularly to a diagram with triangle subgraphs.
The important point is that this has allowed to obtain the
MRE of the graph in a noticeably more direct and system-
atic way than finding it by taking Schwinger’s parametric
representation of the whole diagram.

B. Example II: Two-loop propagator correction

A more relevant example is the two-loop propagator
correction, with five internal lines.

(60)

Obtaining the diagram MRE

In order to find the diagram MRE we apply formula (15)
on the left-hand side of the diagram, obtaining the follow-
ing graphical expression:

(61)

×

Using then the massless bubble one-loop functions GA [4],
we quickly obtain the diagram MRE as

(62)

or equivalently
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G ¼ X
n1;::;n3;n7

ðA1Þn1ðA2Þn2ðA3Þn3GTða1; a2; a3; n1; n2; n3Þ

�GAða4 � n1; a5 � n3; n7Þ 1

ðp2Þ�n2�n7
: (63)

The one-loop functions GT and GA are given by the ex-
pressions

GTða1; a2; a3;n1; n2; n3Þ ¼ ð�1Þ�D=2Q
3
j¼1 �ðajÞ

X
n4;::;n6

�n1;::;n6

�
Q

4
j¼1 �j

�ðD2 þ n1 þ n2 þ n3Þ
; (64)

whose constraints are

�1 ¼
�
D

2
þ n1 þ n2 þ n3 þ n4 þ n5 þ n6

�
;

�2 ¼ ha1 þ n1 þ n2 þ n4i;
�3 ¼ ha2 þ n2 þ n3 þ n5i;
�4 ¼ ha3 þ n1 þ n3 þ n6i;

(65)

and for GA we have

GAða4 � n1; a5 � n3;n7Þ ¼ ð�1Þ�D=2

�ða4 � n1Þ�ða5 � n3Þ

� X
n8;n9

�n7;::;n9

Q
7
j¼5 �j

�ðD2 þ n7Þ
; (66)

where the constraints become

�5 ¼
�
D

2
þ n7 þ n8 þ n9

�
;

�6 ¼ ha4 � n1 þ n7 þ n8i;
�7 ¼ ha5 � n3 þ n7 þ n9i:

(67)

With this information we finally are able to write the
diagram MRE as

G¼ ð�1Þ�DQ
3
j¼1 �ðajÞ

X
n1;::;n9

�n1;::;n9

ðA1Þn1ðA2Þn2ðA3Þn3ðp2Þn2þn7

�ðD2 þn1þn2þn3Þ�ðD2 þn7Þ

�
Q

7
j¼1 �j

�ða4�n1Þ�ða5�n3Þ : (68)

This expansion contains 9� and 7�, and therefore the
solution of this diagram corresponds to a double series
and since we are dealing with a propagator, the kinematical
variable ðp2Þ that is present does not appear explicitly as an
argument in this series. We expect that for this type of
diagram the solution will not be a single term, since it does
not correspond to an optimal topology (in the sense that the
multiplicity of the resulting series does not depend on the
number of loops or equivalently only depends on the
invariants of the physical process [1]).
In order to simplify the notation in (68) we take A1 ¼ A,

A2 ¼ B, and A3 ¼ C. With these invariants six regions of
interest can be generated, each one with a different solu-
tion, but in the limit A ¼ B ¼ C ¼ 1 they are all identical.
These regions are given by

A < B< C; A < C< B; B < A < C;

B < C< A; C < B< A; C < A< B:
(69)

We arbitrarily take the region in which ðA < C< BÞ. Then
when we extract the different terms of the MRE (bivalued
hypergeometric functions) we only sum those that have as
one of their arguments the following simple combinations:

�
A

C

�
;

�
A

B

�
;

�
C

B

�
;

or equivalently all the double combinations generated
when combining these simple combinations: ðAC ; CBÞ,
ðAB ; CBÞ, etc. Given these conditions, the general solution

that we get starting from (68) is the following:

G ¼ g1 þ g2 þ g3 þ g4 þ g5 þ g6 (70)

where we have that

g1 ¼ ð�1Þ�Dðp2ÞD�a12345
�ða13 � D

2Þ�ðD2 � a23Þ�ðD2 � a1Þ�ða1345 �DÞ�ðD2 � a5Þ�ðD� a134Þ
�ða1Þ�ða3Þ�ða5Þ�ðD� a123Þ�ða134 � D

2Þ�ð3D2 � a1345Þ
AðD=2Þ�a13B�a2

� F2:2:2
2:1:1

fa2; D2 � a1g; f1� a5;
D
2 � a5g; fD2 þ 1� a134; D� a134g

f3D2 � a1345; Dþ 1� a1345g; f1� D
2 þ a23g; fD2 þ 1� a13g

jC
B
;
A

B

 !
; (71)

g2 ¼ ð�1Þ�Dðp2ÞD�a12345
�ðD2 � a45Þ�ðD� a2345Þ�ða12345 �DÞ�ðD2 � a13Þ�ða345 � D

2Þ
�ða1Þ�ða2Þ�ða3Þ�ðD2Þ�ðD� a123Þ

BD�a12345Ca45�ðD=2Þ

� �F2:2:2
2:1:1

fD� a2345;
D
2 � a45g; f1� a4;

