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Wess-Zumino-Witten (WZW) models are abstract conformal field theories with an infinite-dimensional

symmetry which accounts for their integrability, and at the same time they have a sigma-model description

of closed-string propagation on group manifolds which, in turn, endows the models with an intuitive

geometric meaning. We exploit this dual algebraic and geometric property of WZW models to construct

an explicit example of a field-dependent reflection matrix for open strings in the Nappi-Witten model.

Demanding the momentum outflow at the boundary to be zero determines a certain combination of the left

and right chiral currents at the boundary. This same reflection matrix is obtained algebraically from an

inner automorphism, giving rise to a space-filling D-brane. Half of the infinite-dimensional affine Kac-

Moody symmetry present in the closed-string theory is preserved by this unique combination of the left

and the right chiral currents. The operator-product expansions of these boundary currents are computed

explicitly and they are shown to obey the same current algebra as those of the closed-string chiral currents.

Different choices of the inner automorphisms correspond to different background gauge field configura-

tions. Only those B-field configurations, and the corresponding D-branes, that preserve the diagonal part

of the infinite-dimensional chiral algebras are allowed. In this way the existence of the D-branes in curved

spaces is further constrained by the underlying symmetry of the ambient spacetime.
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Since their discovery [1], studying D-branes has been a
very important aspect of research in string theory.While D-
branes have simple interpretation as being the hypersurface
confining the end points of the open strings from the sigma
model point of view, it is much harder to study them in an
abstract conformal field theory that does not necessarily
have any geometric interpretation for the fields as coordi-
nates of a target spacetime. Important progress has been
made throughout the years [2–9] especially in the case of
D-branes in Wess-Zumino-Witten (WZW) models [10–
34].

WZW models [35] are very special. Not only do they
have a sigma-model description in which the fields take
values in a group manifold of a particular Lie algebra, they
are also conformal field theories with an infinite-
dimensional affine Kac-Moody symmetry, where the cur-
rent algebra is built upon the very same Lie algebra. In this
way they nicely relate the algebraic bootstrap approach of
the conformal field theory to the more intuitive geometric
approach associated with the sigma-model analysis. While
closed-string propagation on these group manifolds is
much studied, much less is known about the properties of
open strings on these manifolds. The known class of D-
branes were obtained by gluing the left-moving and the
right-moving world sheet currents in the closed-string
theory with a field-independent ‘‘reflection’’ matrix, R,
i.e. J L þRJ R ¼ 0, with a notable exception of [11]. We
would like to propose using inner automorphisms as a
general gluing condition, giving rise to field-dependent

gluing matrices, R.1 Different choices of the inner auto-
morphisms are related to different configurations of the
background gauge fields coupled to the end points of the
open strings. However choosing a consistent background
gauge field for the open strings is far from obvious within
the conformal field theoretical framework. The intuition
gained from the geometric approach serves well in this
regard. Sigma-model analysis of the boundary conditions
also straightforwardly endows the D-brane with a geomet-
ric interpretation. The underlying symmetry of the D-
branes is, on the other hand, most easily seen by studying
the symmetry preserved by the boundary conformal theory.
The algebraic and geometric approaches compliment each
other and provide a complete picture of the D-branes.
So far the last aspect of D-branes, namely what symme-

try of the underlying curved spacetime is preserved by the
D-branes, has been mostly overlooked. We would like to
advocate the view that the existence of the D-branes are
further constrained by underlying symmetry of the ambient
(curved) spacetime. Only those B-field configurations, and
the corresponding D-branes, that preserve a subalgebra of
the infinite-dimensional chiral algebras at the boundary are
allowed. Without a good understanding of how the under-

1We speak of inner automorphisms of adjoint action by an
arbitrary group element, g. In the case of identity, e, the gluing
condition is again J L þ J R ¼ 0, coincided with the previously
studied case and corresponding to the Neumann boundary
condition.
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lying infinite-dimensional symmetry constrains the exis-
tence of the D-branes, the study of D-branes is curved
space is not complete.

