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The fact that certain nonlinear W2;s algebras can be linearized by the inclusion of a spin-1 current can

provide a simple way to realize W2;s algebras from linear W1;2;s algebras. In this paper, we first construct

the explicit field realizations of linear W1;2;s algebras with double scalar and double spinor, respectively.

Then, after a change of basis, the realizations of W2;s algebras are presented. The results show that all

these realizations are Romans-type realizations.
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I. INTRODUCTION

After the fundamental work of Zamolodchikov [1] in the
middle of the 1980’s, W algebras have attracted much
attention since they uncover some underlying world sheet
symmetries of strings. Many W algebras are known (for
review, see [2]) and much work has been carried out on
their classification [3–6]. W algebras have many applica-
tions and become the subject of great interest in many
branches of physics and mathematics, e.g., in W gravity
theories [7,8], critical and noncritical W string theories
[9,10], Wess-Zumino-Novikov-Witten models [11–13],
quantum Hall effect [14], and especially in black holes
[15,16], where it was shown that the Hawking radiation can
be explained as the fluxes of chiral currents forming a W1
algebra.

As we know, W algebras arise from Kac-Moody alge-
bras, which are related to classical Lie algebras. Various
free field realizations of W algebras have been extensively
studied [17–24]. At quantum level, W algebras are usually
nonlinear, which makes it very difficult to give the field
realizations of the W algebras. The corresponding W
strings were first investigated in Ref. [25] and have been
extensively developed since then. Much research on the
scalar realizations of W2;s strings has been done [26–34].

Most of the research is based on the grading method, where
the Becchi-Rouet-Stora-Tyutin (BRST) charge of W2;s

strings is written in the form of QB ¼ Q0 þQ1. This
provides an easy way to construct W2;s strings, while it

imposes more constrained conditions on the BRST charge.
Under the supposition that this grading form still holds true
for spinor field realizations, the corresponding works had
been done [35–38].

Furthermore, many investigations have been focused on
understanding the structure of W algebras [39–42]. It was
shown that linear Lie algebras with a finite number of
currents may contain some nonlinear W algebras with an

arbitrary central charge as subalgebras. Especially forW2;s

algebras, they can be linearized by the inclusion of a spin-1
current at s ¼ 3 and 4 [39]. After performing a nonlinear
change of basis,W2;s algebras can be recast into the form of

linear algebras. But for the spin-s current W0, one has
W0ðzÞW0ð!Þ � 0, which indicates thatW0 is a null current.
It is exciting that this shines some light on the realizations
of the nonlinearW2;s algebras. After constructing the linear

bases of W1;2;s algebras and making a change of basis, we

can obtain the realizations of the nonlinear W2;s algebras.

In fact, the spin-s currentW0 can be set to zero, which will
give a Romans-type realization ofW2;s algebras. However,

in [39], it was shown that the null currentW0 does not need
to be set to zero and was first realized with parafermionic
vertex operators. It also can be found in [37,40,41] that the
null current W0 was realized with the ghostlike fields. In
this paper, we will construct the linear bases of the W1;2;s

algebras with double scalar and double spinor, respec-
tively. Through a change of basis, we obtain some new
realizations of the nonlinearW2;s algebras. All these results

show that there exists no non-Romans-type realization with
double scalar or double spinor only. However, we still
expect that there exist non-Romans-type realizations of
W algebras at some special values of central charge.
The paper is organized as follows. In Sec. II, we give a

brief review and analysis of the realizations of the W2;s

algebras and theW2;s strings. Then in Sec. III, we introduce

the linearization of theW2;s algebras. In Secs. IVand V, we

construct the bases of the linear W1;2;s algebras and obtain

new realizations of the W2;s algebras with double scalar

and double spinor, respectively. Finally, the paper ends
with a brief conclusion.

