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We construct cosmological spacetimes with null Kasner-like singularities as purely gravitational

solutions with no other background fields turned on. These can be recast as anisotropic plane-wave

spacetimes by coordinate transformations. We analyze string quantization to find the spectrum of string

modes in these backgrounds. The classical string modes can be solved for exactly in these time-dependent

backgrounds, which enables a detailed study of the near-singularity string spectrum, (time-dependent)

oscillator masses, and wave functions. We find that for low-lying string modes (finite oscillation number),

the classical near-singularity string mode functions are nondivergent for various families of singularities.

Furthermore, for any infinitesimal regularization of the vicinity of the singularity, we find a tower of string

modes of ultrahigh oscillation number which propagate essentially freely in the background. The resulting

picture suggests that string interactions are non-negligible near the singularity.
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I. INTRODUCTION

Understanding cosmological singularities in string the-
ory is an important goal, and has been the subject of several
investigations, e.g. [1–29].

Our work in this paper has been in part motivated by
investigations [23,24] involving generalizations of AdS/
CFT where the bulk contains null or spacelike cosmologi-
cal singularities, with a nontrivial dilaton e� that vanishes
at the location of the cosmological singularity, the curva-
tures behaving as RMN � @M�@N�. The gauge theory
duals are N ¼ 4 super Yang-Mills theories with a time-
dependent gauge coupling g2YM ¼ e�, and [23,24] describe
aspects of the dual descriptions of the bulk cosmological
singularities. From the bulk point of view, supergravity
breaks down and possible resolutions of the cosmological
singularity stem from stringy effects. Indeed, noting �0 �

1
g2YMN

from the usual AdS/CFT dictionary and extrapolating

naively to these time-dependent cases with a nontrivial
dilaton, we have �0 � 1

e�N
, indicating vanishing effective

tension for stringy excitations, when e� ! 0 near the
singularity. While this is perhaps wrong in detail, we
expect that stringy effects are becoming important near
the bulk singularity, corresponding to possible gauge cou-
pling effects in the dual gauge theory. It is therefore
interesting to understand world-sheet string effects in the
vicinity of the singularity. Owing to the technical difficul-
ties with string quantization in an AdS background with
Ramond-Ramond (RR) flux, we would like to look for
simpler, purely gravitational backgrounds as toy models
whose singularity structure shares some essential features
with the backgrounds in the AdS/CFT investigations. We
first find such spacetime backgrounds as ‘‘near-
singularity’’ solutions to type II supergravity (preserving

a fraction of light-cone supersymmetry). In general, these
are null Kasner-like solutions with null cosmological sin-
gularities (we also find approximate solutions that extrapo-
late from these near-singularity solutions to flat space
asymptotically). These can be recast as anisotropic plane-
wave-like spacetimes by a coordinate transformation,
and we outline arguments in these coordinates, suggesting
the absence of higher derivative curvature corrections to
these spacetimes (which are essentially plane-wave
backgrounds).
We then perform an analysis of string quantization to

find the spectrum of string modes in these backgrounds.
We find it convenient to use (Rosen-like) coordinates
where the null cosmology interpretation is manifest. With
these lightlike backgrounds, it is natural to use light-cone
gauge. The classical string modes can be solved for exactly
in these time-dependent backgrounds, which enables a
detailed study of the near-singularity string spectrum. For
various families of singularities, the classical string oscil-
lation amplitudes for low-lying oscillation number n are
nondivergent near the singularity, with asymptotic time
dependence similar to the center-of-mass modes. From
the Hamiltonian, we find time-dependent masses for these
string oscillator modes. However, for any infinitesimal
regularization of the vicinity of the singularity, say � &
��, we find string modes of ultrahigh oscillation number
n � 1

�aþ1
�

which propagate essentially freely in the back-

ground. The near-singularity region thus appears to be
filled with such highly stringy modes. There have been
several investigations of string quantization in plane-wave
backgrounds with singularities [8–10,28,29], and our
string analysis has some overlap with [8] in particular.
In Sec. II, we describe the spacetime backgrounds.

Section III describes the string quantization. Section IV
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contains a discussion and open questions. In Appendix A,
we describe some properties of the spacetime backgrounds,
while Appendix B outlines string quantization in coordi-
nates corresponding to a different time parameter.

II. THE SPACETIME BACKGROUNDS

We are interested in spacetime backgrounds that have
a big-bang or big-crunch type of singularity at some value
of the lightlike time coordinate xþ. We also want to
restrict attention to purely gravitational solutions for sim-
plicity, i.e. with unexcited dilaton and RR/Neveu-
Schwarz–Neveu-Schwarz (RR/NSNS) fields. This means
we want to solve the equations RMN ¼ 0. Null-time de-
pendence reduces these equations to Rþþ ¼ 0.

Let us begin by considering a spacetime background
with two scale factors, of the form

ds2 ¼ g��dx
�dx�

¼ efðxþÞð�2dxþdx� þ dxidxiÞ þ ehðxþÞdxmdxm; (1)

where i ¼ 1, 2, m ¼ 3; . . . ; D� 2. One may also think of
the xm directions as compactified, representing, say, a
TD�4. For the critical superstring with D ¼ 10, we could
alternatively replace this six-dimensional transverse space
by some Ricci-flat space such as a Calabi-Yau 3-fold. The
intuition here is that the time dependence of the ‘‘internal’’
space induces time dependence in the four-dimensional
spacetime as well, as in e.g. [30,31]. Another perspective
is that the internal space scale factor is the analog of the
dilaton in the AdS/CFT cosmological solutions of [23,24],
as we will elaborate on below.

Simple classes of singularities in this system are ob-
tained for spacetimes whose limiting form in the vicinity of
xþ ¼ 0 is null Kasner-like,1

ds2 ¼ ðxþÞað�2dxþdx� þ dxidxiÞ þ ðxþÞbdxmdxm;
a > 0: (2)

More generally, consider spacetimes of a general Kasner-
like form,

ds2 ¼ ðxþÞað�2dxþdx� þ dxidxiÞ þ ðxþÞbmdxmdxm;
a > 0; (3)

i.e. the individual internal dimensions xm evolve indepen-
dently according to their Kasner exponents bm appearing in

the individual scale factors ehmðxþÞ ! ðxþÞbm as xþ ! 0.

The coordinate transformation xI ¼ ðxþÞ�aI=2yI, where
aI � a, bm, gives

ðxþÞaI ðdxIÞ2 ¼ ðdyIÞ2 � aIdx
þyIdyI

xþ
þ a2I ðyIÞ2ðdxþÞ2

4ðxþÞ2 :

(4)

Then the metric (3) becomes of manifest plane-wave form,

ds2 ¼ �2ðxþÞadxþdy� þ
�X

I

�
a2I
4
� aIðaþ 1Þ

2

�
ðyIÞ2

�

� ðdxþÞ2
ðxþÞ2 þ ðdyIÞ2; (5)

where we have redefined y� ¼ x� þ ð
P

I
aIðyIÞ2

4ðxþÞaþ1 Þ. For aI ¼
a, bm distinct, these are, in general, anisotropic plane
waves with singularities [after further redefining
ðxþÞadxþ ¼ d�]. In what follows, we will find it conve-
nient to work in the (Rosen) coordinates (2) and (3), where
the null cosmology interpretation is manifest, but as we
will see below, there are close parallels with various pre-
vious studies on plane-wave spacetimes with singularities,
most notably [8] (see also [9,28,29]).
The spacetimes (2) have nonvanishing Riemann curva-

ture components (with e.g. f0 � df
dxþ )

Rþiþi ¼ 1

4
ððf0Þ2 � 2f00ÞefðxþÞ ¼ aðaþ 2Þ

4
ðxþÞa�2;

Rþmþm ¼ 1

4
ð2f0h0m � ðh0mÞ2 � 2h00mÞehmðxþÞ

¼ bð2aþ 2� bÞ
4

ðxþÞb�2:

(6)

For these spacetimes to be Ricci-flat solutions of the
Einstein equations, the equation of motion Rþþ ¼ 0 must
hold, giving

Rþþ ¼ 1

2
ðf0Þ2 � f00 þ 1

2

X
m

ð�2h00m � ðh0mÞ2 þ 2f0h0mÞ ¼ 0

) a2 þ 2aþ 1

2

X
m

ð�b2m þ 2bm þ 2abmÞ ¼ 0: (7)

This relates the various (null) Kasner-like exponents a, bm.
The equation in terms of the general scale factors shows
that the curvature for the 4D scale factor ef is sourced by
those for the internal scale factors ehm : indeed, the hm are
the analogs of the dilaton scalar in the AdS/CFT cosmo-
logical context [23,24] where the corresponding equation

was Rð4Þ
þþ ¼ 1

2 ð@þ�Þ2. That is, the kinetic terms ð@þhmÞ2
(and related cross terms) play the role of the dilaton in
driving the singular behavior of the 4D part of the
spacetime.
In what follows, wewill specialize to the symmetric case

here, i.e. all bm � b equal (and ehm � eh). Then Rþþ ¼ 0
simplifies to

1A spacetime of the form (2) and (3) with a < 0 can be
transformed by a change of coordinates to one with a > 0 by
redefining yþ ¼ 1

xþ . This recasts gþ� ¼ ðxþÞ�jaj ¼ ðyþÞjaj and
moves the singularity at xþ ! 1 in the spacetimes with a < 0 to
yþ ¼ 0. Thus it is sufficient to study spacetimes (2) and (3) with
a > 0.
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1

2
ðf0Þ2 � f00 þD� 4

2
ð�2h00 � ðh0Þ2 þ 2f0h0Þ ¼ 0

) a2 þ 2aþD� 4

2
ð�b2 þ 2bþ 2abÞ ¼ 0: (8)

If b ¼ a, this equation (assumingD> 2) simplifies to give
the solutions b ¼ a ¼ 0, �2, in which case the Riemann
curvature components are seen to identically vanish [the
solution ð�2;�2Þ can be shown to be flat space by the
coordinate transformation to plane-wave form]. Thus an
interesting solution requires that the internal xm space
either grows or shrinks faster than the spatial part of the
four-dimensional cosmology. For any b � a, the equation
of motion above is a quadratic in a, which admits various
solutions with

2a ¼ �2� ðD� 4Þb�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ðD� 4ÞðD� 2Þb2

q
: (9)

Taking the positive radical, it can be seen that restricting
a > 0 for our solutions implies b > 2 or b < 0.

