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The AdS/CFT correspondence may connect the landscape of string vacua and the ‘‘atomic landscape’’

of condensed matter physics. We study the stability of a landscape of IR fixed points of N ¼ 2 large N

gauge theories in 2þ 1 dimensions, dual to Sasaki-Einstein compactifications of M theory, toward a

superconducting state. By exhibiting instabilities of charged black holes in these compactifications, we

show that many of these theories have charged operators that condense when the theory is placed at a finite

chemical potential. We compute a statistical distribution of critical superconducting temperatures for a

subset of these theories. With a chemical potential of 1 mV, we find critical temperatures ranging between

0.24 and 165 K.
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I. A TALE OF TWO LANDSCAPES

This paper will explore the relation between quantum
critical phenomena in condensed matter systems and the
landscape of string vacua. The connection between these
will be the AdS/CFT correspondence [1].

String theory has infinitely many compactifications to
four dimensions. Of those, googols may lead to low energy
physics compatible with observations [2–7]. The existence
of this landscape of string theory vacua has lead to a revival
of anthropic reasoning in cosmology and particle physics,
together with associated philosophical conundrums and
worries about the scientific status and predictability of
string theory. Against this background, it would be appeal-
ing if the string landscape could be related to a different set
of physical systems than particle physics and cosmology.

Whereas particle physics and cosmology give us direct
experimental access to only one vacuum and its associated
low energy effective field theory, in condensed matter
physics there is a virtually unlimited supply of ‘‘vacua’’
and corresponding field theories. Typical examples are
crystal lattices. These are metastable ground states of a
single underlying microscopic theory, the standard model,
translation invariant at large distance scales and with low
energy excitations described by effective field theories.
Material science is in essence the exploration of this vast
landscape. In addition, an increasing range of lattice
Hamiltonians can be engineered and controlled in tabletop
experiments, for instance using optical lattices [8].

While the systems arising in the ‘‘atomic landscape’’ are
generally sensitive to their underlying discreteness, as a
function of couplings they can undergo second order phase
transitions at zero temperature, called quantum phase tran-
sitions. At the quantum critical point the long distance
physics is sometimes described by a continuum ‘‘relativ-

istic’’ conformal field theory (CFT), e.g. [9,10]. We will
focus on such relativistic quantum critical theories as they
are the cases in which AdS/CFT is best understood. Note
however that the AdS/CFT correspondence can be adapted
to nonconformal relativistic theories (see e.g. [11] for a
review) and also to theories with a nonrelativistic scale
invariance [12–14]. Wewill furthermore focus in this paper
on 2þ 1 dimensional systems.
The AdS/CFT correspondence [1,15,16] implies the ex-

istence of a 2þ 1 dimensional conformal field theory for
every 3þ 1 dimensional theory of quantum gravity in an
asymptotically anti–de Sitter (AdS) spacetime. The string
landscape provides an immense number of such theories.
Therefore, the string landscape also provides a wealth of
new quantum critical, that is, scale invariant, theories.
Whether any of these theories can be used to model the
physics associated to quantum phase transitions in experi-
mentally realizable discrete systems is an important ques-
tion for future work. In this paper we initiate a study of
their properties.
Given a vacuum of a theory, for instance with a finite

chemical potential, two immediate questions are first to
characterize low energy excitations about the vacuum and
second to enquire about the stability of the vacuum con-
figuration. These two issues can be directly related. For
instance, in conventional superconductivity an instability
of the vacuumwith unbroken gauge symmetry arises due to
interactions between low energy phonons and (dressed)
electrons.
For generic lattice structures there is by now a very well-

developed set of techniques for identifying the low lying
degrees of freedom and their dynamics. Some examples are
shown in Table I. However, at quantum critical points the
system is not describable in terms of conventional quasi-
particle degrees of freedom. The critical point describes the
dynamics of highly nonlocal entangled states of matter, in
which different competing orders are finely balanced [10].
There is no preferred energy scale and generically no weak
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coupling. The lesson of the AdS/CFT correspondence is
that, at least in a ‘‘large N’’ limit, there can be a dual
semiclassical description of quantum critical physics.1

Examples of dual low energy excitations are also shown
in Table I.

Table I suggests a complementary relationship between
the string and the atomic landscapes. The string landscape
may supply tractable models of quantum critical points in
the atomic landscape. Furthermore, studying the string
landscape in its totality may lead to the identification of
universal or typical properties and also novel exotic be-
haviors. One is also lead to wonder whether the atomic
landscape might have implications for string theory. We
will speculate on this latter connection at the end of the
paper.

The dynamical property of CFTs with string vacuum
duals that we shall investigate in this paper is the potential
instability toward a superconducting phase. We show that a
large class of string compactifications do indeed have such
instabilities. Inter alia these backgrounds provide explicit
string theory realizations of holographic s wave supercon-
ductors [17–19], including cases in which the dual field
theories are known.2 In particular, the theories are those
arising on M2 branes placed at the tip of a Calabi-Yau
cone. These are the IR fixed points of N ¼ 2 supersym-
metric gauge theories in 2þ 1 dimensions. Among these,
we find a superconducting instability in the maximally
supersymmetry N ¼ 8 CFT in 2þ 1 dimensions at a
finite chemical potential.

We will begin by reviewing the framework of holo-
graphic superconductivity. We then go on to discuss a
subset of the landscape given by N ¼ 2 Freund-Rubin
Sasaki-Einstein compactifications of M theory. These theo-
ries can be consistently truncated to Einstein-Maxwell
theory on a four-dimensional space with negative cosmo-
logical constant. We show that there exist minimally
coupled charged pseudoscalar modes that decouple from

all other fluctuation modes at the linearized level, in arbi-
trary backgrounds solving the Einstein-Maxwell equations.
They correspond to modes of the M theory 3-form obtained
by reducing certain harmonic 4-forms on the Calabi-Yau
cone over the Sasaki-Einstein manifold. We show that
these modes lead to instabilities toward a superconducting
phase of the dual CFT at low temperatures for a large
number of Sasaki-Einstein compactifications, and we ob-
tain a distribution of critical temperatures on this
landscape.

II. HOLOGRAPHIC SUPERCONDUCTORS

A. General framework

Holographic superconductors are a class of quantum
critical theories which have an instability to a supercon-
ducting phase at low temperatures when held at a finite
chemical potential � [17–19]. One can equivalently work
with a fixed charge density �. Scale invariance and dimen-
sional analysis imply that the critical temperature Tc / �.
Our objective is to show that a large number of simple
string vacua are holographic superconductors and to deter-
mine Tc=� for these theories.
The minimal bulk action for a holographic superconduc-

tor must describe the dynamics of the metric, a Maxwell
field, and at least one charged field that can condense and
spontaneously break the Uð1Þ symmetry.3 We focus in this
work on the case in which the charged field is a scalar in
AdS4. In general the full nonlinear action is complicated,
as a consistent embedding into string theory will typically
involve many coupled fields. Physically this implies that
there will be many condensates at low temperature. In this
work we avoid this problem by only considering the scalar
equations of motion to linearized order, at which many
fields decouple. This is sufficient to determine the critical
temperature.
The bulk action for a minimally coupled scalar field to

quadratic order in the scalar is

TABLE I. Comparison of two landscapes.

Atomic landscape String landscape

Microscopic theory Standard model M theory

Fundamental excitations Leptons, quarks, photons, etc. ?

Typical vacuum Atomic lattice Compactification

Low energy excitations Dressed electrons, phonons, spinons, triplons, etc. Gravitons, gauge bosons, moduli, intersectons, etc.

Low energy theory Various quantum field theories Various supergravities

1It is important to emphasize that unlike in the largeN limit of,
for instance, the OðNÞ model, the AdS/CFT theories are always
strongly coupled in the gravity regime. This may make them
better models for strongly coupled finite N real world systems.

2Making approximations to the non-Abelian Dirac-Born-
Infeld action, holographic p wave superconductors [20–22]
can be obtained in string theory using coincident D branes
[22–24].