II. NOTE ON THE REALIZATIONS OF THE W2;s

ALGEBRAS AND THE W2;s STRINGS

It is known that when extended to the quantum case, the
W2;s algebras will become nonlinear. The operator-product

expansion (OPE) of two currents with spin s and s0 pro-
duces terms with spin (sþ s0 � 2) at leading order. For
example, there will be terms with spin-4 and spin-6 cur-
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rents in the OPEs of the W2;3 algebra and the W2;4 algebra,

respectively. However these terms with spin (sþ s0 � 2)
may be interpreted as composite fields built from the
products of the fundamental currents with spin s and s0.
The W2;3 algebra is generated by the spin-2 energy-

momentum tensor T and spin-3 current W, which satisfy
the OPEs [1]

TðzÞTð!Þ � C=2

ðz�!Þ4 þ
2T

ðz�!Þ2 þ
@T

z�!
;

TðzÞWð!Þ � 3W

ðz�!Þ2 þ
@W

z�!
;

WðzÞWð!Þ � C=3

ðz� wÞ6 þ
2T

ðz�!Þ4 þ
@T

ðz�!Þ3

þ 1

ðz�!Þ2
�
2��þ 3

10
@2T

�

þ 1

ðz�!Þ
�
�@�þ 1

15
@3T

�
; (1)

where the coefficient � and composite field � (spin 4) are
given by

� ¼ 16

22þ 5C
; � ¼ T2 � 3

10
@2T: (2)

The constant C is the central charge of the W2;3 algebra. It

is easy to see that the denominator of� atC ¼ � 22
5 will be

zero and the W2;3 algebra will become singular. But one

can rescale these currents such that the corresponding
OPEs are well defined, i.e., there have no divergent coef-
ficients in them (for the detailed discussion see [43,44]).
The W2;4 algebra is given by [45]

TðzÞTð!Þ � C=2

ðz�!Þ4 þ
2T

ðz�!Þ2 þ
@T

z�!
;

TðzÞWð!Þ � 4W

ðz�!Þ2 þ
@W

z�!
;

WðzÞWð!Þ �
�

2T

ðz� wÞ6 þ
@T

ðz�!Þ5 þ
3
10 @

2T þ �1Uþ �2W

ðz�!Þ4 þ 1

15

@3T

ðz�!Þ3 þ
1

84

@4T

ðz�!Þ2 þ
1

560

@5T

ðz�!Þ
�

þ �1

�
1

2

@U

ðz�!Þ3 þ
5

36

@2U

ðz�!Þ2 þ
1

36

@3U

ðz�!Þ
�
þ �2

�
1

2

@W

ðz�!Þ3 þ
5

36

@2W

ðz�!Þ2 þ
1

36

@3W

ðz�!Þ
�

þ �3

�
G

ðz�!Þ2 þ
1

2

@G

ðz�!Þ
�
þ �4

�
A

ðz�!Þ2 þ
1

2

@A

ðz�!Þ
�
þ �5

�
B

ðz�!Þ2 þ
1

2

@B

ðz�!Þ
�
þ C=4

ðz�!Þ8 ; (3)

where the composite fields U, G, A, and B are defined by

U ¼ ðTTÞ � 3
10@

2T;

G ¼ ð@2TTÞ � @ð@TTÞ þ 2
9@

2ðTTÞ � 1
42@

4T;

A ¼ ðTUÞ � 1
6@

2U; B ¼ ðTWÞ � 1
6@

2W;

(4)

with normal ordering of products of currents understood.
The coefficients �iði ¼ 1–5Þ are

�1 ¼ 42

5Cþ 22
;

�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
54ðCþ 24ÞðC2 � 172Cþ 196Þ
ð5Cþ 22Þð7Cþ 68Þð2C� 1Þ

s
;

�3 ¼ 3ð19C� 524Þ
10ð7Cþ 68Þð2C� 1Þ ;

�4 ¼ 24ð72Cþ 13Þ
ð5Cþ 22Þð7Cþ 68Þð2C� 1Þ ;

�5 ¼ 28

3ðCþ 24Þ�2:

(5)

It is worth to point out that, just as the W2;3 algebra, the

W2;4 algebra is singular at C ¼ �24, 1
2 , � 22

5 , and � 68
7 .