Furthermore aþ 1� b > 0 if b < 0 or jbj<
ffiffi
2

p
D�2 .

Suppose we focus on finding solutions with a, b, being
even integers, so that the metric allows unambiguous ana-
lytic continuation from xþ < 0 to xþ > 0 across the singu-
larity. One may imagine that this is a coordinate-dependent
choice of the time parameter xþ and therefore not sacro-
sanct: however, if we do take this choice, a, b being even
integers seems natural. This is more restrictive: we must
consider the above as Diophantine quadratic equations
with solutions over integers, which are, in general, rarer.
We then need to look for those b for which the radical
above is integral. For the cases of obvious interest, i.e. the
bosonic string (D ¼ 26) and the superstring (D ¼ 10), the

radicals simplify to 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 132b2

p
and 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12b2

p
, respec-

tively. It is then straightforward to check that

ða;bÞ ¼ ð0;2Þ; ð44;�2Þ; ð44;92Þ; ð2068;�92Þ . . .
½D¼ 26�;

ða;bÞ ¼ ð0;2Þ; ð12;�2Þ; ð12;28Þ; ð180;�28Þ; ð180;390Þ; . . .
½D¼ 10� (10)

are solutions. Our analysis of these solutions in what
follows will not depend on these detailed values though.

These solutions can be thought of as the ‘‘near-
singularity’’ limiting regions of more general spacetimes
where the scale factors ef, ehm are not necessarily of
power-law type.2 Since the various scale factors ef, ehm

are related by the single equation of motion (7), a generic
choice of ef admits a solution to (7) for the remaining scale
factors ehm . For instance, with a single scale factor ehm ¼
eh, taking ef ¼ tanhaðxþÞ, we can, in principle, solve for

eh. In the limiting near-singularity region, we have already
seen null-Kasner-like solutions with (8) relating the Kasner
exponents. In the asymptotic region of large xþ, it can be
checked that

ef ¼ tanhaðxþÞ ! 1� 2ae�2xþ ;

eh � constþ 2a

D� 4
e�2xþ

(11)

is an approximate solution to (8) (dropping the subleading
nonlinear terms).
We now make a few comments on the cosmological

singularities in these spacetimes. No curvature invariants
diverge due to the lightlike nature of this system, since no
nontrivial contraction is nonzero. However, there are di-
verging tidal forces for null geodesic congruences.
Consider, for instance, a simple class of null geodesic
congruences propagating solely along xþ (at constant x�,
xi, xm), with a cross section along the xi or xm directions.
These are described by (�þþþ ¼ f0 ¼ a

u is the only nonzero

�þ
ij )

d2xþ

d�2
þ �þ

ij

�
dxi

d�

��
dxj

d�

�
¼ d2xþ

d�2
þ �þþþ

�
dxþ

d�

�
2 ¼ 0:

(12)

This gives the affine parameter along these null geodesics,

� ¼ const
Z

dxþefðxþÞ ¼ const
Z

dxþðxþÞa

¼ const
ðxþÞaþ1

aþ 1
; (13)

and the tangent vector

� ¼ @� ¼
�
dxþ

d�

�
@þ � �þ@þ: (14)

The relative acceleration of neighboring geodesics in a null
congruence can be calculated using the geodesic deviation
equation giving

aM ¼ gMNRNCBD�
C�DnB (15)

where n ¼ nB@B is the separation vector along a cross
section of the congruence. For our system, this gives

ai ¼ giiRþiþið�þÞ2ni ¼ aðaþ 2Þni
4ðxþÞ2aþ2

;

am ¼ gmmRþmþmð�þÞ2nm ¼ bð2aþ 2� bÞnm
4ðxþÞ2aþ2

:

(16)

The corresponding invariant acceleration norms are

jaij2 ¼ giia
iai � 1

ðxþÞ3aþ4
;

jamj2 ¼ gmma
mam � 1

ðxþÞ�bþ4aþ4
:

(17)
2These solutions also arise as certain Penrose limits starting

with some cosmological spacetimes and adding a spectator
dimension [8] (see also [32]).
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So we see diverging tidal forces as xþ ! 0 for spacetimes
satisfying the conditions (restricting to a > 0)

b < 4aþ 4; a > 0; (18)

indicating a singularity.3 Since tidal forces diverge (for a,
b, satisfying both these conditions) along both the xi and
the xm directions, the locus of the singularity is the eight-
dimensional space spanned by the xi, xm. From the point of
view of a Penrose-like diagram, we see that the singularity
locus extends all the way to x� ! 1. We will see reflec-
tions of this later in the string world-sheet analysis.

In Appendix A, we show that these spacetime back-
grounds preserve 16 real (light-cone) supercharges. This
is not a feature we use however, and our world-sheet
analysis below does not appear to depend crucially on
spacetime supersymmetry of these backgrounds.

We also mention that these spacetimes appear to not
admit�0 corrections due to higher order curvature terms, as
is often the case with lightlike backgrounds. This is per-
haps not surprising in light of the coordinate transforma-
tion that casts these null cosmologies in the form of
anisotropic plane waves, which are known to be devoid
of higher derivative corrections.

In general, these spacetimes are slightly different from
those studied by e.g. [2–6] which were time-orbifold-like
spacetimes. Although there are conceptual similarities, the
detailed structure of the spacetimes are different and, in
particular, there is no issue of backreaction due to several
orbifold ‘‘images’’ [5,6].

In what follows, we analyze the string spectrum in the
vicinity of the cosmological singularities of these
spacetimes.

III. A STRING WORLD-SHEET ANALYSIS

We will now describe a world-sheet analysis of string
propagation in these backgrounds. Consider the world-
sheet action for the closed string propagating in such back-
grounds,

S ¼ � 1

4��0
Z

d�d	
ffiffiffiffiffiffiffi�h

p
hab@aX

�@bX
�g��ðXÞ: (19)

The world-sheet metric hab has the signature ð�1; 1Þ. It is
convenient in the world-sheet analysis to use light-cone
gauge xþ ¼ �, in keeping with the null structure of the
spacetimes in question here. Unlike flat space however, it is
not possible, in general, to use both light-cone gauge xþ ¼
� and conformal gauge hab / 
ab since that is one gauge
condition too many, as we will see below. Let us therefore
begin by setting h�	 ¼ 0, to simplify the world-sheet
action, as in [33] (see also [34]).4 Then the world-sheet

Lagrangian becomes

L ¼ � 1

4��0
Z

d	

�
�EgIJ@�X

I@�X
J þ 1

E
gIJ@	X

I@	X
J

� 2Egþ�@�X�
�
; (20)

where we have defined Eð�; 	Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
� h		

h��

q
. Since X� is not

dynamical, we can eliminate this and reduce the system to
the physical transverse degrees of freedom. Now if E ¼ 1
is allowed, then we have h�� ¼ �h		, which is equivalent
to conformal gauge being compatible with light-cone
gauge. However, since the momentum conjugate to X� is

p� ¼ Egþ�
2��0 , which is a �-independent constant, we have

E ¼ � 1
gþ�

(setting p� ¼ � 1
2��0 by a �-independent rep-

arametrization invariance). Thus we see that conformal
gauge is disallowed5 since gþ� � �1. The action for our
background simplifies to

S ¼ 1

4��0
Z

d2	ðð@�XiÞ2 � e2fð�Þð@	XiÞ2

þ ehð�Þ�fð�Þð@�XmÞ2 � ehð�Þþfð�Þð@	XmÞ2Þ: (21)

This action contains only the physical transverse oscilla-
tion modes XI � Xi, Xm of the string. In effect, all the
gauge freedom and corresponding constraints have been
used up, with X� ¼ x�0 þ p��.
The corresponding Hamiltonian �pþ, reexpressing the

momenta �I in terms of @�X
I, is

H ¼ 1

4��0
Z

d	½ð@�XiÞ2 þ e2fð�Þð@	XiÞ2

þ ehð�Þ�fð�Þð@�XmÞ2 þ ehð�Þþfð�Þð@	XmÞ2�: (22)

In general, one might imagine that a time-dependent back-
ground pumps in energy and excites string modes, and the
classical Hamiltonian above does reflect this. For space-
times satisfying e2f ! 0 near the singularity � ! 0, the

potential energy of the XI modes due to the e2fð�Þ factor
becomes vanishingly small near xþ ¼ 0 (for a > 0). This
could be taken to mean that it costs vanishingly little
energy to create long strings as we approach xþ ¼ � ¼
0, the effective tension of string modes becoming vanish-
ingly small near the singularity. However, this appears to

be misleading: what is relevant is e.g. the ratio e2fð@	XiÞ2
ð@�XiÞ2 .

This has a more detailed form involving nontrivial � de-
pendence stemming from both gIJ and from the asymptotic
behavior of string modes XI, which we can solve for
exactly in this background. Furthermore, since this
Hamiltonian corresponds to xþ translations and gþ� �
�1, the string oscillator masses, which are coordinate

3This is true except when the coefficients of all aI vanish: this
happens for the spacetimes ða; bÞ ¼ ð0; 0Þ, (0,2).

4Reference [35] studies some aspects of string quantization in
Brinkman coordinates.

5Appendix B contains a discussion with the affine parameter �
being the time parameter: in this case, gþ� ¼ �1, and confor-
mal gauge is compatible with light-cone gauge.
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invariant, are m2 � gþ�pþp�, whose � dependence is
different from that of the Hamiltonian. In the case of affine
parameter quantization (Appendix B), the time depen-
dence of the Hamiltonian translates directly to that of the
oscillator masses.

Heuristically one might imagine that the string gets
highly excited and breaks up into bits propagating inde-
pendently near the singularity: in a sense, this is akin to a
world-sheet analog of the observations of BKL [36] on
ultralocality near a cosmological singularity. It would be
interesting to understand this better. We will find some
parallels with this in our analysis later, which will reveal
distinctly stringy behavior.

In the next section, we will study quantum string propa-
gation in this background in detail. We will focus on the
symmetric case, i.e. all bm ¼ b equal, giving two expo-
nents a, b, but it is straightforward to generalize our
analysis to the general case.