3The Uð1Þ symmetry to be broken in the boundary field theory
is a global symmetry. From the point of view of superconduc-
tivity, this corresponds to neglecting virtual photons. This ap-
proximation is correctly made in all standard microscopic
theories of superconductivity (such as the Bardeen-Cooper-
Schrieffer theory).
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L ¼ M2

2
Rþ 3M2

L2
� 1

4g2
F��F

��

� jr�� iqA�j2 �m2j�j2: (1)

There are four dimensionless quantities in this action: the
AdS radius in Planck units ðMLÞ2, the mass squared of the
scalar field ðmLÞ2, the Maxwell coupling g, and the charge
of the scalar field q. We will show in the following section
that this action can be consistently obtained from M theory
Freund-Rubin compactifications. The internal geometry of
the compactification will fix the values of these coeffi-
cients. The dimensionless quantities have the following
field theory interpretations:

(i) The central charge of the CFT is

c ¼ 192ðMLÞ2; where s ¼ c�3

54
T2: (2)

Here s is the entropy density. Recall that for a 2þ 1
CFT, the central charge can be defined in two ways
[25]. Either as a parametrization of the energy mo-
mentum tensor two point function, or as a parame-
trization of the entropy density, as we have used in
(2). It was noted in [26] that these two notions agree
for theories with classical gravity duals.4

(ii) The electrical conductivity at zero momentum is
frequency independent [27]

� � �xx ¼ 1

g2
: (3)

This is the conductivity appearing in Ohm’s law j ¼
�E. Recall that conductivity is dimensionless in 2þ
1 dimensions, and so � may also be thought of as a
central charge.

(iii) The scaling dimension of the charged operator O
dual to the bulk field � is [15,16]

�ð�� 3Þ ¼ ðmLÞ2: (4)

Both roots to this equation are admissible [28] so
long as they satisfy the unitarity bound � � 1

2 .

(iv) The charge q is the charge of the dual operator O.
We will consider cases in which the gauge group is
Uð1Þ (rather than R) and work in units in which the
charges take integer values.

The quantum critical theory at finite temperature and
chemical potential is dual to the bulk theory in an AdS-
Reissner-Nordstrom black hole background. This has met-
ric

ds2 ¼ �fdt2 þ dr2

f
þ r2

L2
ðdx2 þ dy2Þ; (5)

and scalar potential

A0 ¼ �

�
1� rþ

r

�
: (6)

The function f is given by

f ¼ r2

L2
�

�
r2þ
L2

þ �2

2g2M2

�
rþ
r
þ �2

2g2M2

r2þ
r2

; (7)

where the horizon radius rþ is related to the temperature
through

T ¼ 1

8�rþ

�
6r2þ
L2

� �2

g2M2

�
: (8)

Here T and � are the temperature and chemical potential
of the field theory, respectively. The charge density of the
field theory is

� ¼ �rþ
g2L2

¼ ��T

�
2�

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2�

3

�
2 þ 32�

c

�2

T2

s �
: (9)

To see whether the theory develops superconductivity we
need to check the stability of this background against
fluctuations of the scalar field.

B. Criterion for instability of minimally coupled scalars

The equations of motion for the charged scalar field
following from (1) are

� ðr� � iqA�Þðr� � iqA�Þ�þm2� ¼ 0: (10)

Looking for an unstable mode of the form � ¼ �ðrÞe�i!t

one obtains

��00 �
�
2

r
þf0

f

�
�0 � ½r!þq�ðr� rþÞ�2

r2f2
�þm2

f
�¼ 0:

(11)

The AdS-Reissner-Nordstrom black hole will be unstable
if there is a normalizable solution to this equation, with
ingoing boundary conditions at the horizon, such that !
has a nonzero positive imaginary part.
We will shortly solve (11) numerically. A few prior

comments are in order. It is useful to introduce the ratio5

�2 � c

96�
¼ 2g2ðMLÞ2: (12)

A ratio of central charges, � might be thought of as
quantifying the efficiency of charge transport in the theory.
The Bogomol’nyi-Prasad-Sommerfield (BPS) bound6 for

4In Eq. (2) we are using the normalization of [26] for the
central charge. In this normalization, the central charge of a
massless free boson is c ¼ 81�ð3Þ=�4 � 0:9996.

5Essentially this ratio was also considered in [29].
6This bound can be derived from the superconformal algebra

when the Uð1Þ under consideration is the R symmetry in this
algebra, as will in fact be the case for the Sasaki-Einstein
compactifications we will consider. Unlike in asymptotically
flat space, the BPS bound lies strictly below the black hole
extremality bound [30], except in the limit �q ! 0 in which the
black holes become small and the flat space result is recovered.
Extremal black holes with any finite charge do not preserve any
supersymmetry.
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charged scalars can then be written as

� � �q: (13)

The normalization can be obtained, for instance, from the
extremality condition of black holes with spherical hori-
zons that are much smaller than the AdS radius in the
theory (1). Recall that q is quantized to be integer. We
further observe, allowing ourselves to rescale the radial
coordinate, that Eq. (11) depends only on the following
three dimensionless quantities: �, �q, and �T=�. Fixing
the first two of these, the mass and charge, we solve (11) to
obtain the critical temperature Tc below which there is an
instability. In more detail, the numerical algorithm pro-
ceeds as follows. We fix �T=�, �q, and �, and start by
constructing the solution in the very near horizon region
obtained by Taylor series expansion to third order in the
coordinate distance from the horizon. We then numerically
solve the linear differential equation (11) out to a suffi-
ciently large value of r. The equation is solved with! ¼ 0
as we are looking for the onset of an instability. Finally, we
match this to the general large r asymptotic solution,
obtained by power series expansion to seventh order.
(Working to such high order is necessary to get accurate
results across the full parameter range.) This procedure
thus yields two coefficients as a function of T, multiplying
the solutions with r�� and r��3 leading asymptotics.
Solving for the largest value of T for which the coefficient
multiplying the r��3 branch vanishes gives us Tc at the
given values of � and �q. This is then repeated for a fine
grid of values of � and �q. The result is shown in Fig. 1.

The zero temperature result of this plot can be under-
stood analytically. If we look for a threshold unstable
mode, with ! ¼ 0, at zero temperature, then near the
horizon we find the behavior

�� ðr� rþÞð�3� ffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�q2�2þ2�ð��3Þ

p
Þ=6: (14)

On general grounds one expects an instability to arise when
the field oscillates infinitely many times before reaching
the horizon [31]. From (14) we see that this requires

q2�2 � 3þ 2�ð�� 3Þ: (15)

Therefore we expect an instability when the charge of the
scalar field is sufficiently large as given by (15). If the
charge is lower than the critical value there will never be an
instability, as raising the temperature acts to stabilize the
theory. The black line in Fig. 1, obtained numerically, is
precisely the curve (15) separating stable backgrounds
from backgrounds that become unstable below some tem-
perature. This is a line of quantum critical points. It would
be interesting to study in detail the dynamics close to these
points.

The instability criterion (15) reduces to the inequality
noted in [19] for the case of neutral scalar fields (q ¼ 0).
There the result was obtained by comparing the mass
squared of the field to the Breitenlohner-Freedman bound

in the AdS2 near horizon region. The full result (15) may
be obtained by requiring the near horizon effective mass
squared, including the coupling to the Maxwell field [32],
to be below the AdS2 Breitenlohner-Freedman bound.
The remaining noteworthy feature of Fig. 1 is that the

critical temperature diverges as � ! 1
2 . This divergence is

exhibited clearly in Fig. 2, which shows the critical tem-

0.01
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FIG. 1 (color online). The critical temperature Tc for a mini-
mally coupled scalar as a function of the charge �q and dimen-
sion � of the dual operator. Contours are labeled by values of
�Tc=�. This plot is obtained numerically from Eq. (11). The
BPS line � ¼ �q is shown as a heavy black (red) line; the
shaded triangle to the left of it is the window of unstable values
compatible with the BPS bound. The top boundary q2�2 ¼ 3þ
2�ð�� 3Þ is a line of quantum critical points separating super-
conducting and normal phases at T ¼ 0. The bottom boundary is
the unitarity bound � ¼ 1=2, where Tc diverges. The black dots
indicate special cases which we will see arise in the context of
N ¼ 2 M2 brane theories.
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FIG. 2 (color online). Critical temperature �Tc=� as a func-
tion of � for operators on the BPS line � ¼ �q.
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perature as a function of operator dimension along the BPS
line� ¼ �q. It is presumably related to the fact that� ¼ 1

2

modes form singleton representations of theAdS4 isometry
group. These modes can be gauged to the boundary of AdS
[33], which one thinks of as the UVof the field theory, and
hence are not sensitive to the temperature, which only
affects the IR physics. Thus the superconducting instability
can never be stabilized by the temperature in this case. The
field theory statement of this fact is that these modes are
decoupled from all others and therefore do not acquire a
thermal mass.