After rescaling the spin-4 current W, it can be proved that
only the case C ¼ �24 satisfies the Jacobi identity [43].
In general, the BRST charge QB for a W2;s string is

[44,46]

QB ¼
I

dz½cðzÞTðzÞ þ �ðzÞWðzÞ�; (6)

where the currents T and W generate the corresponding
W2;s algebra, and the fermionic ghosts ðb; cÞ and ð�; �Þ are
introduced for the currents T andW, respectively. It is easy
to prove that the BRST charge given above does satisfy the
nilpotency condition:

Q2
B ¼ fQB;QBg ¼ 0: (7)

A realization for aW2;s algebra means giving an explicit

construction of the bases T and W from the basic fields,
i.e., scalar fields, spinor fields, or ghost fields. Giving a
realization for a nonlinear algebra is difficult and complex.
For simplicity, QB can generally be expressed as the grad-
ing form in many works:
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QB ¼ Q0 þQ1; (8)

Q0 ¼
I

dzcT; (9)

Q1 ¼
I

dz�W; (10)

where the currents T andW generate theW2;s algebras. The

detailed construction of the current T can be found in [47],
where T was constructed from scalar, spinor, and ghost
fields. Here the ghost fields b, c, �, � are all fermionic and
anticommuting. They satisfy the OPEs

bðzÞcð!Þ � 1

z�!
; �ðzÞ�ð!Þ � 1

z�!
; (11)

in other cases the OPEs vanish. The nilpotency condition
of QB becomes

Q2
0 ¼ Q2

1 ¼ fQ0; Q1g ¼ 0: (12)

Although it is easy to construct the W2;s strings in this

grading form, one may note that this gives more con-
strained conditions on QB.

One also notes that if we obtain a realization for a W2;s

algebra, the BRST charge QB of the corresponding W2;s

string will be obtained by substituting the explicit forms of
currents T and W into (6).

III. LINEARIZATION OF THE W2;s ALGEBRAS
FROM THE W1;2;s ALGEBRAS

It was shown that the W2;s algebras can be linearized as

the linearW1;2;s algebras generated by currents J, T, andW
with spin 1, 2, and s, respectively. The linear W1;2;s alge-

bras for s ¼ 3, 4 take the forms [39]

T0ðzÞT0ð!Þ � C0=2

ðz�!Þ4 þ
2T

ðz�!Þ2 þ
@T

z�!
;

T0ðzÞW0ð!Þ � sW

ðz�!Þ2 þ
@W

z�!
;

T0ðzÞJ0ð!Þ � C1

ðz�!Þ3 þ
J0

ðz�!Þ2 þ
@J0

z�!
;

J0ðzÞJ0ð!Þ � � 1

ðz�!Þ2 ;

J0ðzÞW0ð!Þ � �W0

z�!
;

W0ðzÞW0ð!Þ � 0:

(13)

The coefficients C0, C1, and � are given by

C0 ¼ 50þ 24t2 þ 24

t2
; C1 ¼ � ffiffiffi

6
p �

tþ 1

t

�
;

� ¼
ffiffiffi
3

2

s
t ðs ¼ 3Þ; C0 ¼ 86þ 30t2 þ 60

t2
;

C1 ¼ �3t� 4

t
; � ¼ t ðs ¼ 4Þ;

(14)

where t is a nonzero constant. From these OPEs (13), it is
clear that the current W0 is a primary field with spin s,
while the current J0 is not unless C1 ¼ 0. Here the spin-s
current W0 is null, and we will construct the most general
forms of it in the next section. The results there show that
W0 is zero. It also can be seen that every term on the right-
hand side of the OPEs T0ðzÞW0ð!Þ and J0ðzÞW0 hasW0, so
one can consistently set it to zero, though it does not need
to be set to zero. In [39], the null current was first realized
with parafermionic vertex operators, and later was realized
with the ghostlike fields [37,40,41].
The bases T andW of theW2;s algebras were constructed

by the linear bases of the W1;2;s algebras in our previous

paper [37]. For simplicity, we choose t ¼ �1, T andW are
given by

T ¼ T0; (15)