A. String modes and quantization

We are interested in studying the behavior of string
modes as we approach the singularity from the past, i.e.
� < 0. For notational convenience, we will simply use � to
denote j�j ¼ �� in the expressions below. The equations
of motion from the world-sheet action above are

@2�X
i � e2fð�Þ@2	Xi ¼ 0;

@2�X
m þ ð@�h� @�fÞ@�Xm � e2fð�Þ@2	Xm ¼ 0;

(23)

which simplify in the near-singularity region of spacetime
to

@2�X
i � �2a@2	X

i ¼ 0;

@2�X
m þ b� a

�
@�X

m � �2a@2	X
m ¼ 0:

(24)

Decomposing the XI as fInð�Þein	, we can show that the
time-dependent mode solutions of these equations are
given in terms of arbitrary linear combinations of two
Bessel functions,6

finð�Þ ¼ cin1
ffiffiffiffiffiffi
n�

p
J1=ð2aþ2Þ

�
n�aþ1

aþ 1

�
þ cin2

ffiffiffiffiffiffi
n�

p
Y1=ð2aþ2Þ

�
�
n�aþ1

aþ 1

�
;

fmn ð�Þ ¼ cmn1
ffiffiffi
n

p
��J�=ðaþ1Þ

�
n�aþ1

aþ 1

�
þ cmn2

ffiffiffi
n

p
��Y�=ðaþ1Þ

�
�
n�aþ1

aþ 1

�
;

� ¼ aþ 1� b

2
:

(25)

These expressions are valid for � > 0, while similar Bessel

functional forms with the index j�j
aþ1 hold for � < 0. The

Bessel index in fin is thus always less than 1
2 since a > 0,

while for b < 0, the Bessel index in fmn is always greater
than 1

2 . The complex coefficients cIn1, c
I
n2 can be taken to

indicate the choice of a vacuum by defining positive/nega-
tive frequency modes. For now, we keep them as two
independent unfixed constants: we will comment on spe-
cific choices at appropriate points in what follows.
Note the similarity between these string world-sheet

mode solutions and the well-known Hankel function de-
scription of spacetime scalar modes propagating in four-
dimensional de Sitter backgrounds. Spacetime scalar
modes in the present null Kasner-like backgrounds are
somewhat different from these however.7

We can also examine the behavior of the zero modes or
center-of-mass modes. For n ¼ 0, the equations of motion
(24) for XI

0ð�Þ can be solved to give

Xi
0ð�Þ ¼

xi0ffiffiffiffiffiffiffi
2�

p þ ffiffiffiffiffiffiffi
2�

p
�0pi0�;

Xm
0 ð�Þ ¼

xm0ffiffiffiffiffiffiffi
2�

p þ ffiffiffiffiffiffiffi
2�

p
�0pm0�

2�;

(26)

where pI0 are the center-of-mass momenta defined later
(29). These show that for singularities with 2� � 0, the
center of mass of the string is not driven to infinity by the
singularity. We will find parallels of this with the asymp-

6Setting fin ! ffiffiffi
�

p
fin, f

m
n ! ��fmn , transforms the equations of

motion (24) to the standard Bessel forms

t2fi00n þ tfi0n þ
�
t2 � 1

4ðaþ 1Þ2
�
fin ¼ 0;

t2fm00
n þ tfm0

n þ
�
t2 � �2

ðaþ 1Þ2
�
fmn ¼ 0; t ¼ n�aþ1

aþ 1
:

7Consider a massive scalar � in the background (2), with
action S ¼ R

dDx
ffiffiffiffiffiffiffi�g

p ð�g��@��@���m2�2Þ, and equation
of motion 1ffiffiffiffiffi�g

p @�ð ffiffiffiffiffiffiffi�g
p

g��@��Þ �m2� ¼ 0. Taking modes

� ¼ fðxþÞeik�x�þikix
iþikmx

m
, this simplifies to 1

f
df
dxþ ¼ i

2k�
ðk2i þ

k2mðxþÞa�b þm2ðxþÞa þ 2aþðD�4Þb
2xþ Þ, which can be solved to give

�ðx�Þ ¼ exp

�
i

2k�

�
k2i x

þ þ k2m
ðxþÞaþ1�b

aþ 1� b
þm2 ðxþÞaþ1

aþ 1

þ 2aþ ðD� 4Þb
2

logxþ
��

:

Thus generically these modes have a phase that oscillates

‘‘wildly’’ near the singularity xþ ! 0.
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totics of low-lying string oscillation modes. This is to be
contrasted with the divergences for spacetimes with 2� <
0. Note that the zero mode behavior is essentially point-
particle-like. Thus the centers of mass of, say, a collection
of infalling strings would appear to exhibit diverging tidal
forces through geodesic deviation. However, the crucial
point is that the oscillations of the string are now non-
negligible (even if finite). Thus neighboring strings would
appear to have large spatial overlap, and string interactions
become important near the singularity.

The mode expansion for the spacetime coordinates of
the string is

XIð�; 	Þ ¼ XI
0ð�Þ þ

X1
n¼1

ðkInfInð�ÞðaInein	 þ ~aIne
�in	Þ

þ kI	n fI	n ð�ÞðaI�ne
�in	 þ ~aI�ne

in	ÞÞ: (27)

The constant kIn will be fixed by demanding canonical
commutation relations for the creation-annihilation opera-

tors. The momentum conjugates �I ¼ @L
@ð@�XIÞ are

�ið�; 	Þ ¼ 1

2��0 @�X
i; �mð�; 	Þ ¼ �b�a

2��0 @�X
m:

(28)

We define the center-of-mass momenta pI0 as

pi0 ¼
Z 2�

0

d	ffiffiffiffiffiffiffi
2�

p �i ¼ 1ffiffiffiffiffiffiffi
2�

p
�0

_Xi
0ð�Þ;

pm0 ¼
Z 2�

0

d	ffiffiffiffiffiffiffi
2�

p �m ¼ �b�affiffiffiffiffiffiffi
2�

p
�0

_Xm
0 ð�Þ:

(29)

Then we see that imposing the nonzero commutation rela-
tions

½xI0; pJ0� ¼ i�I
J; ½aIn; aJ�m� ¼ n�IJ�nm;

½~aIn; ~aJ�m� ¼ n�IJ�nm

(30)

implies the equal time commutation relations, e.g.

½XIð�; 	Þ;�Jð�;	0Þ�

¼ i

2�
�IJ

�
1þ X1

n¼1

ðeinð	�	0Þ þ e�inð	�	0ÞÞ
�

¼ i�IJ�ð	� 	0Þ; (31)

using the Fourier series representation for the Dirac �
function, with the constant kIn being (this agrees with the
conventions of [37] for flat space, except for a reversal of
left/right movers)

kIn ¼ i

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0

2jcIn0jðaþ 1Þ

s
; cIn0 ¼ cIn1c

I	
n2 � cI	n1c

I
n2;

(32)

where cIn0 is the Wronskian. We have used above the

expressions for the derivatives of the mode functions fIn
and some recursion relations for the Bessel functions8 to

calculate the Wronskian of fIn, _fIn.
Let us now discuss level matching. The operator that

generates 	 translations is the world-sheet momentum P
given by the stress tensor

Tab �� 1ffiffiffiffiffiffiffi�h
p �L

�hab

��
�
gIJ@aX

I@bX
J � 1

2
habh

cdgIJ@cX
I@dX

J

�
: (33)

Then the 	-translation gauge invariance is fixed by de-
manding that the momentum operator vanishes on the
physical states, i.e. P ¼ R

d	T�	 ¼ 0. From our action
above and our light-cone gauge condition h�	 ¼ 0, we
have

P ¼
Z

d	ð�a@�Xi@	X
i þ �b@�X

m@	X
mÞ: (34)

Using the mode expansion (27), this can be evaluated as

P� �a
X
n

nððai�na
i
n � ~ai�n~a

i
nÞ þ ðam�na

m
n � ~am�n~a

m
n ÞÞ;

(35)

where we have used the Bessel recursion relations and the

expressions for _fIn (suppressing some overall unimportant
numerical factors). This recovers the level matching con-
ditions N ¼ ~N.
Now we calculate the string Hamiltonian. Using the

mode expansion (27), we first evaluate

8We have used the following, the Bessel function argument
being ðn�aþ1

aþ1 Þ,
dfinð�Þ
d�

¼ n
ffiffiffi
n

p
�aþð1=2Þðcin1Jð1=ð2aþ2ÞÞ�1

þ cin2Yð1=ð2aþ2ÞÞ�1Þ;
dfmn ð�Þ
d�

¼ n
ffiffiffi
n

p
�aþ�ðcmn1Jð�=ðaþ1ÞÞ�1

þ cmn2Yð�=ðaþ1ÞÞ�1Þ;
J��1ðzÞ þ J�þ1ðzÞ ¼ 2�

z
J�ðzÞ;

J��1ðzÞ � J�þ1ðzÞ ¼ 2
dJ�ðzÞ
dz

;

Y��1ðzÞ þ Y�þ1ðzÞ ¼ 2�

z
Y�ðzÞ;

Y��1ðzÞ � Y�þ1ðzÞ ¼ 2
dY�ðzÞ
dz

;

J�ðzÞY��1ðzÞ � J��1ðzÞY�ðzÞ ¼ 2

�z
:
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1

2�

Z 2�

0
d	ð@�XIÞ2 ¼ ð _XI

0Þ2 þ
X
n

jknj2ðj _fInj2ðfaIn; aI�ng þ f~aIn; ~aI�ngÞ � ð _fInÞ2faIn; ~aIng � ð _fI	n Þ2faI�n; ~a
I�ngÞ;

1

2�

Z 2�

0
d	ð@	XIÞ2 ¼ X

n

n2jknj2ðjfInj2ðfaIn; aI�ng þ f~aIn; ~aI�ngÞ � ðfInÞ2faIn; ~aIng � ðfI	n Þ2faI�n; ~a
I�ngÞ:

(36)

The Hamiltonian (22) then simplifies to

H ¼ 1

2�0 ðð _Xi
0Þ2 þ �b�að _Xm

0 Þ2Þ þ
1

2�0
X
n

jknj2ððfain; ai�ng þ f~ain; ~ai�ngÞðj _finj2 þ n2�2ajfinj2Þ � fain; ~aingðð _finÞ2 þ n2�2aðfinÞ2Þ

� fai�n; ~a
i�ngðð _fi	n Þ2 þ n2�2aðfi	n Þ2ÞÞ þ 1

2�0
X
n

jknj2ððfamn ; am�ng þ f~amn ; ~am�ngÞð�b�aj _fmn j2 þ n2�bþajfmn j2Þ

� famn ; ~amn gð�b�að _fmn Þ2 þ n2�bþaðfmn Þ2Þ � fam�n; ~a
m�ngð�b�að _fm	

n Þ2 þ n2�bþaðfm	
n Þ2ÞÞ: (37)

In the next section, we will examine free string behavior in
the vicinity of the singularity.