D
2 � a4g; fa12345 �D; a345 � D

2g
fD2 � a4; 1� a4g; f1þ a13 � D

2g; fD2g
j A
C
;
C

B

 !
; (72)
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g3 ¼ ð�1Þ�Dðp2ÞD�a12345

� �ða13 � D
2Þ�ða12345 �DÞ�ðD� a1345Þ�ð3D2 � 2a3 � a1245Þ�ða345 � D

2Þ
�ða1Þ�ða2Þ�ða3Þ�ðD2Þ�ðD� a123Þ

AðD=2Þ�a13BD�a12345Ca1345�ðD=2Þ

� �F2:2:2
2:1:1

fD� a1345;
3D
2 � 2a3 � a1245g; fD2 þ 1� a134; D� a134g; fa12345 �D; a345 � D

2gfD� a134;
D
2 þ 1� a134g; fD2 þ 1� a13g; fD2g

j A
C
;
C

B

 !
; (73)

g4 ¼ ð�1Þ�Dðp2ÞD�a12345
�ðD2 � a13Þ�ðD2 � a23Þ�ða123 � D

2Þ�ða45 � D
2Þ�ðD2 � a5Þ�ðD2 � a4Þ

�ða1Þ�ða2Þ�ða5Þ�ðD� a45Þ�ðD� a123Þ AðD=2Þ�a13BD�a12345Ca1345�ðD=2Þ

� F2:2:2
2:1:1

fa3; a123 � D
2g; f1� a4;

D
2 � a4g; f1� a5;

D
2 � a5g

fD� a45; 1þ D
2 � a45g; f1� D

2 þ a13g; f1� D
2 þ a23g

jA
B
;
C

B

 !
(74)

g5¼ð�1Þ�Dðp2ÞD�a12345
�ða13�D

2Þ�ða23�D
2Þ�ðD2�a3Þ�ðD�a134Þ�ðD�a235Þ

�ða1Þ�ða2Þ�ða3Þ�ð2D�a1245�2a3Þ�ða134�D
2Þ

�ða1245þ2a3� 3D
2 Þ

�ða235�D
2Þ

AðD=2Þ�a13Ba3�ðD=2Þ

�CðD=2Þ�a23F2:2:2
2:1:1

fD�a123;
D
2�a3g; fD2þ1�a235;D�a235g; fD2þ1�a134;D�a134g

f2D�a1245�2a3;
3D
2 þ1�2a3�a1245g; fD2þ1�a23g; fD2þ1�a13g

jC
B
;
A

B

 !
;

(75)

and finally

g6 ¼ ð�1Þ�D
�ðD2 � a13Þ�ða23 � D

2Þ�ðD2 � a2Þ�ðD2 � a4Þ�ða2345 �DÞ�ðD� a235Þ
�ða2Þ�ða3Þ�ða4Þ�ðD� a123Þ�ða235 � D

2Þ�ð3D2 � a2345Þ

� B�a1CðD=2Þ�a23F2:2:2
2:1:1

fa1; D2 � a2g; f1� a4;
D
2 � a4g; f1þ D

2 � a235; D� a235g
f3D2 � a2345; 1þD� a2345g; f1� D

2 þ a13g; f1þ D
2 � a23g jA

B
;
C

B

 !
: (76)

The previous results have been written in terms of the functions F and �F (for more information see Ref. [1]), which are
defined as

�F p:r:u
q:s:v

f�1; ::; �pg fa1; ::; arg fc1; ::; cug
f�1; ::; �qg fb1; ::; bsg fd1; ::; dvg jx; y

� �
¼ X1

n;m

Qp
j¼1ð�jÞn�m

Q
r
j¼1ðajÞn

Q
u
j¼1ðcjÞmQq

j¼1ð�jÞn�m

Q
s
j¼1ðbjÞn

Q
v
j¼1ðdjÞm

xn

n!

ym

m!
; (77)

and similarly we also have

Fp:r:u
q:s:v

f�1; ::; �pg fa1; ::; arg fc1; ::; cug
f�1; ::; �qg fb1; ::; bsg fd1; ::; dvg jx; y

� �
¼X1

n;m

Qp
j¼1ð�jÞnþm

Q
r
j¼1ðajÞn

Q
u
j¼1ðcjÞmQq

j¼1ð�jÞnþm

Q
s
j¼1ðbjÞn

Q
v
j¼1ðdjÞm

xn

n!

ym

m!
: (78)

This last series is called Kampé de Fériet function. Finally
the solution is obtained by simply taking A ¼ B ¼ C ¼ 1.