If we wish to find string theory realizations of holo-
graphic superconductivity, we need to find compactifica-
tions of string theory that have charged scalars with masses
and charges that fall inside the shaded region to the left of
the BPS line in Fig. 1.

C. The weak gravity bound

A priori it is not obvious that there exist compactifica-
tions with charged scalars that lie in the left-hand region of
Fig. 1. An argument in favor of the generic presence of an
instability comes from the conjectured ‘‘weak gravity’’
bound [34]. Perhaps the sharpest of the statements in that
paper was the requirement that extremal black holes should
be able to decay in consistent theories of quantum gravity.
In asymptotically Minkowski spacetime, a simple kine-
matic argument shows that this requirement implies that
there must exist a charged particle in the theory that has

mass and charge related by m � ffiffiffi
2

p
gqM, where m, g, q,

and M have the same meanings as they did in the previous
sections. The interest of this statement is that if gq 	 1,
then the charged particle is much lighter than would be
predicted from standard effective field theory logic.

In asymptotically anti–de Sitter spacetimes it is less
straightforward to make kinematic arguments for a weak
gravity bound, as particles may not scatter out to infinity.
However, the criterion (15) for a classical instability was
obtained from only the near horizon geometry of the ex-
tremal black hole. If the preferred decay mode of the black
hole is through a minimally coupled scalar, as we have
been assuming, then (15) is a natural candidate for the
correct weak gravity bound. Namely, in any consistent
asymptotically AdS theory of quantum gravity there
should exist a charged particle with charge q and energy
� such that (15) is satisfied and extremal black holes can
decay. We note that (15) does not reduce to the Minkowski
space bound when � 
 1. We are only considering large
AdS black holes; smaller black holes can require a more
stringent condition in order to decay.

A caveat to the above statement is the possibility of
decaying through charged modes that are not minimally
coupled scalars. Given a field with a specified spin and
coupling to the Maxwell field, it is easy to rerun the above
argument involving the near horizon Breitenlohner-
Freedman bound and obtain an instability criterion analo-

gous to (15). The weak gravity bound would only require
the existence of one unstable mode, of any spin and
coupling.
The instability we are describing is essentially

Schwinger pair production. Although this is initially a
quantum mechanical effect, once there is sufficient con-
densate accumulated it is described as a classical instability
in terms of macroscopic fields. Whatever the microscopic
mechanism for emission of charge from the black hole, it
seems likely that the classical field instability considered
here is the correct description once the number of quanta
involved becomes large. Furthermore, numerical investi-
gations in [19] suggested (but not conclusively) that at the
endpoint of the extremal black hole instability, if the
charge of the scalar field is nonzero, all of the charge is
carried by the scalar field condensate. Therefore this in-
stability leads to the complete decay of the extremal black
hole, as required by the weak gravity conjecture.
An interesting exception to the statements in the pre-

vious paragraph might arise if the preferred decay mode of
the black hole were to charged fermionic particles. In the
absence of a pairing mechanism these will not develop
macroscopic occupation numbers, but rather build up a
Fermi surface. This could lead to novel black holes with
charged fermionic hair.
Whether or not one believes in the weak gravity bound,

we shall now show that there indeed exist a large set of
vacua in which extremal AdS-Reissner-Nordstrom black
holes are unstable. Note that extremal AdS-Reissner-
Nordstrom black holes are not supersymmetric and do
not saturate the BPS bound.

III. CHARGED SCALARS FROM
SASAKI-EINSTEIN VACUA

A. N ¼ 2 Freund-Rubin compactifications of M
theory

The M theory bosonic action is (in the conventions of
[35])

S ¼ 1

2	2

Z
d11x

ffiffiffiffiffiffiffi�g
p

R

� 1

	2

Z �
G ^ ?Gþ 2

3
C ^G ^G

�
; (16)

with G ¼ dC. We are interested in Freund-Rubin vacua
with a background electromagnetic field in four dimen-
sions. See for instance [27,36]. The metric ansatz is

ds211 ¼ L2ds2M4
þ 4L2½ða½dc þ A� þ �Þ2 þ ds2M6

�; (17)

supported by the flux

G ¼ 3L3

2
volM4

� 4L3a! ^ ?4F; (18)

where 1
2d� ¼ ! is the Kähler form on M6, which is taken

to be a six real dimensional Kähler-Einstein manifold
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satisfying RicM6
¼ 8gM6

, and F ¼ dA. In (17) the coeffi-

cient a is such that c has range 2�, and we have chosen the
four-dimensional gauge connection A to be normalized so
that excitations have integer charges.

One can check that (17) and (18) solve the 11-
dimensional equations of motion if and only if the four-

dimensional metric gð4Þ and gauge field A solve the four-
dimensional Einstein-Maxwell-AdS equations of motion.
These come from the effective four-dimensional
Lagrangian density

L ð4Þ ¼ 1

2	2
4

�
Rð4Þ þ 6

L2
� 4L2a2F��F

��

�
; (19)

where

1

2	2
4

¼ ð2LÞ7VolðM7Þ
2	2

: (20)

In this expression M7 refers to the Sasaki-Einstein mani-
fold7

ds2M7
¼ ðadc þ �Þ2 þ ds2M6

; (21)

with unit radius, that is, ds2M7
is such that the cone

ds2M8
¼ dr2 þ r2ds2M7

; (22)

is Ricci flat, i.e. a Calabi-Yau fourfold. The construction of
Sasaki-Einstein manifolds as Uð1Þ fibrations over Kähler-
Einstein manifolds is reviewed with differing emphases in
[37–40]. The simplest example is M7 ¼ S7, the round 7-
sphere, for which M8 ¼ C4, M6 ¼ CP3, ds2M6

the Fubini-

Study metric, and a ¼ 1. The Uð1Þ symmetry is the
R symmetry of the dual N ¼ 2 field theory.

In checking that this ansatz indeed provides a consistent
truncation to four-dimensional Einstein-Maxwell with a
negative cosmological constant, it is important to be pre-
cise about orientations. We are taking the Sasaki-Einstein
metric to be orientated such that its volume form is

volM7
¼ þ a

6
dc ^! ^! ^!: (23)

This implies, for instance, that

?7 ð! ^!Þ ¼ þ2ðadc þ �Þ ^!; (24)

which is an equation one uses in confirming consistency.
Comparing the effective action (19) to our general ex-

pression in Sec. II above we find that for these theories the
‘‘ratio of central charges’’

� ¼
ffiffiffiffiffiffiffiffiffi
c

96�

r
¼ 1

2a
: (25)

The coefficient � is therefore determined by a single
component of the Sasaki-Einstein metric, giving the (con-
stant) radius of the canonical Uð1Þ fibration. This radius is
determined topologically. Concretely:

� ¼ 2k

gcdc1ðM6Þ ; (26)

where k is a positive integer and gcdc1ðM6Þ is the greatest
integer by which the first Chern class c1ðM6Þ can be
divided such that it remains an integral (orbifold) coho-
mology class [40]. The freedom to choose k corresponds to
the freedom to quotient the circle by Zk. For example for
M7 ¼ S7=Zk, since gcdc1ðCP3Þ ¼ 4, we get � ¼ k=2.
There is a constraint on the values of k that are compatible
with supersymmetry. The Killing spinor has a c depen-
dence of the form ei2ac [37]. In order for the spinor to be
well defined we must therefore have 4a 2 Z. This con-
strains k not to be too large, given gcdc1ðM6Þ.
By comparison with Sec. II we can also obtain the

central charge

c ¼ 192L2

	2
4

¼ 32�ffiffiffi
6

p
VolðM7Þ1=2

N3=2: (27)

In this expression we introduced the M2 brane charge N /R½�Gþ C ^G�, which is a positive integer.8 The dual 2þ
1-dimensional CFT, to be discussed below, will have an
ultraviolet description as a gauge theory with an SUðNÞ
gauge group. Like the fiber radius a, the normalized vol-
ume VolðM7Þ can be computed topologically [40].
Bishop’s theorem implies that VolðM7Þ � VolðS7Þ ¼
�4=3. Therefore the central charge (27) is always larger
than the central charge of the maximally supersymmetric

theory, cN¼8 � 7:2N3=2.