B. Strings in the near-singularity region

Let us now understand the behavior of the string mode
functions near the singularity. It turns out that the near-
singularity limit � ! 0 must be taken with care. We define
a cutoff � ¼ �� � 0 as a short time regulator in the vicinity
of the singularity � ¼ 0. Then we define n� � 1

�aþ1
�

as a

cutoff on the world-sheet oscillation number. We then see
sharp differences between the behavior near � ¼ �� of
string modes with ‘‘low-lying’’ oscillation numbers n &
n� (i.e. n�aþ1

� 
 1), and highly oscillating string modes
with n � n� (i.e. n�

aþ1
� � 1).

Noting the asymptotics J��ðxÞ � x�� for x� 0, and
Y� ¼ cotð��ÞJ� � cosecð��ÞJ��, we see that, near � ¼
0, the fInð�Þ approach
fin ! �i

n0 þ �i
n��; fmn ! �m

n0 þ �m
n��

2� ð� ! 0Þ;
(38)

for modes with low-lying oscillation numbers n & n�. The
constant coefficients are (from the asymptotic Bessel ex-
pressions)

�i
n� ¼

ffiffiffi
n

p �
n

2aþ 2

�
1=ð2aþ2Þ cin1 þ cin2 cot

�
2aþ2

�ð2aþ3
2aþ2Þ

;

�i
n0 ¼ �cin2

ffiffiffi
n

p �
n

2aþ 2

��1=ð2aþ2Þ cosec �
2aþ2

�ð2aþ1
2aþ2Þ

;

�m
n� ¼

ffiffiffi
n

p �
n

2aþ 2

�
�=ðaþ1Þ cmn1 þ cmn2 cot

��
aþ1

�ðaþ�þ1
aþ1 Þ ;

�m
n0 ¼ �cmn2

ffiffiffi
n

p �
n

2aþ 2

���=ðaþ1Þ cosec ��
aþ1

�ðaþ1��
aþ1 Þ :

(39)

Thus we see that the asymptotic � dependence of such
finite n string oscillation modes near � ! 0 is essentially
the same as for the center-of-mass modes of the string (26).
Thus the (classical) string mode amplitudes are nondiver-
gent near the singularity for cosmological solutions with

2� ¼ aþ 1� b � 0. The string oscillation amplitude in
such a curved spacetime is perhaps better defined as
gmmðfmn Þ2: this gives the asymptotics to be nondivergent
for 2aþ 2 � b. In what follows, we will find the
Wronskian combinations useful for the �I

n0, �
I
n�,

�i
n;0� � �i

n0�
i	
n� � �i

n��
i	
n0 ¼ ncin0

cosec �
2aþ2

�ð2aþ3
2aþ2Þ�ð2aþ1

2aþ2Þ
;

�m
n;0� � �m

n0�
m	
n� � �m

n��
m	
n0 ¼ ncmn0

cosec ��
aþ1

�ðaþ1þ�
aþ1 Þ�ðaþ1��

aþ1 Þ ;

cIn0 ¼ cIn1c
I	
n2 � cI	n1cIn2: (40)

On the other hand, consider now modes with n � n�.
Then we can see from the Bessel mode functions (25) [or
directly from the equations of motion (24)] that these are

oscillatory near the singularity: the argument n�aþ1

aþ1 cannot

be taken to be small and the asymptotics (38) above are not
valid. For instance, choosing linear combinations cIn1,
cIn2 ¼ 1, �i, gives modes that are the analogs of ingoing
or outgoing plane waves, i.e. the fIn are Hankel functions
dressed with powers of �, with asymptotics9 for � ! 0,

fin � 1

�a=2
e�in�aþ1=ðaþ1Þ;

fmn � 1

�b=2
e�in�aþ1=ðaþ1Þ; n � n�:

(41)

Note that for any regulator ��, however small, in the
vicinity of the singularity, there exist modes of sufficiently
high oscillation n such that the corresponding modes fIn are
of this form (41). Since the string oscillation number n can
be arbitrarily large, such modes exist uniformly for all
singularities, with 2� _ 0, and are in a sense trans-
Planckian: they are reminiscent of high frequency scalar
modes propagating in an inflationary background. This
behavior, somewhat different from the finite n mode be-
havior, is distinctly stringy.

9This is also the asymptotic behavior near � ! 1 of the modes
(25) for any n.
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We first analyze the case 2� ¼ aþ 1� b � 0. Using the asymptotic forms of the mode functions fIn near the singularity
� ! 0, for finite n & n� modes,

fin ! �i
n0;

_fin ! �i
n�; fmn ! �m

n0;
_fmn ! �m

n�ð2�Þ�2��1; (42)

the Hamiltonian (37) simplifies to

H ¼ 1

2�0 ðð _Xi
0Þ2 þ �b�að _Xm

0 Þ2Þ þ
1

2�0
X
n

jknj2ðððfain; ai�ng þ f~ain; ~ai�ngÞj�i
n�j2 � fain; ~aingð�i

n�Þ2 � fai�n; ~a
i�ngð�i	

n�Þ2Þ

þ n2�2aððfain; ai�ng þ f~ain; ~ai�ngÞj�i
n0j2 � fain; ~aingð�i

n0Þ2 � fai�n; ~a
i�ngð�i	

n0Þ2ÞÞ þ
X
n

jknj2
2�0 ð�a�bð2�Þ2ððfamn ; am�ng

þ f~amn ; ~am�ngÞj�m
n�j2 � famn ; ~amn gð�m

n�Þ2 � fam�n; ~a
m�ngð�m	

n� Þ2Þ þ n2�bþaððfamn ; am�ng þ f~amn ; ~am�ngÞj�m
n0j2

� famn ; ~amn gð�m
n0Þ2 � fam�n; ~a

m�ngð�m	
n0 Þ2ÞÞ: (43)

Note that there are ‘‘interaction terms’’ of the form aIn~a
I
n

and aIyn ~aIyn besides the diagonal number-operator terms.
The interaction terms have the same �-dependent coeffi-
cients as the diagonal terms so that they are not unimpor-
tant and cannot be ignored.

The corresponding calculation for flat space (a, b ¼ 0)
involves sine and cosine modes (the analogs of the
Bessel-J, Y), the Hamiltonian having no time dependence.
Analyzing this near � ! 0, we see that the coefficients of
the aIn~a

I
n and aI�n~a

I�n terms are of the form ðc21 þ c22Þ andðc	21 þ c	22 Þ, while that of the diagonal terms is ðjc1j2 þ
jc2j2Þ, where c1, c2 are the coefficients of the sine, cosine:
then we see that choosing the usual positive frequency
modes, with c1, c2 being 1, �i, results in just the diagonal
term in the Hamiltonian. In the present case, due to the
extra � dependences in the Hamiltonian, the resulting
expressions do not simplify and the ‘‘interaction’’ terms
remain. A similar calculation with different choices of the
basis modes (e.g. Hankel functions) yields equivalent
results.

This Hamiltonian (43), corresponding to the choice of
xþ as a time coordinate,10 can now be recast as

H ¼ ��0ððpi0Þ2 þ �a�bðpm0Þ2Þ þ
X
n

�

2ðaþ 1Þn2

�
�

1

jcin0j
ðbiyn�bin� þ n2�2abiyn0b

i
n0Þ

þ 1

jcmn0j
ðð2�Þ2�a�bbmy

n� bmn� þ n2�bþabmy
n0 b

m
n0Þ

�
; (44)

where we have defined new oscillator modes (and their
Hermitian conjugates)

bIn0 ¼ �I
n0a

I
n � �I	

n0~a
I�n;

bIn� ¼ �I
n�a

I
n � �I	

n�~a
I�n; I ¼ i; m:

(45)

The string oscillator masses are Lorentz invariant expres-

sions

m2 ¼ �2gþ�pþp� � gIIðpI0Þ2: (46)

From the above expressions, and recalling that p� ¼
� 1

2��0 , �pþ ¼ H, we see that the center-of-mass terms

cancel, resulting in the time-dependent masses for these
low-lying n & n� oscillation string modes,

m2ð�Þ ¼ 1

2�0ðaþ 1Þ
X

i;m;n&n�

�
1

�a
Ni

n�

n2jcin0j
þ �a

Ni
n0

jcin0j

þ ð2�Þ2
�b

Nm
n�

n2jcmn0j
þ �b

Nm
n0

jcmn0j
�
; ½2� � 0�; (47)

defining

Ni
n� ¼ biyn�bin�; Ni

n0 ¼ biyn0b
i
n0;

Nm
n� ¼ bmy

n� bmn�; Nm
n0 ¼ bmy

n0 b
m
n0:

(48)

These expressions should be understood as valid in the
vicinity of the singularity, but only up to the regulator
� & ��.
The original left- and right-moving oscillator operators

can be reexpressed in terms of bIn as

aIn ¼ 1

�I
n;0�

ð�I	
n�b

I
n0 � �I	

n0b
I
n�Þ;

~aIn ¼ 1

�I	
n;0�

ð�I	
n�b

Iy
n0 � �I	

n0b
Iy
n�Þ; I ¼ i; m;

(49)

and the level matching condition (35) is recast as

0 ¼ X
n

nðaI�na
I
n � ~aI�n~a

I
nÞ ¼

X
n

n

�I
n;0�

ðbIyn�bIn0 � bIn�b
Iy
n0Þ:

(50)

The commutation relations satisfied by the bIn0, b
I
n� are

10The affine parameter quantization, Appendix B, yields simi-
lar results as we describe here.
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½bIm0; b
Jy
n0 � ¼ 0 ¼ ½bIm�; b

Jy
n� � ¼ ½bIm0; b

J
n��;

½bIm0; b
Jy
n� � ¼ n�I

n;0��
IJ�mn ¼ �½bIn�; bJyn0 �;

½NI
m0; b

J
n�� ¼ n�I

n;0�b
I
n0�

IJ�mn;

½NI
m0; b

Jy
n� � ¼ n�I

n;0�b
Iy
n0�

IJ�mn;

½NI
m�; b

J
n0� ¼ �n�I

n;0�b
I
n��

IJ�mn;

½NI
n�; b

Iy
n0� ¼ �n�I

n;0�b
Iy
n�;

½NI
m0; N

J
n�� ¼ n�IJ�mn�

I
n;0�ðbIyn0bIn� þ bIyn�bIn0Þ;

(51)

using the left- and right-moving a, ~a-oscillator commuta-
tors (30), and theWronskian combinations�I

n;0� from (40).