W ¼ W0 þ 7i

8
@2J0 � i

ffiffiffi
6

p
2

@J0J0 þ i

6
J30 � i

ffiffiffi
6

p
8

@T0

þ i

4
T0J0; ðs ¼ 3Þ (16)

W ¼ W0 þ 3a

520
@3J0 � 3a

260
@2J0J0 � 19a

1560
ð@J0Þ2

þ 7a

780
@J0ðJ0Þ2 � a

1560
ðJ0Þ4 � 149

390a
@2T0

� 59

780a
ðT0Þ2 þ a

390
@T0J0 þ a

260
T0@J0

� a

780
T0ðJ0Þ2; ðs ¼ 4Þ (17)

where a ¼
ffiffiffiffiffiffi
451
2

q
. In this case, T ¼ T0 implies that the

central charges of the linear W1;2;s algebras and the W2;s

algebras are equal, i.e., C ¼ C0. One can also shift it with
an arbitrary constant Ceff , the center charge of an effective
energy-momentum tensor Teff , and rewrite the nonlinear
basis as T ¼ T0 þ Teff . Here, we have shown that theW1;2;s

algebras (13) are linear and contain the W2;s algebras as

subalgebras. But one needs to keep in mind that this
linearization does not contain the case C ¼ � 22

5 for W2;3,

and the cases C ¼ �24, 1
2 , � 22

5 , and � 68
7 for W2;4, for

which these algebras are singular.
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IV. DOUBLE-SCALAR REALIZATIONS FOR THE
LINEAR W1;2;s ALGEBRAS AND THE W2;s

ALGEBRAS

In this section, we would like to construct the bases of
the linearW1;2;s algebras with double scalar. Using the fact

that the W2;s algebras are contained in the linear W1;2;s

algebras as subalgebras, we can obtain new realizations for
the W2;s algebras by a change of basis.

A. Realizations for the W1;2;3 algebra and
the W2;3 algebra

First of all, we notice the relation between C0 and C1 for
s ¼ 3 shown in (14):

C0 ¼ 2þ 4C2
1: (18)

A scalar field has spin 0 in conformal field theory, and the
OPE of it with itself is given by

�ðzÞ�ð!Þ � lnðz�!Þ; (19)

or expressed as

@�ðzÞ@�ð!Þ � � 1

ðz�!Þ2 : (20)

One needs to note that the field � here is real. If ’ is a
complex scalar field, it is easy to prove that the OPE will be
of the form

@’y@’�� 1

ðz�!Þ2 ; (21)

in other cases the OPEs vanish.
Now we consider two real scalar fields �1 and �2. The

OPEs of them with each other are read as

@�iðzÞ@�jð!Þ � � �ij

ðz�!Þ2 ; ði; j ¼ 1; 2Þ: (22)

We would like to construct the explicit forms for the linear
bases of the W1;2;3 algebra. The most general form of the

basis T0 can be expressed as

T0 ¼ Teff þ g1T�1
þ g2T�2

þ g3T�1�2
; (23)

where Teff is an effective energy-momentum tensor with
central charge Ceff . The introduction of Teff will ensure the
nontriviality of the solutions. T�1

and T�2
are spin-2

energy-momentum tensors constructed from fields �1

and �2, respectively, and T�1�2
is constructed from these

two scalar fields. The construction is

T�1
¼ �1

2ð@�1Þ2 � q1@
2�1; (24)

T�2
¼ �1

2ð@�2Þ2 � q2@
2�2; (25)

T�1�2
¼ @�1@�2; (26)

where q1 and q2 are the background charges of T�1
and

T�2
, respectively. The other two linear bases are given by

J0 ¼ g4@�1 þ g5@�2; (27)

W0 ¼ g6@Teff þ g7Teff@�1 þ g8Teff@�2 þ g9@
3�1

þ g10ð@�1Þ3 þ g11@
2�1@�1 þ g12@

3�2

þ g13ð@�2Þ3 þ g14@
2�2@�2 þ g15ð@�1Þ2@�2

þ g16@�1ð@�2Þ2 þ g17@
2�1@�2 þ g18@�1@

2�2:

(28)

Plugging these linear bases into the OPE’s relations (13),
we could obtain all the coefficients. One can see that the
constant t that appeared in (14) does not take zero, which
determines � � 0. This leads to a main result

gi ¼ 0 for i ¼ 6–18; (29)

which means that the current W0 is zero. After carefully
calculation, we obtain two solutions:
(i) Solution 1

g1 ¼ g2 ¼ 1; g3 ¼ 0; g4 ¼ g5 ¼
ffiffiffi
2

p
2

h;

C1 ¼ 2
ffiffiffi
2

p
h; Ceff ¼ 8; C0 ¼ 34;

q1 ¼ q2 ¼ �1;

(ii) Solution 2

g1 ¼ g2 ¼ �g3 ¼ 1

2
; g4 ¼ g5 ¼

ffiffiffi
2

p
2

h;

C1 ¼ 2
ffiffiffi
2

p
h; Ceff ¼ 9; C0 ¼ 34;

q1 ¼ q2 ¼ �2;

where h satisfies h2 ¼ 1. The main difference between the
above two solutions is whether the energy-momentum
tensor T�1�2

vanishes. In solution 1, the term T�1�2
does

not appear. However, in solution 2, the contribution of the
term T�1�2

to central charge is 1
2 .