B. Examples of Sasaki-Einstein manifolds:
Brieskorn-Pham links

A rich landscape of examples of Sasaki-Einstein mani-
folds is provided by links of Calabi-Yau hypersurface
singularities. These are constructed as follows. Consider
a weighted homogeneous polynomial FðzÞ in C5. That is,
satisfying

Fð
w1z1; . . . ; 

w5z5Þ ¼ 
dFðz1; . . . ; z5Þ; (28)

where wi and d are positive integers. An example is

FðzÞ ¼ z21 þ z52 þ z63 þ z74 þ z85 ¼ 0; (29)

which hasw ¼ ð420; 168; 140; 120; 105Þ and d ¼ 840. The
scaling action implies that the zero set FðzÞ ¼ 0 is a four
complex dimensional cone in C5. By definition, if the
hypersurface supports a conical Ricci flat Kähler metric

7We will only consider quasiregular Sasaki-Einstein mani-
folds, i.e. those for which the orbits of the Killing vector close.
Hence the fibration is Uð1Þ rather than R, and charges are
quantized.

8Specifically, N ¼ 3ð2LÞ6VolðM7Þ=ð2�3	4Þ1=3. This normal-
ization can be obtained from the Dirac quantization condition for
M2 and M5 branes in M theory.

FREDERIK DENEF AND SEAN A. HARTNOLL PHYSICAL REVIEW D 79, 126008 (2009)

126008-6



as in (22), the base (link) of the cone is Sasaki-Einstein.
The Uð1Þ acting as c ! c þ�c on (21) acts as zi !
eiwi�c zi on the coordinates zi. Thus the integrally quan-
tized charge of the coordinate zi is precisely wi. This will
shortly enable us to obtain the integrally quantized charge
q of various 3-form modes from the weights fwig.

For these Sasaki-Einstein spaces the quantities a and
VolðM7Þ introduced above, and therefore � and c, are
known explicitly [40,41]:

a ¼
P
i
wi � d

4
; (30)

Vol ðM7Þ ¼ �4a4d

3
Q
i
wi

: (31)

Not every cone constructed in this manner supports a
Ricci flat Kähler metric, and correspondingly not every
link supports a Sasaki-Einstein metric. A necessary condi-
tion for existence is [42] miniwi � a > 0, with a given by
(30). The CFT interpretation of this bound is quite pretty
[42]: it is the unitarity bound � � 1

2 for chiral primaries

corresponding to holomorphic functions on the cone. An
example that violates this condition is the Ak singularity
FðzÞ ¼ zkþ1

1 þ z22 þ z23 þ z24 þ z25 ¼ 0 for k > 2. A second

necessary condition is the bound following from Bishop’s
theorem [42] VolðM7Þ � VolðS7Þ ¼ �4=3, with VolðM7Þ
given by (31).

A sufficient condition can be formulated [43] for the
special case of Brieskorn-Pham cones, defined by Fermat
type polynomials

FðzÞ ¼ zm1

1 þ � � � þ z
m5

5 ¼ 0: (32)

These are weighted homogeneous polynomials as in (28)
above with

d ¼ lcmðmi j i ¼ 1 � � � 5Þ; wi ¼ d

mi

: (33)

According to [43], if the coefficients satisfy the following
two conditions, then the link is Sasaki-Einstein:

1<
X
i

1

mi

< 1þ 4

3
min
i;j

�
1

mi

;
1

bibj

�
: (34)

In this expression

bj ¼ gcdðmj; cjÞ; cj ¼ lcmðmiji � jÞ: (35)

Furthermore, two such Sasaki-Einstein manifolds, corre-
sponding to different exponents fmig and fm0

ig, are isomor-
phic if and only if the two sets of exponents are
permutations of each other. These conditions are sufficient
but not necessary for existence. A general necessary and
sufficient condition is not known.

The example given in (29) satisfies the conditions (34).
It yields a Sasaki-Einstein manifold with a ¼ 28:25 and

VolðM7Þ � 0:1396, so � � 0:0177 and c � 110N3=2. The
results reviewed in [44] imply that this manifold is homo-
topy equivalent (and therefore, by the generalized Poincaré
conjecture, homeomorphic) but not diffeomorphic to the
standard sphere S7. That is, it can be continuously de-
formed into the round S7 and there is a continuous but
not smooth one to one map to the round S7. Some further
remarkable results about Sasaki-Einstein spaces con-
structed in this way may be found in [43–45].

C. Minimally coupled pseudoscalars from 3-form
modes

Given the 11-dimensional background (17) and (18) of
the previous section, we wish to know whether the AdS-
Reissner-Nordstrom black hole (5) is unstable against
charged excitations of the background. To answer this
question systematically one should consider the general
linearized perturbation of the 11-dimensional metric and 3-
form about the background. While the spectrum of pertur-
bations about neutral Freund-Rubin compactifications is a
well-developed subject [35], the analysis is substantially
complicated by the presence of a background four-
dimensional Maxwell field. Generically the various modes
that appear diagonally in the spectrum about the neutral
vacuum are not minimally coupled to the background
Maxwell field and furthermore get mixed among each
other. For example, one may get couplings such as
j�j2F2, �F��@�v�, or ������F��b��, where v� is

some charged vector mode and b�� a charged 2-form

mode. Moreover, such nonminimal couplings tend to quali-
tatively alter the stability analysis of Sec. II B.
Rather then perform the full stability analysis we shall

focus on particular 3-form modes which, remarkably, turn
out to be only minimally coupled to the Maxwell field and
decouple from all other perturbations at the linearized
level, in any background satisfying the Einstein-Maxwell
equations. We will then show that these modes are suffi-
cient to establish instabilities in a large number of Sasaki-
Einstein vacua at finite chemical potential. It should be
borne in mind however that there may be more unstable
modes than the ones we find. Therefore our results for
critical temperatures should be taken as lower bounds only.
In order to describe these modes, it is useful to start with

the eight-dimensional Calabi-Yau cone (22). Consider a

closed self-dual or anti-self-dual 4-form Ŷ4 on the cone.
That is

dŶ4 ¼ 0; ?8Ŷ4 ¼ sŶ4; s ¼ �1: (36)

These conditions imply that Ŷ4 is harmonic. Assume fur-
thermore that the 4-form is homogeneous with degree n on
the cone. That is

L r@r Ŷ4 ¼ nŶ4: (37)

Here L denotes the Lie derivative. Then we can decom-

LANDSCAPE OF SUPERCONDUCTING MEMBRANES PHYSICAL REVIEW D 79, 126008 (2009)

126008-7



pose the form as

Ŷ 4 ¼ rn
�
dr

r
^ Y3 þ Y4

�
; (38)

with Y3 and Y4 being forms on the Sasaki-Einstein mani-
fold M7, and (36) implies

?7 dY3 ¼ snY3; d ?7 Y3 ¼ 0: (39)

Now consider the 3-form fluctuation

�C ¼ �Y3 þ c:c:; (40)

where � only depends on the four-dimensional spacetime
coordinates. The field� will be a pseudoscalar because the
3-form field changes sign under space or time reflections
[35]. From (39) one shows that in a neutral background
with A� ¼ 0 [35]:

r�r�� ¼ m2�; m2 ¼ nðnþ 6sÞ
4L2

: (41)

Moreover this mode does not source any other Kaluza-
Klein modes at linear order [35].

The question now is what happens when A� is nonzero.

We claim the following:

If Ŷ4 is a primitive and closed (4,0)- or (3,1)-form on the
Calabi-Yau fourfold, and fg��; A�g solve the 4D Einstein-

Maxwell equations, then the covariantization of the mode
(40) linearly decouples from all other Kaluza-Klein modes
and satisfies the covariantized equation of motion (41),
with s ¼ þ1 for (4, 0)-forms and s ¼ �1 for (3, 1)-forms.

Before sketching the proof, let us clarify the claim.
Recall that a primitive middle dimensional form on a
Kähler manifold is one that satisfies

!̂ ^ Ŷ4 ¼ 0 or equivalently !̂ � Ŷ4 ¼ 0; (42)

where !̂ is the Kähler form on the Calabi-Yau cone.
Covariantization means replacing, in the coordinates of
(21), dc ! dc þ A in (40), and r� ! r� � iqA� in

(41), where we assumed the mode to have a definite charge
q under the canonical Uð1Þ symmetry of the cone:

L @c
Ŷ4 ¼ iqŶ4: (43)

This charge will be directly inherited by Y3 and Y4. Thus,
explicitly, we take

�C ¼ �YA
3 þ c:c:; (44)

where YA
3 is obtained from Y3 by replacing dc by dc þ A.