We exploit this unique gift of WZW theories to uncover
a new type of field-dependent gluing conditions, illustrat-
ing our techniques using the Nappi-Witten WZW model
[36], a pp-wave background supported by a null Neveu-
Schwarz (NS) three-form flux. We show, in this note, that it
is in fact easy to generalize to field-dependent gluing
matrices using the geometric data of the boundary condi-
tions. A very special choice of the inner automorphism,
adjoint action by the group element, euJ, gives rise to a
space-filling brane in the Nappi-Witten (NW) model. This
gluing condition was first proposed in [11]. Stanciu
[11,13,16,17,23] was also the first to stress the importance
for the D-branes to preserve part of the underlying affine
symmetry. The construction of the D3-brane whose world
volume spanning all four directions of the Nappi-Witten
space is as follows. In Sec. I we construct the boundary
conditions from momentum consideration and show that
all four directions are Neumann. The reflection matrix
relating the left-moving currents to the right-moving cur-
rents is obtained in Sec. II through an algebraic method,
resulting in field dependent matrix components. The mo-
menta obtained in Sec. I are reexpressed in terms of chiral
currents. This unique combination of the left and the right
chiral currents is shown, in Sec. III, to satisfy the same
current algebra as the chiral currents of the closed strings.
The boundary currents hence preserve half of the infinite-
dimensional affine Kac-Moody symmetry present in the
closed-string theory. The readers can see for themselves
that it is much more straightforward to study D-branes if
one fully exploits the dual geometric and algebraic prop-
erties of WZW models.

The Nappi-Witten model has received a lot of attention
lately because it is one of the solvable string models in the
plane-polarized gravitational waves [37–40]. Following
this realization D-branes in these backgrounds have been
extensively studied (see [41] for a sample of literature).
The Nappi-Witten model, describing closed-string propa-
gation in a pp-wave background supported by lightlike NS
fluxes, has the added merit of being a WZW model which
eventually led to its complete and covariant solution, via a
Wakimoto ‘‘free-field’’ realization [42], in which string
vertex operators were constructed and scattering ampli-
tudes for an arbitrary number of tachyons were presented.
[See also [43] for a different way of deriving the three and
four point amplitudes by taking a pp-wave contraction of
the SUð2Þ �Uð1Þ amplitudes.] In this note we will use a
space-filling D3-brane in the NW model to illustrate our
techniques. Emphasis is placed on the interplay of the
geometric and algebraic approaches. The fact that the
free fields obey the Neumann boundary condition at the
boundaries is made apparent (in Sec. III) using the cova-
riant free-field realization introduced in [42].

I. SIGMA-MODEL ANALYSIS

We shall begin with the sigma-model side of the story.
Starting with a generic string sigma model (in conformal
gauge):

L ¼
Z

G��@X
� � @X� þ �abF��@aX

�@bX
�: (1)

Upon variation of the sigma-model action there are con-
tributions from the boundary terms. Consistency of the
open-string background requires that such terms vanish.
In the presence of the B-field, B��, and a background

gauge field, F��, coupling to the end points of the open

strings the boundary terms read

�X�½G��ðXÞ@�X� þF ��ðXÞ@�X��j� ¼ 0 (2)

in which only the gauge invariant combination, F ¼ Bþ
F, appears. The boundaries of the world sheet are set at
� ¼ 0 and � ¼ �. Writing the above using the left-
moving and right-moving world sheet derivatives, @� ¼
1ffiffi
2

p ð@� � @�Þ, we have
@þX� ¼ ½ðGþF Þ�1ðG�F Þ���@�X�; (3)

provided that (GþF ) is invertible, which it will be for the
case at hand.
The Neumann condition is equivalent to the requirement

that no world sheet momentum flows out of the boundary
of the world sheet. The world sheet momentum flowing

across a small element, d~l ¼ ðd�; d�Þ, of the boundary of
the world sheet is given by

dP� ¼ P
�
� d�� P

�
�d� (4)

has to vanish in order for the end points of the string to be
free. The components of the world sheet momentum are
defined canonically by

P�
� ¼ �L

�@�X
� P�

� ¼ �L
�@�X

� : (5)