Having found two realizations of the linear W1;2;3 alge-

bra, we substitute the exact forms of the linear bases T0 and
J0 into (16) and obtain two new realizations of the W2;3

algebra. The first realization is

T ¼ Teff þ ð@�1Þ2 � 1
2@

2�1 þ ð@�2Þ2 � 1
2@

2�2; (30)
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W ¼
ffiffiffi
2

p
i

48
ð6hTeff@�1 þ 6hTeff@�2 � hð@�1Þ3 þ 3hð@�1Þ2@�2 þ 9h@�1ð@�2Þ2 þ ð6h� 12

ffiffiffi
3

p Þ@�1@
2�2 � hð@�2Þ3

þ ð6h� 6
ffiffiffi
3

p Þ@2�1@�1 þ ð6h� 12
ffiffiffi
3

p Þ@2�1@�2 þ ð6h� 6
ffiffiffi
3

p Þ@2�2@�2 � 6
ffiffiffi
3

p
@Teff þ ð24h� 6

ffiffiffi
3

p Þ@3�1

þ ð6h� 6
ffiffiffi
3

p Þ@3�2Þ; (31)

and the second one reads

T ¼ Teff þ ð@�1Þ2 � 1
2@

2�1 þ ð@�2Þ2 � 1
2@

2�2 � 1
2@�1@�2; (32)

W ¼
ffiffiffi
2

p
i

96
ð12hTeff@�1 þ 12hTeff@�2 þ 3h@�1ð@�2Þ2 þ ð12 ffiffiffi

3
p þ 12hÞ@2�1@�1 þ ð12h� 18

ffiffiffi
3

p Þ@�1@
2�2 þ hð@�2Þ3

� 2hð@�1Þ3 þ ð12h� 18
ffiffiffi
3

p Þ@2�1@�2 þ ð12h� 18
ffiffiffi
3

p Þ@2�2@�2 � 12
ffiffiffi
3

p
@Teff þ ð51h� 12

ffiffiffi
3

p Þ@3�1

þ ð48h� 12
ffiffiffi
3

p Þ@3�2Þ; (33)

where h satisfies h2 ¼ 1. Note that, although T�1�2
is

absent in the first realization, the energy-momentum tensor
T in both realizations has central charge C ¼ 34. If plug-
ging these realizations into (6), one will get the BRST
charges for the W2;3 string.

B. Realizations for the W1;2;4 algebra and the W2;4

algebra

For the linearW1;2;4 algebra, the relation betweenC0 and

C1 is

C0 ¼ 1þ 1
24ð85C2

1 � 5C1h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�48þ C2

1

q
Þ: (34)

Next, we would like to construct the explicit forms of the
linear bases of the W1;2;4 algebra. The most general forms

of bases T0 and J0 are

T0 ¼ f1Teff þ f2T�1
þ f3T�2

þ f4T�1�2
; (35)

J0 ¼ f5@�1 þ f6@�2; (36)

where the energy-momentum tensors T�1
, T�2

, and T�1�2

are given by

T�1
¼ �1

2ð@�1Þ2 � q3@
2�1; (37)

T�2
¼ �1

2ð@�2Þ2 � q4@
2�2; (38)

T�1�2
¼ @�1@�2: (39)

For the linear basis W0 with spin 4, the calculation shows
that W0 � 0. Under this case, the current W of the W2;4

algebra is constructed from the linear bases T0 and J0 only.
Plugging these linear bases into the OPEs (13), we obtain
two solutions, where the energy-momentum tensor Teff

vanishes in both cases. These solutions are listed as fol-
lows:

(i) Solution 1

f1 ¼ 0; f2 ¼ f3 ¼ 1; f4 ¼ 0;

f5 ¼ f6 ¼
ffiffiffi
2

p
2

h; C1 ¼ i
ffiffiffi
2

p
h; C0 ¼ �4;

q3 ¼ q4 ¼ �i
h

2
;

(ii) Solution 2

f1 ¼ 0; f2 ¼ f3 ¼ 1

2
; f4 ¼ � 1

2
;

f5 ¼ f6 ¼
ffiffiffi
2

p
2

h; C1 ¼ 5
ffiffiffi
3

p
i

3
h;

C0 ¼ �24; q3 ¼ q4 ¼ � 5i

6
h;

where h2 ¼ 1. It is clear that f1 ¼ 0 in both solutions and
this means the vanishing of the energy-momentum tensor
Teff . Therefore, Ceff ¼ 0. The coefficient f4 ¼ 0 in solu-
tion 1 implies that T�1�2

vanishes, however, it does not

vanish in solution 2. One may also note that the central
charge C0 in both solutions is negative, which is different
from the case of the W1;2;3 algebra. The background

charges q3 and q4 of T�1
and T�2

are all imaginary

numbers.
After constructing the explicit forms of the linear bases

T0 and J0, we would like to substitute them into (17) and
obtain new realizations for the W2;4 algebra. The realiza-

tion constructed from solution 1 is

T ¼ � 1

2
ð@�1Þ2 � 1

2
ð@�2Þ2 � ih

2
@2�1 � ih

2
@2�2; (40)
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W ¼ b1ð@�1Þ4 þ b2ð@�1Þ2ð@�2Þ2 þ b3ð@�1Þ2@2�2 þ b4@�1@
2�2@�2 þ b5@�1@

3�2 þ b6ð@�2Þ4 þ b7@
2�1ð@�1Þ2

þ b8@
2�1@�1@�2 þ b9@

2�1ð@�2Þ2 þ b10ð@2�1Þ2 þ b11@
2�1@

2�2 þ b12@
2�2ð@�2Þ2 þ b13ð@2�2Þ2

þ b14@
3�1@�1 þ b15@

3�1@�2 þ b16@
3�2@�2 þ b17@

4�1 þ b18@
4�2: (41)

These coefficients are

b1 ¼ � 59

3120a
þ a

6420
; b2 ¼ � 59

1560a
� a

3120
; b3 ¼ a

390
ffiffiffi
2

p þ 59ih

1560a
� iah

3120
; b4 ¼ a

156
ffiffiffi
2

p � iah

1560
;

b5 ¼ � 3a

520
þ iah

780
ffiffiffi
2

p ; b6 ¼ � 59

3120a
þ a

6240
; b7 ¼ 59ih

1560a
� iah

3120
; b8 ¼ a

156
ffiffiffi
2

p � iah

1560
;

b9 ¼ a

390
ffiffiffi
2

p þ 59ih

1560a
� iah

3120
; b10 ¼ 149

390a
� 19a

3120
þ iah

520
ffiffiffi
2

p þ 59

3120a
; b11 ¼ � 19a

1560
þ iah

260
ffiffiffi
2

p þ 59

1560a
;

b12 ¼ 59ih

1560a
� iah

3120
; b13 ¼ 149

390a
� 19a

3120
þ iah

520
ffiffiffi
2

p þ 59

3120a
; b14 ¼ 149

390a
� 3a

520
þ iah

780
ffiffiffi
2

p ;

b15 ¼ � 3a

520
þ iah

780
ffiffiffi
2

p ; b16 ¼ 149

390a
� 3a

520
þ iah

780
ffiffiffi
2

p ; b17 ¼ 3a

520
ffiffiffi
2

p � 149ih

780a
; b18 ¼ 3a

520
ffiffiffi
2

p � 149ih

780a
;

where a ¼
ffiffiffiffiffiffi
451
2

q
.

Solution 2 gives a realization of the linearW1;2;4 algebra

with central charge C0 ¼ �24, which is singular and could
not be used to construct theW2;4 algebra. But it is indeed a

realization of the W1;2;4 algebra.

V. DOUBLE-SPINOR REALIZATIONS FOR THE
LINEAR W1;2;s ALGEBRAS AND THE W2;s

ALGEBRAS

In this section, we would like to construct the bases of
the linear W1;2;s algebras with double spinor. The new

realizations for the W2;s algebras can be obtained after a

change of bases.