In components

�Cmnp ¼ �Y3mnp; �C�mn ¼ �A�Y3mnc ; (45)

where m, n, and p are indices on M7 and � on M4.

We will discuss the existence of modes Ŷ4 satisfying all
of the above conditions in the next section. For the moment
we assume existence. To prove our claim, first note that the
Kähler form on the cone may be decomposed as (see e.g.
[40])

!̂ ¼ r2
�
dr

r
^ þ!

�
; (46)

where d ¼ 2!, and! is as before the Kähler form ofM6.
In terms of the metric we wrote in (21) above,  ¼ adc þ
�. The primitivity condition (42) is easily seen to imply

! � Y3 ¼ 0; ^Y3 þ s ^ ?7Y3 ¼ 0: (47)

Here we also used (36). By plugging the mode (44) into the
11-dimensional equations of motion and using (47), we
obtain9 the following three results:
Decoupling from metric fluctuations.—The 3-formmode

(44) does not source any linearized metric fluctuations
provided that

F ^ Fð!n
qY3mqc þ!m

qY3nqc Þ ¼ 0: (48)

Decoupling from other 3-form modes.—The 3-form mode
(44) does not source any other linearized 3-form fluctua-
tions provided that

ðsþ 1Þ! ^ Y3 ¼ 0: (49)

Equation of motion for the pseudoscalar.—If decoupling
occurs, then the four-dimensional pseudoscalar field sat-
isfies

ðr� � iqA�Þðr� � iqA�Þ� ¼ m2�;

m2 ¼ nðnþ 6sÞ
4L2

: (50)

Solving this equation is sufficient to solve the full 11D
linearized supergravity equations.
We now proceed to characterize forms for which (48)

and (49) hold. In our electrically charged AdS-Reissner-
Nordstrom background, F ^ F vanishes. Therefore the
decoupling of metric fluctuations will be automatic.
However, one might certainly wish to consider dyonic
black holes also (for instance to study phenomena such
as the Hall or Nernst effects [47–49]) for which this term
does not vanish. Therefore in order to solve (48) we will
require that !n

qY3mqc þ!m
qY3nqc ¼ 0. There are (at

least) four interesting cases in which this is true. These

are if Ŷ4 is a (4, 0)-, (0, 4)-, (3, 1)-, or (1, 3)-form on the
eight-dimensional Calabi-Yau cone. Let us consider these
cases one at a time.

If Ŷ4 is a (4, 0)-form, then Y3mqc is zero. This follows

from the fact that dr ^  is a (1, 1)-form on the Calabi-Yau
cone, see for instance (46). If Y3 had a dc component (i.e.

an  component), then Ŷ4 in (38) would necessarily have
an antiholomorphic component and could not be (4, 0).
Hence Y3mqc is zero.

9We will not reproduce the straightforward but tedious com-
putations here. We verified our results using the abstract tensor
calculus package XACT[46].
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If Ŷ4 is a (3, 1)-form, then Y3mqcdx
m ^ dxq is a (2, 0)-

form. This again follows from the decomposition of Ŷ4 in
(38) and the fact that dr ^  is a (1, 1)-form. Given that
both m and q are holomorphic indices it follows that
!n

qY3mqc þ!m
qY3nqc ¼ iðY3mnc þ Y3nmc Þ ¼ 0. The

first of these equalities follows from the fact that !m
q is

proportional to the complex structure while the second
equality follows from antisymmetry of Y3.

These arguments clearly go through identically when Ŷ4

is (0, 4) or (1, 3). They do not work however when Ŷ4 is a
(2, 2)-form. We can recall at this point that (4, 0)-forms are
always primitive [from (42)] and self-dual whereas primi-
tive (3, 1)-forms are anti-self-dual, in the canonical orien-
tation with which we are working.

In order for (49) to vanish and other 3-form modes to
decouple, we need that either s ¼ �1 or that ! ^ Y3 ¼ 0.

The first of these will hold if and only if Ŷ4 is anti-self-dual

whereas the second holds if Ŷ4 is a (4, 0)-form. This last
statement follows from noting that the structure of the
eight-dimensional Kähler form (46) implies that dr

r þ i

is a holomorphic 1-form on the Calabi-Yau cone. Therefore

in order for Ŷ4 to be (4, 0) the decomposition (38) must

take the form Ŷ4 ¼ rnðdrr � iÞ ^ Y3, with Y3 a (3, 0) on

the six-dimensional Kähler-Einstein base of the Sasaki-
Einstein manifold. However, if Y3 is a (3, 0)-form, then
! ^ Y3 is zero.

This proves our claim. Summarizing: The mode (44)
decouples from all other perturbations if the closed 4-form

Ŷ4 is a (4, 0)- or primitive (3, 1)-form on the Calabi-Yau
cone. It is described by a minimally coupled pseudoscalar
in four dimensions with charge q and mass squared

L2m2
ð4;0Þ ¼

�
n

2
þ 3

�
n

2
; (51)

L2m2
ð3;1Þ ¼

n

2

�
n

2
� 3

�
: (52)

The same expressions hold for (0,4)- and (1,3)-forms,
respectively. Using the relation ðLmÞ2 ¼ �ð�� 3Þ, we
can read off the possible conformal dimensions of the
dual operators.

D. Existence

We will now establish the existence of modes in the
classes described above and confirm that in many examples
they lead to instabilities and superconductivity at low
temperatures.

All Calabi-Yau cones admit a canonical holomorphic (4,
0)-form. This form is thus closed and self-dual. If we
introduce holomorphic vielbeins �a, a runs from 1 to 4,
such that the metric is written ds2M8

¼ �a ��a, then the form

is given by

Ŷ 4 ¼ �̂4 � �1 ^ �2 ^ �3 ^ �4: (53)

It is immediate that this form has scaling dimension n ¼ 4
under the homothetic vector r@r, as the metric has scaling
dimension 2 and hence the �a have scaling dimension 1.
Furthermore, we can easily obtain the charge q ¼ 4a by
noting that for this mode

L @c
Ŷ4 ¼ @c � dŶ4 þ dð@c � Ŷ4Þ ¼ dð@c � Ŷ4Þ

¼ aidðr4Y3Þ ¼ 4aiŶ4: (54)

In the third and fourth equalities we used the fact noted
previously that holomorphic 4-forms must take the form

Ŷ4 ¼ rnðdrr þ iÞ ^ Y3. In the last equality we also used the

first expression in (47). It is clear that this argument will
apply to any closed (4, 0)-form with scaling dimension n,
giving charge q ¼ na. Such forms are readily obtained by

multiplying �̂4 by a homogeneous holomorphic function
of degree n� 4.
It follows from (25) that all of the Sasaki-Einstein vacua

have a decoupled pseudoscalar mode with charge �q ¼ 2
and, from (51), mass squared m2L2 ¼ 10. This corre-
sponds to an operator of dimension � ¼ 5. Comparing
with Fig. 1 or Eq. (15) we see that this mode never leads
to an instability.
The recent results of [50] imply that this mode is part of

a long vector10 OSpð2j4Þ supermultiplet (the E0 ¼ 4, y ¼
0 case in Table I of [51]) which consistently decouples
from all other Kaluza-Klein modes even at the nonlinear
level. There are no other charged scalars in this multiplet.
Before moving on to consider a general class of (3, 1)-

forms, we can consider the special case of M7 ¼ S7 for
which the Calabi-Yau cone is simply M8 ¼ C4. A (3, 1)-
form on C4 is given by, for instance,

Ŷ 4 ¼ d�z1 ^ dz2 ^ dz3 ^ dz4: (55)

This is a closed, primitive, anti-self-dual (3, 1)-form with
n ¼ 4 and �q ¼ 1, recalling that a ¼ 1 for the seven
sphere. From (51) the four-dimensional mass will be
m2L2 ¼ �2, corresponding to � ¼ 2 or � ¼ 1. This is
precisely the value of the mass studied in detail in [18,19].
The two different dimensions of the dual operator corre-
spond to theories that are related via a renormalization
group flow generated by a double trace deformation [52].
From Fig. 1 or Eq. (15) we see that this mode does con-
dense at low temperatures. Therefore, the IR conformal
fixed point ofN ¼ 8 SUðNÞ Yang-Mills theory at large N
spontaneously breaks Uð1ÞR and becomes a superconduc-
tor at low temperatures and nonzero chemical potential.
Taking � ¼ 2, we numerically find that the critical tem-