We have solved this diagram in a modular or loop by
loop form. In order to appreciate the advantages of this way
of applying IBFE, it is important to compare the MRE (68)
with the MRE of the same diagram obtained by the appli-
cation of IBFE to the parametric integral of the complete
diagram. For this purpose let us consider first Schwinger’s
parametric representation of the complete diagram, which
is given by

G¼ ð�1Þ�DQ5
j¼1 �ðajÞ

�
Z 1

0
dx

exp½� F
ðx1þx2Þðx3þx4þx5Þþx3ðx4þx5Þ�

½ðx1 þ x2Þðx3 þ x4 þ x5Þ þ x3ðx4 þ x5Þ�D=2
;

(79)

where the polynomial F is given by

F ¼ ½x1x2ðx3 þ x4 þ x5Þ þ x4x5ðx1 þ x2Þ þ x3x4x5

þ x1x3x5 þ x2x3x4�p2: (80)

If we now obtain the diagram MRE using (79) we can
compare (Table I) this MRE with MRE (68): We find that
the MRE obtained in terms of the one-loop functions GT is
considerably reduced with respect to the one that we get
when IBFE is applied to both loops of the diagram simul-
taneously, not only in the number of sums and Kronecker
deltas, but also the difference between them is reduced,
which implies that the multiplicity of the resulting series is
less, a nontrivial fact that simplifies considerably the com-
plexity of the solutions.
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VI. COMMENTARIES

The calculation technology that we have presented here
can be useful in order to find minimal expressions for the
MRE of diagrams that contain triangular subgraphs, such
as those that we see in the following figure:

The loop function GT is very useful since it opens up the
possibility of evaluating other families of graphs and to
obtain solutions with less complexity and less number of
terms when compared with the application of IBFE to a
parametric integral of the complete diagram. Although we
have presented here the one-loop function GT for the
massless case, it is certainly possible to consider also
massive propagators and define new loop functions for
these cases. It will be always possible to use here the
same reduction procedure for diagrams that contain bub-
bles or triangles that we have used for the massless cases.

The same idea can be extended to consider one-loop
functions for modules that contain four or more propaga-
tors. Nevertheless, the reductions are no longer so simple
as for the bubble and triangle subgraphs. The important
point is that the modular IBFE application, particularly
when it is done loop by loop, allows to obtain a minimal
representation for the diagram MRE, from which the ana-
lytical solution follows.

V. CONCLUSIONS

The general solutions that can be obtained in the evalu-
ation of Feynman diagrams always correspond to multi-
variable hypergeometric series, whose multiplicity can be
deduced directly from the MRE that represents the dia-
gram. One of the characteristics of the IBFE technique is
that it has a lower bound that fixes the multiplicity � of
these hypergeometric series, and which is related to the
minimal number of invariants ðNÞ that characterizes a
specific Feynman diagram, described through the formula

� � ðN � 1Þ: (81)

The greater-equal sign is here included since besides the
number of invariants one must consider also the topologi-
cal family to which the diagram belongs. If this is not the
optimal for IBFE application, in the sense described in [1],
then the multiplicity is also increased according to the
number of loops in the diagram. This multiplicity can be
directly recognized from the MRE of the diagram, and it is
equal to the difference between the number of sums and
constraints (Kronecker deltas) that are present. Solutions
with 0 multiplicity (which in reality is not a series, and
contains only one term), or multiplicity 1 or 2, correspond
to series whose properties are extensively discussed in the
literature [5–8]. Nevertheless, for triple or higher multi-
plicity series, the information is rather limited, and it is
therefore important to have methods that allow to reduce
the diagram MRE, not only in the sense of lowering the
number of sums and deltas, but also to reduce their differ-
ence, which is something that we have shown here can be
done modularly (see Example II).
The idea of the modular application of IBFE can be

easily extended to one-loop modules or subgraphs that
contain four or more propagators. The result will be in
general a reduced MRE, that will also contain simpler
solution, i.e., hypergeometric functions of lower multiplic-
ity. In the same way, the idea of using fictitious invariants
for selecting the correct solution associated to a diagram
can be also generalized to all the cases in which hyper-
geometric functions with unit arguments are generated.
The modular application of the integration technique

IBFE has shown to be a powerful calculational tool, not
only for its simplicity but also because it allows to calcu-
late many families of graphs. Here we have seen that the
systematical graphical procedure that we have imple-
mented for triangular modules makes the reduction just
as simple as in the case of bubbles contained in a diagram.
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TABLE I.

IBFE complete diagram IBFE modular

Multiplicity multiregion series (�) 12 9

Kronecker deltas of the expansion (�) 8 7

Multiplicity resulting series (�� �) 4 2

Possible contributions to the solutions (C�
� ) 495 36
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