A. Realizations for the W1;2;3 algebra and the W2;3

algebra

A spinor field has spin 1
2 in conformal field theory, and

the OPE c ðzÞc ð!Þ is given by

c ðzÞc ð!Þ � � 1

z�!
: (42)

We denote two real spinor fields as c 1 and c 2, and they
satisfy

c iðzÞc jð!Þ � � �ij

z�!
; ði; j ¼ 1; 2Þ: (43)

Next, we would like to construct the explicit forms of the
linear bases for the W1;2;3 algebra. The most general forms

of T0, J0, and W0 can be expressed as

T0 ¼ Teff þ h1Tc 1
þ h2Tc 2

þ h3Tc 1c 2
;

J0 ¼ h4c 1c 2;

W0 ¼ h5@
2c 1c 1 þ h6@

2c 2c 2 þ h7@
2c 1c 2

þ h8c 1@
2c 2 þ h9@c 1@c 2 þ h10@Teff

þ h11Teffc 1c 2: (44)

The energy-momentum tensors Tc 1
and Tc 2

with spin 2 are

constructed from c 1 and c 2, respectively, and Tc 1c 2
is

constructed from these two spinor fields. They are con-
structed as

Tc 1
¼ @c 1c 1; (45)

Tc 2
¼ @c 2c 2; (46)

Tc 1c 2
¼ @c 1c 2 þ c 1@c 2: (47)

Plugging these linear bases into the OPE relations (13), we
obtain the result:

h1 ¼ h2 ¼ �1
2; h3 ¼ 0; h4 ¼ 1; hi ¼ 0

ði ¼ 5–11Þ; C1 ¼ 0; C0 ¼ 2; Ceff ¼ 1:

In this solution, it can be seen that Tc 1c 2
and W0 vanish.

The energy-momentum tensor Teff contributes central
charge 1.
After constructing the explicit forms of the linear bases

T0, J0, and W0, we substitute them into (16) and obtain a
realization of the W2;3 algebra as follows:
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T ¼ Teff � 1

2
@c 1c 1 � 1

2
@c 2c 2;

W ¼ i

4
Teffc 1c 2 þ 7i

8
c 1@

2c 2 þ
ffiffiffi
6

p
i

16
@2c 1c 1

þ 7i

8
@2c 1c 2 þ

ffiffiffi
6

p
i

16
@2c 2c 2 �

ffiffiffi
6

p
i

8
@Teff :

It is worth remarking that the currents T and W above
generate the W2;3 algebra with central charge C ¼ 2.

B. Realizations for the W1;2;4 algebra and the W2;4

algebra

For the linearW1;2;4 algebra, the bases take the following

form:

T0 ¼ Teff þ k1Tc 1
þ k2Tc 2

þ k3Tc 1c 2
;

J0 ¼ k4c 1c 2; W0 ¼ 0;
(48)

where Tc 1
, Tc 2

, and Tc 1c 2
are given by (45)–(47). This

case gives a precise Romans realization of the W1;2;4 alge-

bra, where the basis W0 is set to zero.
Plugging these linear bases into the OPE relations (13),

we obtain two solutions:

(i) Solution 1

k1 ¼ k2 ¼ � 1

2
; k3 ¼ �C1

2
; k4 ¼ �1;

Ceff ¼ 1

24
ð13C2

1 þ 5C1h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 � 48

q
Þ;

C0 ¼ 1þ 1

24
ð85C2

1 þ 5C1h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 � 48

q
Þ: (49)

(ii) Solution 2

k1 ¼ k2 ¼ � 1

2
; k3 ¼ C1

2
; k4 ¼ 1;

Ceff ¼ 1

24
ð13C2

1 þ 5C1h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 � 48

q
Þ;

C0 ¼ 1þ 1

24
ð85C2

1 þ 5C1h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 � 48

q
Þ:

(50)

The central charges C0 of both solutions depend on C1,
and this gives realizations of the linear W1;2;4 algebra at

arbitrary central charge. Then two new realizations of the
W2;4 algebra from these solutions can be obtained imme-

diately. The first one is given by

T ¼ Teff � 1

2
@c 1c 1 � 1

2
@c 2c 2 � C1

2
@c 1c 2

� C1

2
c 1@c 2; (51)