Since the bIn0, b
I
n� operators commute with their conju-

gates, the NI
n0, N

I
n� operators do not have a number-opera-

tor-like interpretation on states annihilated by bIn0, b
I
n�.

From the expression for the time-dependent masses, it is
tempting to speculate that states that have e.g. vanishing
hNi

n�i but nonzero hNi
n0i will become massless near the

singularity � ! 0. However, since NI
n�, N

I
n0 do not com-

mute,11 these are generically not simultaneous eigenstates
of NI

n0 and NI
n�, or energy eigenstates. If such a possibility

can be validated for these bI states, then the bin0,
bmn�-oscillator states are light near the singularity while
the bin�, b

m
n0-oscillator states are massive near � ¼ xþ !

0, for the singularities with 2� � 0, b < 0 (while for b > 0
singularities, the bIn0-oscillator states are light and the bIn�
states are massive). All these are light relative to the typical
curvature scale however, as we will outline later. Some
description of the bI states is given in the next subsection:
it would be interesting to develop this further.

Let us now consider the case 2� ¼ aþ 1� b < 0. Then
the modes fmn behave near � ! 0 as fmn ! �m

n��
2�, while

_fmn ! �m
n�ð2�Þ�2�. Thus �m

n0 does not appear in the

Hamiltonian (37) evaluated near � ! 0, which thus shows
all am, ~am terms having identical asymptotics with time
dependence as � ! 0, e.g.

�b�aj _fmn j2 þn2�bþajfmn j2 � �a�bðð2�Þ2 þn2�2aþ2Þ ! �a�b

(52)

in the coefficients. It is therefore not particularly insightful
to recast am, ~am in terms of the bm operators. The invariant
oscillator masses thus grow as 1

�a and 1
�b

for the bin�- and

am-oscillator states. The bIn0 states are light as before.
Now let us consider the high oscillation modes with n �

n� ¼ 1
�aþ1
�

: these have a uniform behavior for both 2� _ 0.

Then, using the asymptotics (41) for such modes (with

cIn1 ¼ 1, cIn2 ¼ �i, which are positive frequency), we see
that

_f i
n �

�
�in�a � a

2�

�
e�in�aþ1=ðaþ1Þ

�a=2
;

_fmn �
�
�in�a � b

2�

�
e�in�aþ1=ðaþ1Þ

�b=2
:

(53)

This is very similar to the asymptotics of the modes (25) at
early times j�j ! 1: however, we are considering a differ-
ent limit here, with large n, small �, and n�aþ1 � 1, so it is
worth elaborating a little. In this limit, we calculate the
expressions in (37) and express them as

1

n2
ðð _finÞ2 þ n2�2aðfinÞ2Þ

� �a
�

a2

4ðn�aþ1Þ2 þ
ia

ðn�aþ1Þ
�
e�2in�aþ1=ðaþ1Þ;

1

n2
ð�b�að _fmn Þ2 þ n2�bþaðfmn Þ2Þ

� �a
�

b2

4ðn�aþ1Þ2 þ
ib

ðn�aþ1Þ
�
e�2in�aþ1=ðaþ1Þ;

1

n2
ðj _finj2 þ n2�2ajfinj2Þ � 2�a;

1

n2
ð�b�aj _fmn j2 þ n2�bþajfmn j2Þ � 2�a:

(54)

The expressions in the first two equations are vanishingly
small relative to the ones in the rest, and the Hamiltonian
(37) simplifies to

Hn�n� � �a
X

I;n�n�

1

aþ 1
ðaI�na

I
n þ ~aI�n~a

I
n þ nÞ; (55)

as for free string propagation. The overall factor �a arises
as before from the fact that we are using xþ as a time
coordinate [with gþ� ¼ �ðxþÞa]. The oscillator masses
for these highly stringy modes, using (46), become

m2ð�Þ � �gþ�H
1

�0 ¼
X

I;n�n�

1

aþ 1
ðNI

n þ ~NI
n þ nÞ;

(56)

as for free strings in flat space. The zero point energy has
an ultraviolet completion as in that case. Thus these highly
stringy modes exhibit essentially free propagation in these

backgrounds. Comparing the mass
ffiffiffiffi
n
�0

p
of a typical single

excitation state with the typical curvature scale set by the

tidal forces jaij, jamj, in this region, we have n
�0jaij2 � n�3aþ4

�0 ,
n

�0jamj2 � n�4aþ4�b

�0 . Thus states satisfying 1
�aþ1 
 n 
 1

�3aþ4

and 1
�aþ1 
 n 
 1

�4aþ4�b are light relative to the local curva-

ture scale. Similar comparisons for the n & n� states with
the � dependences ��a and ��b relative to the typical
curvature scale hold if b < 2aþ 2.

11In terms of the original a, ~a operators, this expression is

½NI
n0; N

J
n�� ¼ n�IJ½ð�I

n0�
I	
n� þ �I

n��
I	
n0ÞðaI�na

I
n þ ~aIn~a

I�nÞ
� 2�I

n0�
I
n�a

I
n~a

I
n � 2�I	

n0�
I	
n�a

I�n~a
I�n�:

STRING SPECTRA NEAR SOME NULL COSMOLOGICAL . . . PHYSICAL REVIEW D 79, 126009 (2009)

126009-9



For any finite, if infinitesimal, value of the near-
singularity cutoff ��, such highly stringy modes exist, for
oscillation number n � n� ¼ 1

�aþ1
�

, although naively re-

moving the cutoff would suggest the absence of any such
modes.

C. Near-singularity string states and wave functions

We describe here some aspects of string states near the
singularity using our discussion in the previous section,
beginning with the low-lying oscillation mode bI states.

Noting that the bI operators are complex linear combi-
nations of the aI, ~aIy, and recalling Bogolubov transfor-
mations, a bI vacuum j�i (annihilated by the bI) would
appear to be a multiparticle state in terms of the original aI,
~aI operators, and vice versa. Indeed we have

h0jX
n

NI
n
j0i ¼

X
n

nj�I
n
j2; 
 ¼ 0; �; (57)

where aInj0i ¼ 0 ¼ ~aInj0i. Similarly, defining jb0i ¼
bin0j0i, jby0 i ¼ biyn0j0i, jb�i ¼ bin�j0i, jby� i ¼ biyn�j0i, it is
straightforward to show that the lowest excited states have

hbpjbiymqbimqjbyr i ¼ 0;

hbpjbiymqbimqjbri ¼ n�i	
nr�

i
np

�X
m

mj�i
mqj2 þ nj�i

nqj2
�
;

p; q; r ¼ 0; �; (58)

using the expressions for the bI in terms of the aI, ~aI, and
their commutation relations.

Now it can be shown that ½NI
m0; ðbJyn� Þl� ¼

lðn�I	
n;0�Þ�IJ�nmðbIyn�Þl�1bIyn0, using the b

I-oscillator algebra

(51). Assuming the existence of a bI0 vacuum, defining an

excited state j�li ¼ ðbIyn�Þlj�i gives NI
n0j�li ¼

lðn�I	
n;0�ÞbIyn0j�l�1i. Thus we see heuristically that, starting

with the bI0 vacuum and constructing a Fock space using

bIyn�, we obtain states with nonzero hNI
0i. Similarly, possible

coherent states of the form jsi ¼ esb
Iy
n� j�i have b0jsi �

sjsi, up to numerical factors. Since ½bI0; bJy0 � ¼ 0, we see

that bIyn0jsi is also a coherent state with the same

eigenvalue.
Note that these are not eigenstates of the Hamiltonian

Hn&n� since NI
0, N

I
� do not commute, so generically such

states mix under time evolution. Consider the Schrodinger
equation i d

d� j�i ¼ Hj�i, with j�i ¼ P
lclj�i

li con-

structed using only biyn� oscillators. This gives i d
d� j�i �P

i;m;nðNi
n� þ �2aNi

n0Þj�i. This suggests that the time

dependence of these states is regular near the singularity
� ! 0.

Along similar lines, we can, more simply, construct

states of the form ðbiy0 Þliðbmy
0 Þlm j�i, starting with the bI0

vacuum. These states have vanishing hNI
0i but nonzero

hNI
�i. The Schrodinger equation for such states is of the

form i d
d� j�i �P

i;m;nðNi
n� þ �a�bNm

n�Þj�i. In accord with

level matching (50), we can construct states of the form

ðbI�ÞlðbJy0 Þmj�i: then, since bI0, b
J
� commute, these states

again have vanishing hNI
0i and nonzero hNI

�i.
We have described states constructed in terms of the bI0

vacuum so far: similarly, assuming formally the existence
of a vacuum annihilated by bIn�, we can construct excited
states along the lines of arguments similar to the ones
above.
To obtain some rudimentary intuition for the spacetime

description of these states, let us now describe position-
space wave functions near the singularity. We will analyze
the wave functions for the reduced quantum mechanics of
string modes with 	 momentum n,

xIn ¼ ijkInjðfInð�ÞaIn � fI	n ð�ÞaI�nÞ;
~xIn ¼ ijkInjðfInð�Þ~aIn � fI	n ð�Þ~aI�nÞ;

�i
n ¼ ijkinj

2��0 ð _finð�Þain � _fi	n ð�Þai�nÞ;

�m
n ¼ ijkmn j�b�a

2��0 ð _fmn ð�Þamn � _fm	
n ð�Þam�nÞ;

(59)

from the string coordinate mode expansion (27) and the
momentum conjugates (28) (we have suppressed explicitly

writing the left-moving momenta ~�I
n).