10And hence not part of a short hypermultiplet as was claimed
in [51].
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perature is Tc � 0:007�. For � ¼ 1, we get Tc � 0:35�.
We recall this is a lower bound.11

We now turn to our main source of examples, namely, (3,
1)-forms associated to complex structure moduli of the
Calabi-Yau fourfold cone. Consider a metric deformation
�gab, with a and b both holomorphic indices, preserving
Ricci flatness. Then this is a Lichnerowicz zero mode and

Ŷ 4 � �g �a �e�̂
�e
4bcdd�z

�a ^ dzb ^ dzc ^ dzd; (56)

is a harmonic (3, 1)-form [55]. In this equation a bar
denotes an antiholomorphic index. It is easy to see that
this form is furthermore primitive. We thus get an example
of an anti-self-dual closed (3, 1)-form, as considered
above. Calabi-Yau metric deformations which preserve
the cone structure (21) and (22), and are therefore moduli
of the Sasaki-Einstein manifold, have the same scaling
dimension as the metric and are neutral under the Uð1Þ
isometry (otherwise they would not preserve the isometry
and the metric would no longer be Sasaki-Einstein). Thus

the associated Ŷ4 has the same scaling dimension n ¼ 4 as

�̂4, and the same charge �q ¼ 2. The mass formula (51)
now implies �þ ¼ 2, saturating the BPS bound.12 Such
modes always condense at low temperature, with (see
Fig. 2)

Tc � 0:0416
�

�
: (57)

Therefore: The IR fixed point of N ¼ 2 SUðNÞ Yang-
Mills theories at large N with Sasaki-Einstein duals with at
least one metric modulus becomes superconducting at
temperatures below (57). As previously, this is a lower
bound on Tc, and there may be other unstable modes
with higher critical temperatures.

Not all Sasaki-Einstein metrics have deformation mod-
uli. For example the round sphere has none. However,
many of the Brieskorn-Pham links introduced in
Sec. III B have plenty of moduli, obtained as polynomial
deformations of the same weight d as the original poly-
nomial (28). The number of such moduli equals the num-
ber of monomials of weight d minus the number of
coordinate transformations respecting the weights [56],
that is

Nmod ¼ NmonðdÞ �
X
i

NmonðwiÞ; (58)

where NmonðwÞ stands for the number of monomials of
weight w. For the example (29), Nmod ¼ 1: There is pre-
cisely one deformation which cannot be reabsorbed in a
weight preserving coordinate transformation, namely
�FðzÞ ¼ �z33z

4
5. We shall look more systematically at the

existence of moduli in the following section.
One could also consider deformations �F ¼ �F0 of the

defining equation (28) with weight d0 � d. Such deforma-
tions do not preserve the cone structure, and so they are not
moduli of the Sasaki-Einstein space. However if the fluc-
tuation preserves the Ricci flatness of the cone metric to
linear order, then (56) still gives a harmonic (3, 1)-form,
and the corresponding pseudoscalar mode still satisfies all
the required properties to be minimally coupled. To deter-
mine the charge of such a metric fluctuation it is useful to
formally associate a charge q� ¼ w� ¼ d� d0 to �. This
way the polynomials F and �F would have the same
charge d. The charge of the metric mode �gab ¼
@�gabj�¼0 is thus seen to be�q� ¼ d0 � d. The associated
form mode (56) thus has charge q and radial scaling
dimension n given by

n

2
¼ �q ¼ 2þ �ðd0 � dÞ: (59)

As an example, consider the deformation �F ¼ �z1z
2
2 of

(29). This has d0 ¼ 756, and so, using � ¼ 2
113 , we get

n
2 ¼

�q ¼ 58
113 � 0:5132. If this truly corresponded to a Calabi-

Yau preserving deformation, it would give rise to a mini-
mally coupled BPS pseudoscalar with this value of � ¼
�q. This leads to Tc ¼ 1:473 18 �

� , substantially higher

than the cone-preserving modes (57). Determining in gen-
eral when such modes are indeed Calabi-Yau preserving
appears to be an interesting open mathematical problem
[57]. We shall not address this problem here, but note that it
could lead to higher values of Tc than the ones we will
discuss.

E. Comment on the dual field theories and operators

The gravity backgrounds that we have been describing
are dual to N ¼ 2 superconformal field theories. The
supersymmetry and conformality follow directly from the
global (super)symmetries of the gravitational solutions. In
special cases there may be an enhancement of supersym-
metry. For instance, whenM7 ¼ S7 the theory hasN ¼ 8
supersymmetry and if M7 is tri-Sasakian then the theory
will have N ¼ 3 supersymmetry.
More specifically, the dual field theory is that describing

the world volume dynamics of N M2 branes placed at the
tip of a Calabi-Yau fourfold cone over the Sasaki-Einstein
manifold M7 [58]. Until recently, this relationship was not
useful for obtaining an explicit description of the field
theory degrees of freedom. On general grounds one might
expect the M2 brane theories to arise as IR fixed points of
multiple D2 brane gauge theories in a background obtained
by dimensionally reducing the M theory geometry along

11There is another known instability for the case of M7 ¼ S7,
the Gubser-Mitra instability [53,54]. That instability corresponds
to the charge becoming redistributed among the more than one
Uð1Þ symmetry in the theory, and does not induce superconduc-
tivity, as all the operators involved are neutral. In our units
TG-M ¼ �=� � 0:32�. Thus in the � ¼ 1 case the supercon-
ducting instability kicks in before the Gubser-Mitra instability.
12This mode is thus the lowest component of an OSp(2, 4)
hypermultiplet. Its scalar superpartner is the metric modulus
fluctuation, which has �q ¼ 0 and �þ ¼ 3, as expected for a
marginal deformation.
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the Uð1Þ isometry of the Sasaki-Einstein metric [59]. This
reduction will break all the manifest supersymmetry of the
background for generic (N ¼ 2) Sasaki-Einstein mani-
folds. This occurs because the Killing spinor is charged
under the Uð1Þ isometry, as we recalled below (26).

A different brane construction for the case M7 ¼ S7=Zk

was presented in [60] (ABJM), following the renewed
interest in multiple M2 brane theories initiated by [61–
63]. The construction involves two NS5 branes, N D3
branes, and k D5 branes. Upon T dualizing and lifting to
M theory one obtains N multiple M2 branes probing a
geometry that has local C4=Zk singularities. The brane
construction allowed Aharony et al. [60] to identify the
field theory as a specific superconformal UðNÞ UðNÞ
Chern-Simons theory at levels k and �k.

The ABJM brane construction was generalized to a
family of N ¼ 3 field theories in [64]. These are dual to
backgrounds in which M7 is a tri-Sasakian manifold. The
field theory dual for general N ¼ 2 theories is not yet
available; it appears that the most tractable subset ofN ¼
2 theories are those in which the Calabi-Yau cone M8 is
toric (the Brieskorn-Pham cones we considered above are
generally not toric, and the dual field theories are not
known explicitly). Combining the extensive intuition
gained from toric N ¼ 1 superconformal field theories
in 3þ 1 dimensions and the ABJM construction, it has
been proposed that the world volume theory of M2 branes
probing toric Calabi-Yau cones is given by a quiver Chern-
Simons theory [65–70]. These have large gauge symme-
tries with associated gauge fields Ai and complex scalar
fields�a that are charged under the gauge symmetries. The
supermultiplets are then completed with additional scalar
and spinor fields. The action takes the form

S ¼ X
i

ki
4�

Z
d3xTr

�
Ai ^ dAi þ 2

3
Ai ^ Ai ^ Ai

þ superpartners

�
þX

a

Z
d3x

�
jD�aj2 �

��������
@W

@�a

��������
2

þ superpartners

�
: (60)

We are being somewhat schematic. The superpotential W
is a holomorphic function of the�a. A thorough discussion
of N ¼ 2 Chern-Simons theories may be found in [71].
The point we would like to emphasize is that concrete field
theory duals have been proposed for certain Sasaki-
Einstein manifolds. One can therefore hope to identify
the precise operator O which condenses at the supercon-
ducting instability.