W ¼� 1

1560a
ð�2ð3a2 � 59C1ÞTeffc 1@c 2 þ 118Teff@c 1c 1 � 2ð3a2 � 59C1ÞTeff@c 1c 2 þ 118C1Teff@c 2c 2

� 9ða2 � 32C1Þc 1@
3c 1 � 4a2@Teffc 1c 2 þ 298@2c 2@c 2 �ð59þ 2a2 � 2a2C2

1 þ 59C2
1Þ@c 1c 1@c 2c 2

�ð27a2 � 894C1Þ@c 1@
2c 2 þ 298@2c 1@c 1 �ð27a2 � 894C1Þ@2c 1@c 2 þ 298@3c 1c 1 þð9a2 � 298C1Þ@3c 1c 2

þ 298@3c 2c 2 � 596@2Teff � 118T2
effÞ: (52)

The second is

T ¼ Teff � 1

2
@c 1c 1 � 1

2
@c 2c 2 � C1

2
@c 1c 2 � C1

2
c 1@c 2; (53)

W ¼� 1

1560a
ðþ2ð3a2 � 59C1ÞTeffc 1@c 2 þ 118Teff@c 1c 1 þ 2ð3a2 � 59C1ÞTeff@c 1c 2 þ 118C1Teff@c 2c 2

þ 9ða2 � 32C1Þc 1@
3c 1 � 4a2@Teffc 1c 2 þ 298@2c 2@c 2 �ð59þ 2a2 � 2a2C2

1 þ 59C2
1Þ@c 1c 1@c 2c 2

þð27a2 � 894C1Þ@c 1@
2c 2 þ 298@2c 1@c 1 �ð27a2 � 894C1Þ@2c 1@c 2 þ 298@3c 1c 1 �ð9a2 � 298C1Þ@3c 1c 2

þ 298@3c 2c 2 � 596@2Teff � 118T2
effÞ: (54)

Different from the cases of scalar realizations, the results here give two spinor realizations of the W2;4 algebra for an
arbitrary central charge.
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VI. CONCLUSION

In this paper, we obtained the explicit field realizations
of the linearW1;2;s algebras and the nonlinearW2;s algebras

with double scalar and double spinor, respectively. Owing
to the intrinsic nonlinearity of the W2;s algebras, it is hard

to construct their field realizations. However, it is proved
that the nonlinear W2;s algebras are contained in the linear

W1;2;s algebras with three currents J0, T0, and W0 as a

subalgebra. With this fact, we first constructed the linear
bases of the W1;2;s algebras. Then making a change of

basis, we obtained several explicit field realizations of
the nonlinear W2;s algebras. All these results imply a

symmetry under�1 $ �2 or c 1 $ c 2. This method over-
comes the difficulty of realizations for a nonlinear algebra.

The spin-s currentW0 of theW1;2;s algebras was consid-

ered to be a null current and can be set to zero, then the
realizations of the W2;s algebras obtained from the linear

W1;2;s algebras are called Romans-type realizations. In fact,

it is not necessary to set the current W0 to zero. In our
constructions, we first listed the most general forms of
linear bases J0, T0, and W0 with correct spin. Plugging
these forms into the OPEs (13), we found that all the
coefficients of W0 vanished for the nonzero constant �.
These results suggest that there exists no non-Romans-type
realization of the W2;s algebra if we use double scalar or

double spinor only. However, we expect that there exist
non-Romans-type realizations of theW2;s algebras at some

value of central charge and more details would be inves-
tigated in our future work.
We can also see that all these realizations satisfy C ¼

C0, i.e., the central charge of theW2;s algebras are equal to

the central charge of theW1;2;s algebras, which is caused by

the assumption T ¼ T0. The central charge C takes some
special values for the double-scalar realizations and the
double-spinor realizations of the W2;3 algebras, while it

depends on the value of C1 for the double-spinor realiza-
tions of the W2;4 algebra. We also showed that there is no

such realization for the W2;3 algebra at central charge C ¼
� 22

5 and for the W2;4 algebra at C ¼ �24, 1
2 , � 22

5 , and

� 68
7 , since theW2;s algebras are singular at these values of

central charge.
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