Transforming to a position-space Schrodinger represen-

tation, we set �I
n ¼ �i@xIn ,

~�I
n ¼ �i@~xIn

. It is then

straightforward to obtain the expressions

ain ¼
_fi	n xin � 2��0fi	n ð�i@xinÞ
ijkinjðfin _fi	n � _finf

i	
n Þ

;

amn ¼
_fm	
n xmn � 2��0�a�bfm	

n ð�i@xmn Þ
ijkmn jðfmn _fm	

n � _fmn f
m	
n Þ ;

(60)

and their conjugates, with similar expressions for the ~aIn.
We can obtain expressions for the bI oscillators from the
definitions (45), mixing the left- and right-moving terms.

bin0 ¼
�i
n0�

i	
n�x

i
n � �i	

n0�
i
n�~x

i
n þ ij�i

n0j22��0ð@xin � @~xin
Þ

ijkinj�I
n;0�

;

bin� ¼
j�i

n�j2ðxin � ~xinÞ þ i2��0ð�i	
n0�

i
n�@xin � �i

n0�
i	
n�@~xin

Þ
ijkinj�I

n;0�

:

(61)

Then the ground state wave function j0i defined as aInj0i ¼
0, ~aInj0i ¼ 0, for low-lying oscillation modes, satisfies,
near the singularity,

ð�i	
n�x

i
n � 2��0�i	

n0ð�i@xinÞc i
0ðxInÞ ¼ 0

¼ ð�i	
n�~x

i
n � 2��0�i	

n0ð�i@~xin
Þc i

0ðxInÞ; (62)

giving c i
0ðxInÞ � exp½i �i	

n�

2��0�i	
n0

ððxinÞ2 þ ð~xinÞ2Þ�. For positive
frequency modes with cin1 ¼ 1, cin2 ¼ �i, we see that this
simplifies to a real Gaussian part (as expected for a set of
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harmonic oscillators) and a phase containing cosð �
2aþ2Þ�

�ð2aþ1
2aþ2Þ

�ð2aþ3
2aþ2Þ

(this phase vanishes for flat space a ¼ 0). Note that

there is no explicit � dependence here: the wave function is
regular near the singularity � ! 0. Similar statements hold
for the xm part of the wave function (if 2� > 0). Excited
states can be constructed using either the a, ~a or the bI

oscillators: these generically mix, as can be seen either
from the interaction terms in the Hamiltonian, or alterna-
tively by noting that the bI do not commute.

The highly stringy states are simpler to describe: they
are simply states of the form

jkIn; ~kJni �
Y

I;J;n�n�

ðaI�nÞkInð~aI�nÞ~kIn j0i: (63)

These are, in fact, eigenstates of the HamiltonianHn�n� so

their time evolution is relatively simple, with the
Schrodinger equation giving

i
d

d�
jkIn; ~kJni � �aðnkIn þ ~kJn þ nÞjkIn; ~kJni: (64)

This can be recast as i d
d� j�i ¼ H�j�i in terms of the

affine parameter (13), with the corresponding quantization
discussed in Appendix B. This equation is essentially of the
same form as in flat space, with the time parameter being
the affine parameter: the time evolution is essentially given

by phases of the form e
�iEðkIn;~kJnÞ

ð�aþ1Þ=ðaþ1Þ ¼ e
�iEðkIn;~kJnÞ

�
.

For the position-space description of the highly stringy
states, we need to evaluate the expressions taking the limit
in question carefully: using (53) and (60), the ground state

c n�n�
0 ðxInÞ annihilated by aIn, ~a

I
n satisfies��

in�a � a

2�

�
xin � 2��0ð�i@xinÞ

�
c n�n�

0 ¼ 0

¼
��
in�a � a

2�

�
~xin � 2��0ð�i@~xin

Þ
�
c n�n�

0 ; (65)

giving

c n�n� � exp

�
�
�
n�a þ ia

2�

�
ððxinÞ2 þ ð~xinÞ2Þ

�

¼ exp

�
�n�a

�
1þ ia

2n�aþ1

�
ððxinÞ2 þ ð~xinÞ2Þ

�
: (66)

Note that the phase, containing 1
� , oscillates wildly as � !

0. However, from the second expression, we see that in the
limit we are considering, n�aþ1 � 1, the phase oscillation
is slower than the damping of the real Gaussian part of the
wave function.

Similarly, amn c 0ðxÞ ¼ 0 ¼ ~amn c 0ðxÞ gives c 0ðxÞ �
exp½�n�a�b�að1þ ib

2n�aþ1Þ ððxmn Þ2þð~xmn Þ2
2 �. Thus the overall

factor n�a�b�a ¼ n�b is heavily damped for b < 0, while
the phase of the wave function is ��2�, but damped relative
to its real Gaussian part.

Excited states can be constructed by acting with the
creation operators: e.g. the first excited states are e.g.

ai�n~a
j�nc 0ðxÞ � xin~x

i
ne

�½ð2in�aþ1Þ=ðaþ1Þ�c 0ðxÞ.
As we have mentioned in the previous subsection, the

near-singularity limit we are considering appears subtle. In
particular, as time evolves towards the singularity and ��
shrinks, the world-sheet oscillation number cutoff n� in-
creases and these highly stringy states are no longer eigen-
states, except for n larger than the increased value of the
cutoff n�ð�� � ���Þ. A state with some n0 � n�ð��Þ at
some later time crosses the cutoff threshold and ceases to
be highly stringy: it then becomes part of the set of bI states
and interacts nontrivially with them. Since there is an
infinity of highly stringy modes, it would appear that this
process will continue indefinitely: making the description
of changing the cutoff more precise might draw parallels
with the renormalization group. It would be interesting to
understand this better.

IV. DISCUSSION

We have constructed cosmological spacetimes with null
Kasner-like singularities: the Kasner exponents satisfy
algebraic conditions following from the Einstein equations
satisfied by the backgrounds. These near-singularity space-
times can be extrapolated to approximate solutions that are
asymptotically flat at early times. It is possible to recast
these as anisotropic plane-wave spacetimes, with the cor-
responding �0-exactness properties of higher derivative
corrections.
We have found that the classical string modes admit

exact solutions in terms of Bessel functions. Using the
near-singularity behavior of the string mode functions,
we can analyze the light-cone string world-sheet spectrum
through the Hamiltonian and calculate the oscillator
masses. The near-singularity region, regulated by, say, � <
��, always contains highly stringy modes with oscillation
number n � 1

�aþ1
�

that propagate essentially freely in the

background. On the other hand, low-lying string modes
(finite n & 1

�aþ1
�

) have asymptotic near-singularity � depen-

dence similar to the center-of-mass mode. The oscillator
masses are time dependent and can be recast in terms of
two new sets of oscillators, one of which becomes light. It
would be interesting to explore this further. This suggests
that the vicinity of the singularity is filled with ‘‘stringy
fuzz,’’ comprising highly stringy modes. We expect string
interactions are non-negligible near the singularity.
Our analysis is essentially from the bosonic parts of the

string world-sheet theory. Since the world-sheet fermion
terms are quadratic (with covariant derivatives) for these
purely gravitational backgrounds, we expect that including
them will not qualitatively change our results here. It
would be interesting to carry out the superstring analysis
in detail. Relatedly, several aspects of the matrix string
analysis in these backgrounds have been studied in [18].
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We have largely been studying the near-singularity
Kasner-like spacetimes. Consider the case where the
spacetime scale factor ef ! 1 asymptotically (so that the
spacetime is flat at early times). To elaborate, note that
from the equation of motion Rþþ ¼ 0, there is a function-
worth of solutions, i.e. for a generic ef, although perhaps
not always (for the general Kasner case, there is one
equation relating several scale factors ef, ehm). For such
a scale factor ef that is asymptotically ef ! 1, e.g. ef ¼
tanhaðxþÞ, one can, in principle, find a solution for eh.
Indeed, an approximate solution of this kind (in the asymp-
totic region) is given12 by Eq. (11). Choosing ef that is
asymptotically ef ! 1, the spectrum of masses of string
states is asymptotically as in flat space, while the near-
singularity spectrum is as discussed above.

Some oscillator states becoming increasingly massive is
reminiscent of [29] who argue for finite energy of free
string propagation across plane-wave singularities. We
note, however, that we have essentially analyzed the free
string spectrum in the vicinity of the singularity in these
backgrounds. Although formally it is possible to continue
the string mode expansion across the singularity, it would
seem that the physically relevant question would be to try
and understand the role of string interactions in the vicinity
of the singularity, to obtain a better understanding of string
propagation across the singularity.

If string interactions generate a nontrivial (semiclassi-
cal) dilaton profile, say�ðxÞ (that is regular), then presum-
ably this is one way the background is desingularized, e.g.
if the backreacted background satisfies an equation of the
form RMN � @M�@N�. The solutions of these equations
coincide with the singular background for � ¼ 0 and are
regular when a nonzero � is generated (although possibly
of string scale curvature).

Now we make a few comments on drawing insights into
the AdS/CFT cosmological investigations [23,24] from our
analysis here. We have essentially used the scale factors
hmðxþÞ in our solutions here to simulate the role of the
dilaton there; i.e. the internal hmðxÞ scale factors shrinking
effectively drive the singularity in the xi directions, just as
the time-varying dilaton drives the singularity in the AdS/
CFT cosmological context. It would then seem that inter-
action effects between the various string modes could
become non-negligible near the null singularity in the
bulk, although the original classical bulk background
might possess �0-exactness properties. This would be
dual to possible nontrivial corrections to the gauge theory
effective potential stemming from loop effects, the time-
dependent gauge coupling being g2YM ¼ gs ¼ e�. It would
be interesting to explore this.