The first mode we discussed in Sec. III D was obtained
from the canonical holomorphic (4, 0)-form on the Calabi-
Yau cone. Although this mode did not lead to an instability,
it is instructive to consider its dual field theory operator.
The mode must be dual to a canonical operator which is
present in allN ¼ 2 theories. The most natural candidate

is the superpotential itself: O ¼ W.13 As well as being
holomorphic and canonical, this mode had charge �q ¼
2 which is also the R charge of the superpotential.
However, the mode has dimension � ¼ 5, whereas the
superpotential has classical dimension � ¼ 2, as a conse-
quence of being chiral. This identification would therefore
imply that the dimension of the superpotential is renormal-
ized in these 2þ 1 theories. This is consistent with the fact,
mentioned in Sec. III D, that this mode is part of a long
multiplet [50], so its dimension is not protected.
The second set of modes we discussed were (3, 1)-forms

corresponding to complex moduli deformations of the
Calabi-Yau cone. These must be canonically dual to de-
formations of the field theory that preserve supersymmetry
and conformality. The most natural candidate dual opera-
tors are deformations of the superpotential, O ¼ �W. In
this case our bulk mode was BPS, with charge and dimen-
sion � ¼ �q ¼ 2, equal to those of bare superpotentials.
These are relevant charged operators. This identification
would indicate that whereas the overall superpotential is
renormalized, deformations of the superpotential (if they
exist) are not.
We also noted in Sec. III D that the (3, 1)-form modes lie

in a hypermultiplet which contained a scalar superpartner
with �q ¼ 0 and � ¼ 3. This mode will be dual to a
marginal deformation of the Lagrangian. If our previous
identification with deformations of the superpotential is
correct, these operators will be of the form O ¼R
d2��W þ c:c: ¼ @�a@�b�Wc ac b þ � � � , with c a fer-

mionic superpartners of the �a.
It is certainly of interest to flesh out these identifications

further for cases in which the superpotential and its defor-
mations are known explicitly. We will leave this for future
work.

F. Comment on skew whiffing

Given a (neutral) Freund-Rubin compactification from
11 to four dimensions, a different solution may be con-
structed by skew whiffing [35]. One way to describe the
skew-whiffed solution is to change the sign of the 3-form
background with everything else held fixed. In terms of the
ansatz (17) and (18), with A ¼ 0, this corresponds to
letting L ! �L. In terms of brane constructions, this
means that instead of N M2 branes at the tip of a Calabi-
Yau cone, one takes N anti-M2 branes. This operation is
not as innocuous as it might seem. With the exception of
the case M7 ¼ S7, only one of the two solutions can be
supersymmetric [35]. At the strict classical level, skew-
whiffed solutions obtained from supersymmetric Freund-
Rubin compactifications give examples of stable nonsu-
persymmetric vacua [35]. Stability beyond the classical
level is not known.

13An analogous identification is implicitly made in the
AdS5=CFT4 case with N ¼ 1 supersymmetry in 3þ 1 dimen-
sions in, for instance, [40].
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In the skew-whiffed backgrounds (L ! �L) it turns out
that the construction of Sec. III A above does not give a
consistent reduction to Einstein-Maxwell theory in gen-
eral. This is because a relative sign changes between the
kinetic and Chern-Simons term in the 3-form equations of
motion. However, for a purely electric (or purely magnetic)
background, such as the AdS-Reissner-Nordstrom black
holes of interest to us, the Chern-Simons term vanishes and
one does obtain a solution.

Perturbing the skew-whiffed charged background by our
mode (44) one finds that both the decoupling conditions
(48) and (49) and the equation of motion for the pseudo-
scalar (50) are changed by s ! �s. It follows from our
previous arguments that only the modes obtained from
closed (4, 0)- and (0, 4)-forms on the Calabi-Yau cone
decouple in this case. Their mass squared is now given by

m2
ð4;0Þ ¼ m2

ð0;4Þ ¼
nðn� 6Þ

4L2
: (61)

We recalled above that all Calabi-Yau cones admit a closed
(4, 0)-form with n ¼ 4 and charge �q ¼ 2. Therefore, all
of the skew-whiffed backgrounds have a minimally
coupled pseudoscalar with m2 ¼ �2, corresponding to
� ¼ 2 or � ¼ 1. We noted above (see Fig. 1) that these
values of the charge and � lead to a superconducting
instability at low temperatures. Therefore all theories
dual to skew-whiffed Sasaki-Einstein compactifications
of M theory are superconducting at low temperatures
when placed at a finite chemical potential.

IV. A DISTRIBUTION OF CRITICAL
TEMPERATURES

In this section we consider Sasaki-Einstein manifolds
obtained as Brieskorn-Pham links, as discussed in
Sec. III B, and which have unstable 3-form modes of the
type considered in Sec. III D. For these theories, all the
quantities in the four-dimensional action (1) can be explic-
itly computed. This allows us to obtain a distribution of
critical temperatures.

More specifically, we will focus on the 3-form modes
associated to metric moduli. Their critical temperature Tc

is given by (57).14 Notice that Tc=� is proportional to ��1,
with constant of proportionality independent of the theory.
Therefore, in order to obtain a distribution of critical
temperatures Tc at fixed �, it is sufficient to obtain a
distribution of values of ��1 ¼ 2a 2 1

2Zk. We shall now

note various features of this distribution for Brieskorn-
Pham cones, putting aside momentarily the question of
whether or not the manifolds have metric moduli.

The lowest value of a is clearly a ¼ 1=4. From (57), this
corresponds to Tc � 0:0208�. To gain some intuition for
this result, it is useful to express this relation in physical
units. The only quantity that we need to reintroduce is the
Boltzmann constant kB ¼ 8:617 10�5 eVK�1, which
we have thus far set to unity. Furthermore we recall that
1 V is V ¼ eV e�1 and that we have set the fundamental
charge e ¼ 1.15 The lowest critical temperature we find is
therefore

Tc

½K�
��������min

� 0:241
�

½mV� : (62)

Thus, for instance, if we put the membrane CFT at a
chemical potential of 1 mV, the critical temperature would
be 0.24 K. If (62) is taken literally, then by increasing the
chemical potential we can make Tc arbitrarily high. Of
course, in actual theories arising at quantum critical points
in a real-life crystal, other factors such as impurities and
interactions with background ions would influence the
onset of superconductivity.
Less obvious, there is also an upper bound on a and

hence an upper bound on the critical temperatures within
this class of Sasaki-Einstein duals:
Lemma 1.—For the Brieskorn-Pham links constructed in

[43] and reviewed in Sec. III B, the metric coefficient a has
an upper bound. Thus the critical temperature at fixed
chemical potential (57) is bounded above in these models.
This proof of this result is in the Appendix. The largest

value of a that we found by scanning numerically (over
mi < 100) is a ¼ 2039=4. However, this manifold does not
have moduli. The largest value of a we found for a mani-
fold with moduli is a ¼ 683=4. The defining polynomial
(32) for this case is F ¼ z21 þ z32 þ z73 þ z374 þ z995 . There is

a single modulus �F ¼ z22z
33
5 . This value of a leads to Tc �

14:2�. Introducing physical units as above leads to

Tc

½K�
��������max

� 165
�

½mV� : (63)

Thus Tc is 165 K if the system is at a chemical potential of
1 mV. This is likely not the maximum Tc attainable; rather
it is the largest value we found by scanning numerically.
A second interesting result is that while there are infi-

nitely many Brieskorn-Pham links that lead to Sasaki-
Einstein manifolds, only a handful of values of a occur
infinitely many times.
Lemma 2.—There are precisely 19 values of a which

occur infinitely many times in the Brieskorn-Pham links.
These are

a ¼ n

4
; (64)

14Although we will only consider the distribution of the critical
temperatures for this particular mode, we should keep in mind
that there may be other modes that become unstable at higher
temperatures.

15If these theories were to be realized in a lab, the identification
e ¼ 1 would only be correct if the unit of charge in the
(emergent) CFT coincided with the (standard model) electron
charge.
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where n ¼ f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 14; 15; 18; 20; 21;
24; 30; 42g.

The proof of this result is again in the Appendix. This
series suggests the resolution of a puzzle raised in [72].

It is straightforward to scan numerically through differ-
ent values of the exponents fmig in the defining polyno-
mials for the Brieskorn-Pham cones, and to check whether
they satisfy the condition (34) for being Sasaki-Einstein.
We then need to check whether the Sasaki-Einstein space
has metric moduli. Each time we find a solution with
metric moduli, we can compute a and hence Tc, via (57).
In Fig. 3 we show the solutions obtained for a scan over all
mi < 100. This scan led to 7278 distinct Sasaki-Einstein
manifolds, 6190 of which had metric moduli. As noted
below (26), we can also consider quotients of these mani-
folds by Zk, with k a divisor of 4a. After considering
quotients of the manifolds with moduli, we obtain 11 821
solutions. The critical temperatures of these manifolds are
shown in Fig. 3. Of the 7278 manifolds found, only around
350 belong to the infinite families of Theorem 2. Removing
them does not change the distribution noticeably. It seems
therefore that Fig. 3 accurately captures the distribution of
critical temperatures in the finitely many theories which do
not belong to infinite families.

In Fig. 3 we see that the critical temperatures cluster
around the lowest value Tc=� � 0:241 K=mV. The clus-
tering appears to roughly follow a power law.

We close this discussion by noting that the instability we
found for the maximally supersymmetric (N ¼ 8) theory
in Sec. III D, which is not due to a modulus mode and not
included in Fig. 3, gives the following critical temperatures
in physics units:

Tc

½K�
��������N¼8

� 0:081
�

½mV� or 4:1
�

½mV� ; (65)

corresponding to � ¼ 2 and � ¼ 1 for the operator that
condenses, respectively. We noted in footnote 11 that in the
� ¼ 1 case, this instability occurs at a higher temperature
than the Gubser-Mitra instability of theN ¼ 8 theory at a
finite chemical potential.

V. DISCUSSION

In this paper we have given the first explicit string theory
realizations of the onset of an s wave superconducting
phase in strongly coupled field theories at finite chemical
potential as considered in [17–19]. The main technical
result that made this possible was the identification of
charged modes in Sasaki-Einstein compactifications which
decoupled from other modes at a linearized level, even in
the presence of a background Maxwell field. Our results sit
at the intersection of three directions of current string
theory research: the string landscape, AdS/CFT duality
for M2 brane theories, and applications of AdS/CFT to
condensed matter physics. This leads to future research
questions with differing flavors.
In order to obtain a more complete picture of the super-

conducting physics of theseN � 2 theories there are two
important questions we have not addressed. Still at the
linearized level, one should perform a complete stability
analysis with all of the coupled scalar, vector, and tensor
modes. This way one can identify the most unstable mode,
obtain the precise critical temperature, and determine
whether or not all Sasaki-Einstein compactifications be-
come superconducting. If the most unstable mode is a
charged vector or tensor, one might obtain p wave
(cf. [20–22]) or d wave superconductors, respectively.
Beyond the linearized level, one would ultimately like to
find the endpoint of the instability well below Tc. These
will be hairy black hole solutions of M theory. Given the
full solution there will be many properties to investigate,
starting with the possible existence of a mass gap.
The recent progress in constructing field theory duals to

AdS4 backgrounds opens various interesting future direc-
tions. One would like to identify precisely the operators
which condense and ultimately gain some dynamical
understanding of what is driving the instability. Also, if
the field theory admits a weak coupling limit, one can ask
whether the superconducting phase continues to weak
coupling. In fact, it is rather natural that a weakly coupled
theory with massless charged bosonic degrees of freedom
become superconducting when placed at a finite chemical
potential. This is because the chemical potential acts as a
negative mass squared. It would also be interesting, there-
fore, if there are theories that are superconducting at weak
coupling but not strong coupling. In this vein, because the
N ¼ 2 theories we have considered have exact moduli
spaces of vacua, it is important to understand towhat extent
the theories have a true zero temperature ground state at
finite chemical potential.
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FIG. 3 (color online). A logarithmic distribution of critical
temperatures over the chemical potential, in units of degrees
Kelvin per milliVolt. The distribution is obtained from a scan
over Brieskorn-Pham cones admitting Sasaki-Einstein metrics
with moduli, along with allowed Zk quotients. The solutions
have been binned into ranges of width 2 K/mV.
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In terms of field theory duals, one is not restricted to
AdS4=CFT3. It seems likely that Sasaki-Einstein compac-
tifications to AdS5 will have similar instabilities. If so, this
will lead to superconducting phases in very well-studied
field theories with AdS5 duals. It was checked in [73] that
the basic mechanism of holographic superconductivity
generalizes to AdS5.

Regarding the string landscape, we have considered here
only the simplest (Freund-Rubin) flux compactifications of
string/M theory. As we noted in Sec. II C, the logic behind
the weak gravity bound, if correct, suggests that theories
dual to generic AdS4 flux compactifications should have a
superconducting phase when considered at a finite chemi-
cal potential. A natural question is to scan the wider string
theory landscape in search of superconductors. As in this
work, the main technical difficulty will be to identify a
sector for which the stability analysis becomes tractable.

In the Introduction we highlighted a parallel between the
string landscape and the atomic landscape of condensed
matter physics. It would be fascinating if this connection
could be made literal by actually engineering a (large N)
supersymmetric gauge theory in a lab. Emergent gauge
fields are known to occur in certain lattice systems, see
e.g. [74]. One conceptually interesting consequence of
such a connection would be that a standard model lattice
vacuum would provide a nonperturbative definition of
string theory (with specific AdS asymptotic boundary con-
ditions), thus inverting the traditional roles of string theory
and the standard model.
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APPENDIX: PROOFS FOR THE DISTRIBUTION
OF CONDUCTIVITIES

Lemma 1.—For the Brieskorn-Pham links,

a ¼ lcmðmi j i ¼ 1 � � � 5Þ
4

�X 1

mi

� 1

�
; (A1)

has an upper bound.
Proof.—For a to be unbounded, clearly at least one of

the mi, call it m5, must become arbitrarily large.
Suppose that

P
4
i¼1 1=mi < 1. It can be shown [44] that

given that the mi are positive integers, this requiresP
4
i¼1 1=mi � 1805=1806. The first inequality in (34) now

requires that 1=1806< 1=m5, and hence m5 < 1806 is
bounded.
Suppose instead that

P
4
i¼1 1=mi ¼ 1þ X, with X � 0.

The second inequality in (34) implies that X < 1=ð3m5Þ. In
a couple of paragraphs later, we show that for i � 5 we
must have mi � 42. It follows that if X > 0, then X cannot
be made arbitrarily small, and hence m5 < 1=ð3XÞ gives a
bound for m5.
The remaining case to consider is X ¼ 0, that is,P
4
i¼1 1=mi ¼ 1. Here m5 is not bounded. However, the

formula (A1) for a in this case implies that 4a �
m1m2m3m4. Because mi � 42, for i � 5, then this is
bounded.
To complete the proof we need to show thatmi � 42, for

i � 5, when
P

4
i¼1 1=mi � 1. First, note that

P
3
i¼1 1=mi <

1 because otherwise the second inequality in (34) implies
1=m4 þ 1=m5 < 4=ð3m5Þ< 2=m5 which contradicts the
fact that m5 � m4. From this inequality it can be shown
[44] that

P
3
i¼1 1=mi � 41=42. Combining this fact withP

4
i¼1 1=mi � 1 implies that m4 � 42. Swapping the labels

around, this argument gives m1, m2, m3, and m4 � 42, as
required.
Lemma 2.—There are precisely 19 values of a which

occur infinitely many times in the Brieskorn-Pham links.
These are

a ¼ n

4
; (A2)

where n ¼ f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 14; 15; 18; 20; 21;
24; 30; 42g.
Proof.— We noted in the proof of our previous lemma

that the largest exponentm5 can only become unbounded ifP
4
i¼1 1=mi ¼ 1. However, there are only 14 different sets

of ðm1; m2; m3; m4Þ for which this is possible. Namely: (2,
3, 7, 42), (2, 3, 8, 24), (2, 3, 9, 18), (2, 3, 10, 15), (2, 3, 12,
12), (2, 4, 5, 20), (2, 4, 6, 12), (2, 4, 8, 8), (2, 5, 5, 10), (2, 6,
6, 6), (3, 3, 4, 12), (3, 3, 6, 6), (3, 4, 4, 6), (4, 4, 4, 4). For
sufficiently large integer k, any of these sets together with
m5 ¼ k solves the conditions (34). It is then simple to use
the formula (A1) to obtain the 19 values of n that appear in
the statement of this theorem.
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