Finally, it is interesting to ask if there are universal
features in the behavior of string oscillator modes near

generic time-dependent singularities. For example, internal
six-dimensional spaces with intrinsic time dependence,
e.g. due to closed string tachyon instabilities, will give
rise to 4D cosmological dynamics. Consider the case of
unstable noncompact conifoldlike singularities [38] em-
bedded in some compact space (say, a nonsupersymmetric
orbifold of a Calabi-Yau space). Phase diagrams obtained
in the noncompact limit from appropriate gauged linear
sigma models show evolution from one of the two classical
phases corresponding to small resolutions to the other more
stable one through a flip transition [38,39], involving the
blowdown of a 2-cycle and a blowup of the topologically
distinct 2-cycle. From the point of view of the four-
dimensional effective field theory, the sizes of these cycles
are time-dependent scalars whose spontaneous time evo-
lution governs the four-dimensional cosmology. In particu-
lar, one might imagine that as we approach a flip
singularity in the internal space, a time-dependent four-
dimensional singularity develops. While a direct stringy
analysis of such a transition and resulting four-dimensional
cosmology seems a priori difficult, it would be interesting
to ask if simple models using internal scale factors of the
form studied here can be used to mimic the internal time
dependence of collapsing/growing cycles and to study the
resulting string dynamics, possibly along the lines of [40].
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APPENDIX A: SOME PROPERTIES OF THE
SPACETIME BACKGROUNDS

1. Light-cone supersymmetry of the backgrounds

Here we analyze the supersymmetry of the Kasner-like
backgrounds described here, although we have not really
used this in our analysis in the paper. Choose the obvious

diagonal orthonormal frame eþ ¼ ef=2dxþ, e� ¼
ef=2dx�, ei ¼ ef=2dxi, em ¼ ehm=2dxm. The spin connec-
tion one-forms are defined by dea þ!a

b ^ eb ¼ 0, where
raising/lowering is performed by the flat space frame met-
ric. This gives the spin connection one-forms as

!�þ ¼ �1
2f

0dxþ; !þi ¼ �1
2f

0dxþ;

!þm ¼ �1
2h

0
mdx

m:
(A1)12The exponent in the near-singularity form of eh may not be

integral of course.
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(It can be checked that these give the coordinate basis
curvature components given previously.) Taking the super-
symmetry parameter � to be a function only of the light-
cone time, �ðxþÞ, the supersymmetry variation of the dila-
tino is trivially zero in this purely gravitational background
with unexcited dilaton and RR/NSNS fluxes. The super-
symmetry variation of the gravitino �cM [using Eqs. (2.1,
2.2) of [41]; see also [42]] reduces to

DM� ¼ ð@M þ 1
8!

ab
M ½�a;�b�Þ� ¼ 0; (A2)

where �a are flat space � matrices satisfying f�a;�bg ¼
2
ab, the curved space ones being �� ¼ ea��a. Taking � to

be xi, xm independent is consistent with DM� ¼ 0, M �
þ. Along with Dþ� ¼ 0, this gives

�þ� ¼ 0; ð@þ � 1
4f

0Þ� ¼ 0 (A3)

which can be solved as � ¼ ef=4
, where 
 is a constant
spinor satisfying �þ
 ¼ 0 (it can be taken to be 
� �þ�
where � is some arbitrary constant spinor). Closure of the
algebra gives the equations of motion RMN ¼ 0. Thus these
spacetime backgrounds preserve 16 real (light-cone)
supercharges.

2. Higher derivative curvature corrections

As is often the case with lightlike backgrounds, these
spacetimes do not appear to admit �0 corrections due to
higher order curvature terms. This is expected since these
are, after a coordinate transformation, anisotropic plane-
wave-like backgrounds (5) which are known to have such
�0-exactness properties [1]. We outline below some rudi-
mentary analysis of the vanishing of higher derivative
terms in the cosmological coordinates (2) and (3), mainly
for completeness.

At the level of the action, this is straightforward to see:
with Rþþ alone being nonzero, there are no nonzero con-
tractions since there are no tensors with two or more upper
þ components. At the level of the equations of motion, one
could ask if there are corrections to Rþþ ¼ 0 from higher
order curvature terms. In this regard, various straightfor-
ward checks do in fact suggest the absence of corrections,
although we do not prove this in a theorematic way.

To elaborate a little, it is straightforward to see that no
corrections of the form fðRÞRþþ can arise where fðRÞ is a
complete contraction since the latter vanishes. Let us there-
fore consider possible higher order terms of the form
Aþþ ¼ RþMþNT

MN ¼ RþMþNg
MPgNQTPQ, where TPQ is

some tensor built out of RMN , RMNPQ, etc. Analyzing the

possible values for the indices forced by the contractions,
we see that if TPQ has only Tþþ nonzero, then Aþþ
vanishes since the background has Rþ�þ� ¼ 0. Thus,
e.g., a possible correction at OðR2Þ of the form
RþMþNR

MN vanishes. It is straightforward to further

show that any correction Aþþ with e.g. TPQ � RðkÞ ¼
RPP1

RP1
P2
RP2

P3
. . .RPk

Q vanishes: this can be seen by

expanding TPQ � RðkÞ to obtain the form

gP1Q1gP2Q2 . . .RPP1
RQ1P2

RQ2P3
. . . , and noting that gþþ ¼

0 and Rþþ alone is nonzero. Thus all higher order correc-
tions with TPQ built from the Ricci tensor vanish.

Similarly, it is possible to show that a correction of the
form e.g. RþMþNR

MPLQRN
PLQ vanishes. It would seem

that this would be possible to generalize to all orders as
well.
The backgrounds in question have nonvanishing Weyl

components Cþiþi, Cþmþm, with an index structure as for
Rijkl. Thus higher derivative corrections involving the

Weyl tensor are similar in structure and also vanish.

APPENDIX B: AN ALTERNATIVE TIME
PARAMETER AND QUANTIZATION

We have been working with xþ as the time parameter so
far. We will now outline the analysis of this system with a
canonical time parameter with gþ� ¼ �1, and indicate
results similar to the ones we have discussed so far.
Consider a coordinate transformation to the affine parame-
ter � as the time parameter transforming the metric (2) to

ds2 ¼ �2d�dx� þ �a0dxidxi þ �b0dxmdxm; (B1)

where a0 ¼ a
aþ1 , b

0 ¼ b
aþ1 . Null congruences now have a

natural time parameter here with � ¼ d
d� . Thus the geode-

sic deviation equation gives the acceleration norms as

jaij2 � 1

�4�a0 ; jamj2 � 1

�4�b0 ; (B2)

giving a singularity for a0, b0 < 4, which are the same as
the conditions (18).
Performing a light-cone gauge string quantization with

� � �, here we obtain E ¼ � 1
gþ�

¼ 1, so that in this case

we effectively have conformal gauge also, as discussed
earlier (see Sec. III). Now the world-sheet action becomes

S ¼ 1

4��0
Z

d2	ðgIIð@�XIÞ2 � gIIð@	XIÞ2Þ: (B3)

The equations of motion for the time-dependent modes fIn
now are @�ð�AI@�f

I
nÞ þ n2�AIfIn ¼ 0, where AI � a0, b0.

These give the mode functions

fInð�Þ ¼ cIn1
ffiffiffi
n

p
�ð1�AIÞ=2JðAI�1Þ=2ðn�Þ

þ cIn2
ffiffiffi
n

p
�ð1�AIÞ=2YðAI�1Þ=2ðn�Þ: (B4)

For low-lying oscillation modes with finite n & 1
� , these

have the asymptotics fIn ! cIn0 þ cIn��
1�AI . These string

mode amplitudes thus do not diverge for Xi
n since a0 ¼

a
aþ1 < 1 always, while the Xm

n mode amplitudes normalized

with the metric behave as �b
0 ðXm

n Þ2 which is finite if b0 < 2,
i.e. the same conditions (b < 2aþ 2) as before.
The conjugate momenta are �I ¼ 1

2��0 gIIð@�XIÞ. The
Hamiltonian for this system (rewriting the �I in terms of
@�X

I),
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H ¼ 1

4��0
Z

d	ðgIIð@�XIÞ2 þ gIIð@	XIÞ2Þ; (B5)

is the generator of � translations, rather than xþ trans-
lations. For the zero modes, the center-of-mass momenta
are pI0ð�Þ ¼

R
d	�I ¼ 1

�0 gII _XI
0ð�Þ. Then the zero mode

terms in the expression for the masses cancel between
2gþ�ð�H0Þðp�Þ � gIIðpI0Þ2.

The oscillator contributions for the low-lying modes can
be calculated near the singularity as before, using their

limiting expressions fIn ! cIn0,
_fIn ! cIn��

�AI . Thus these

low-lying oscillator terms in the Hamiltonian above can

again be simplified using (36) and rewritten in terms of one

set of operators with coefficient gIIð _fInÞ2 ! �AI��2AI ¼
��AI , and another set of operators with coefficient gII ¼
�AI . This is identical in form to the expression for the
masses (47) earlier, after resubstituting AI � a0, b0 ¼
a

aþ1 ,
b

aþ1 .

Now we consider the highly stringy modes: for any
cutoff ��, there are modes with n � n� ¼ 1

��
¼ 1

� whose

asymptotics is essentially like a plane wave, with fIn !
��ðAI=2Þein�. Using these, the Hamiltonian above simplifies
using (36) to

H� � 1

�0
X
n

1

n2
ððaI�na

I
n þ ~aI�n~a

I
n þ nÞðgIIj _fInj2 þ n2gIIjfinj2Þ

� aIn~a
I
nðgIIð _fInÞ2 þ n2gIIðfinÞ2Þ � aI�n~a

I�nðð _fI	n Þ2 þ n2gIIðfI	n Þ2ÞÞ:
(B6)

Using the fIn asymptotics, the terms in the second line are
vanishingly small while the �-dependent terms in the first
line are �AI ð2n2Þ��AI . This Hamiltonian has the same form
as gþ�Hxþ , using the expression (55) for Hxþ , for the
highly stringy modes near the singularity.

We now describe some aspects of string quantization in
the Brinkman coordinates (5), after redefining to the affine

parameter �. The metric is ds2 ¼ �2d�dy� þP
I�IðyIÞ2 d�2

�2 þ ðdyIÞ2, with �I ¼ aI
2ðaþ1Þ ð aI

2ðaþ1Þ � 1Þ. The
string action is S ¼ 1

4��0
R
d2	ðð@�yIÞ2 � ð@	yIÞ2 þP

I
�I

�2
ðyIÞ2Þ. The equations of motion give the mode func-

tions

fInð�Þ ¼
ffiffiffiffiffiffi
n�

p ðcIn1Jð ffiffiffiffiffiffiffiffiffiffiffi
1þ4�I

p
Þ=2ðn�Þ þ cIn2Yð

ffiffiffiffiffiffiffiffiffiffiffi
1þ4�I

p
Þ=2ðn�ÞÞ;

(B7)

resulting in a mode expansion similar to (27), with kIn ¼
i
n

ffiffiffiffiffiffi
��0
4

q
. The highly stringy modes are defined by the limit of

small �, large n, and n� � 1. Then fIn � e�in� for cIn1 ¼ 1,
cIn2 ¼ �i, and the Hamiltonian from the action above
reduces to

H � X
n�1=�

�
1� �I

2n2�2

�
ðaI�na

I
n þ ~aI�n~a

I
n þ nÞ

� �I�

4n2�2
ðaIn~aInðfInÞ2 þ aI�n~a

I�nðfI	n Þ2Þ: (B8)

Thus the Hamiltonian for the highly stringy modes exhibits
similar behavior here as earlier.13. Similarly, defining the
bI oscillators as before, the Hamiltonian for the low-lying

oscillator modes is H�P
n&1=�

�
4n2

ðbIyn�bIn� þ ðn2 �
�I

�2
ÞbIyn0bIn0Þ.

[1] G. T. Horowitz and A. R. Steif, Phys. Rev. Lett. 64, 260
(1990); Phys. Rev. D 42, 1950 (1990).

[2] V. Balasubramanian, S. F. Hassan, E. Keski-Vakkuri, and
A. Naqvi, Phys. Rev. D 67, 026003 (2003).

[3] L. Cornalba and M. S. Costa, Phys. Rev. D 66, 066001
(2002).

[4] H. Liu, G. Moore, and N. Seiberg, J. High Energy Phys. 06
(2002) 045; 10 (2002) 031.

[5] A. Lawrence, J. High Energy Phys. 11 (2002) 019.
[6] G. Horowitz and J. Polchinski, Phys. Rev. D 66, 103512

(2002).

[7] B. Craps, D. Kutasov, and G. Rajesh, J. High Energy Phys.
06 (2002) 053.

[8] G. Papadopoulos, J. G. Russo, and A.A. Tseytlin,
Classical Quantum Gravity 20, 969 (2003).

[9] J. David, J. High Energy Phys. 11 (2003) 064.
[10] M. Blau, M. Borunda, M. O’Loughlin, and G.

Papadopoulos, Classical Quantum Gravity 21, L43
(2004).

[11] A. Giveon, E. Rabinovici, and A. Sever, Fortschr. Phys.
51, 805 (2003).

[12] M. Berkooz and B. Pioline, J. Cosmol. Astropart. Phys. 11

13Similar expressions arise from the corresponding limit in [8]
(Sec. 6).

KALLINGALTHODI MADHU AND K. NARAYAN PHYSICAL REVIEW D 79, 126009 (2009)

126009-14



(2003) 007.
[13] M. Berkooz, B. Durin, B. Pioline, and D. Reichmann, J.

Cosmol. Astropart. Phys. 10 (2004) 002; B. Durin and B.
Pioline, in Cargese 2004, String Theory: From Gauge
Interactions to Cosmology (Springer, New York, 2006).

[14] J. Karczmarek and A. Strominger, J. High Energy Phys. 04
(2004) 055; S. R. Das, J. L. Davis, F. Larsen, and P.
Mukhopadhyay, Phys. Rev. D 70, 044017 (2004); S. R.
Das and J. L. Karczmarek, Phys. Rev. D 71, 086006
(2005); S. R. Das, arXiv:hep-th/0503002.

[15] J. McGreevy and E. Silverstein, J. High Energy Phys. 08
(2005) 090.

[16] B. Craps, S. Sethi, and E. Verlinde, J. High Energy Phys.
10 (2005) 005; D. Robbins and S. Sethi, J. High Energy
Phys. 02 (2006) 052; B. Craps, A. Rajaraman, and S.
Sethi, Phys. Rev. D 73, 106005 (2006); D. Robbins, E.
Martinec, and S. Sethi, J. High Energy Phys. 08 (2006)
025.

[17] M. Li, Phys. Lett. B 626, 202 (2005); M. Li and W. Song,
J. High Energy Phys. 10 (2005) 073; 08 (2006) 089.

[18] M. Blau and M.O Loughlin, J. High Energy Phys. 09
(2008) 097.

[19] M. Berkooz, Z. Komargodski, D. Reichmann, and V.
Shpitalnik, J. High Energy Phys. 12 (2005) 018; Y.
Hikida, R. R. Nayak, and K. L. Panigrahi, J. High
Energy Phys. 09 (2005) 023; B. Chen, Phys. Lett. B
632, 393 (2006); S. R. Das and J. Michelson, Phys. Rev.
D 72, 086005 (2005); J. H. She, J. High Energy Phys. 01
(2006) 002; B. Chen, Y.-l. He, and P. Zhang, Nucl. Phys.
B741, 269 (2006); T. Ishino, H. Kodama, and N. Ohta,
Phys. Lett. B 631, 68 (2005); S. R. Das and J. Michelson,
Phys. Rev. D 73, 126006 (2006); H. Chen and B. Chen,
Phys. Lett. B 638, 74 (2006); T. Ishino and N. Ohta, Phys.
Lett. B 638, 105 (2006); R. Nayak and K. Panigrahi, Phys.
Lett. B 638, 362 (2006); H. Kodama and N. Ohta, Prog.
Theor. Phys. 116, 295 (2006); see also the review, B.
Craps, Classical Quantum Gravity 23, S849 (2006).

[20] E. Silverstein, Phys. Rev. D 73, 086004 (2006).
[21] K. Dasgupta, G. Rajesh, and S. Sethi, J. High Energy Phys.

03 (2003) 041.
[22] T. Hertog and G. T. Horowitz, J. High Energy Phys. 07

(2004) 073.T. Hertog and G. T. Horowitz, J. High Energy
Phys. 04 (2005) 005.

[23] S. Das, J. Michelson, K. Narayan, and S. Trivedi, Phys.
Rev. D 74, 026002 (2006); 75, 026002 (2007).

[24] A. Awad, S. Das, K. Narayan, and S. Trivedi, Phys. Rev. D
77, 046008 (2008); A. Awad, S. Das, S. Nampuri, K.
Narayan, and S. Trivedi, Phys. Rev. D 79, 046004 (2009).

[25] C. S. Chu and P.M. Ho, J. High Energy Phys. 04 (2006)
013.02 (2008) 058.

[26] F.-L. Lin and W.-Y. Wen, J. High Energy Phys. 05 (2006)
013; F. L. Lin and D. Tomino, J. High Energy Phys. 03
(2007) 118.

[27] N. Turok, B. Craps, and T. Hertog, arXiv:0711.1824; B.
Craps, T. Hertog, and N. Turok, arXiv:0712.4180.

[28] B. Craps and O. Evnin, J. High Energy Phys. 04 (2008)
021; B. Craps, F. de Roo, and O. Evnin, J. High Energy
Phys. 04 (2008) 036;

[29] B. Craps, F. de Roo, and O. Evnin, J. High Energy Phys.
03 (2009) 105.

[30] P. Townsend and M. Wohlfarth, Phys. Rev. Lett. 91,
061302 (2003); I. Neupane, Classical Quantum Gravity
21, 4383 (2004); I. Neupane and D. Wiltshire, Phys. Lett.
B 619, 201 (2005); N. Ohta, Phys. Rev. Lett. 91, 061303
(2003); Prog. Theor. Phys. 110, 269 (2003); Int. J. Mod.
Phys. A 20, 1 (2005); M. Wohlfarth, Phys. Lett. B 563, 1
(2003); Phys. Rev. D 69, 066002 (2004); S. Roy, Phys.
Lett. B 567, 322 (2003); L. Cornalba, M. Costa, and C.
Kounnas, Nucl. Phys. B637, 378 (2002); R. Emparan and
J. Garriga, J. High Energy Phys. 05 (2003) 028.

[31] P. Chen, K. Dasgupta, K. Narayan, M. Shmakova, and M.
Zagermann, J. High Energy Phys. 09 (2005) 009; T.
Ishino, H. Kodama, and N. Ohta, Phys. Lett. B 631, 68
(2005); R. Nayak, K. Panigrahi, and S. Siwach, Phys. Lett.
B 640, 214 (2006); N. Ohta and K. Panigrahi, Phys. Rev. D
74, 126003 (2006); K. Bamba, Z. Guo, and N Ohta, Prog.
Theor. Phys. 118, 879 (2007); K. Maeda, N. Ohta, M.
Tanabe, and R. Wakebe, arXiv:0903.3298.

[32] M. Blau, J. Figueroa-O’Farrill, and G. Papadopoulos,
Classical Quantum Gravity 19, 4753 (2002).

[33] J. Polchinski and L. Susskind, arXiv:hep-th/0112204.
[34] R. R. Metsaev and A.A. Tseytlin, Phys. Rev. D 63, 046002

(2001); R. R. Metsaev, C. B. Thorn, and A.A. Tseytlin,
Nucl. Phys. B596, 151 (2001).

[35] M. Blau and S. Weiss, Classical Quantum Gravity 25,
125014 (2008).

[36] E. Lifshitz, V. Belinskii, and I. Khalatnikov, Adv. Phys.
19, 525 (1970) [see L. D. Landau and E.M. Lifshitz,
Course of Theoretical Physics, Classical Theory of
Fields Vol. 2 (Pergamon, New York, 1987) for a lucid
discussion]; C.W. Misner, Phys. Rev. 186, 1319 (1969); T.
Damour, M. Henneaux, and H. Nicolai, Classical
Quantum Gravity 20, R145 (2003).

[37] J. Polchinski, String Theory (Cambridge University Press,
Cambridge, England, 1998), Vols. 1–2.

[38] K. Narayan, J. High Energy Phys. 03 (2006) 036; Phys.
Rev. D 75, 066001 (2007).

[39] D. Morrison, K. Narayan, and M. R. Plesser, J. High
Energy Phys. 08 (2004) 047; D. Morrison and K.
Narayan, J. High Energy Phys. 02 (2005) 062.

[40] S. Hellerman and I. Swanson, Phys. Rev. D 77, 126011
(2008); J. High Energy Phys. 07 (2008) 022; I. Swanson,
Phys. Rev. D 78, 066020 (2008).

[41] M. Graña and J. Polchinski, Phys. Rev. D 63, 026001
(2000); 65, 126005 (2002).

[42] J. Schwarz and P. West, Phys. Lett. 126B, 301 (1983); J.
Schwarz, Nucl. Phys. B226, 269 (1983); P. Howe and P.
West, Nucl. Phys. B238, 181 (1984).

STRING SPECTRA NEAR SOME NULL COSMOLOGICAL . . . PHYSICAL REVIEW D 79, 126009 (2009)

126009-15