To read off the gluing condition for the Neumann direc-
tions, say in the ‘‘open-string picture’’ i.e. an open segment
terminating at � ¼ 0 and � ¼ � at the D-brane (d� ¼ 0),
we demand no momentum outflow at all values of �. We
therefore must have

P�
� ¼ G��ðXÞ@�X� þF ��ðXÞ@�X� ¼ 0: (6)

This is nothing but the familiar boundary condition,
@�X

� ¼ 0, in flat space. Similarly the Dirichlet boundary
condition, @�X

p ¼ �Xp ¼ 0, should be replaced by P�
p ¼

0 in curved backgrounds.
Thus the generalized boundary conditions, in the open-

string channel2 in a curved spacetime are

2In the closed-string channel, a pair of D-branes exchange one
closed string. The boundaries of the world sheet are at � ¼ �1
and � ¼ �2. The closed-string channel is useful only when one
analyzes the boundary states. To avoid possible confusion we
will discuss physics solely in the open-string picture.
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Neumann: P
�
� ¼ 0 (7)

Dirichlet: Pp
� ¼ 0: (8)

We will see in the next section that these two boundary
conditions are reinterpreted as two special linear combina-
tions of currents at the boundary, namely,

P�
� $ J Neumann (9)

Pp
� $ J Dirichlet: (10)

As we shall see in Sec. III below when expressed in terms
of the free fields [42], the Neumann boundary for the free
field indeed reduces to those in flat space. At this point we
would like to stress that the Neumann boundary conditions
in curved space can only be realized by gluing the left-
moving currents to the right-moving currents by an inner
automorphism of the group which inevitably leads to a
gluing matrix with nontrivial field dependence. This is to
be contrast with the much studied D-branes arisen from
field-independent gluing conditions using group outer au-
tomorphisms of the group, notably, �I.

The action of the Nappi-Witten model is given by [36]

S ¼ 1

2�

Z
@þu@�vþ @þv@�uþ @þa@� �aþ @þ �a@�a

þ iHð �a@�a@þu� a@� �a@þuÞ; (11)

where the background metric, G, and the gauge invariant
combination of the Neveu-Schwarz B-field and gauge
field, F ¼ Bþ F, are given by

ds2 ¼ dudvþ dad �aþ 2iHð �ada� ad �aÞdu (12)

F ¼ 2iHð �ada� ad �aÞ ^ du; (13)

H being a constant. Notice however that we are using a
different gauge from that of [36]. In going from the closed-
string theory to the open-string theory, one has to specify a
background gauge field, F, in addition to the NS back-
ground, in order to fully specify an open-string back-
ground. It is the gauge invariant combination,
F ¼ Bþ F, that couples to the end points of the open
strings. Compare [Eq. (2.6)] in [42], used here for the open
strings, and [Eq. (3.4)] in [42], for the closed strings: we
had introduced a constant gauge field, F ¼ du ^ dvþ
da ^ d �a. This necessity of using a different gauge from
the original one adopted by Nappi and Witten in studying
open string was also noticed by the authors of [44,45] when
they studied other aspects of the Nappi-Witten model. We
will also set H ¼ 1 in the later part of the paper.

We now vary the above action and study the boundary
conditions at the end points of the string, � ¼ 0 and � ¼
�:

�vð�@þuþ @�uÞ ¼ 0 (14)

�uð�@þvþ @�vþ iHð �a@�a� a@� �aÞÞ ¼ 0 (15)

� �að�@þ �aþ @� �a� iH �a@þuÞ ¼ 0 (16)

�að�@þaþ @�aþ iHa@þuÞ ¼ 0: (17)

We are looking for a solution that satisfies the Neumann
boundary condition in all four directions. So we demand
that the four expressions inside the parentheses vanish.
Using the definition of the canonical momentum, P�,

one can show that the vanishing P� is identical to requiring
all four expressions inside the parentheses in (14)–(17)
vanish. This unambiguously established the ‘‘Neu-
mannity’’ of the above boundary conditions.3

II. CURRENTS AND THEIR GLUING CONDITIONS

The Nappi-Witten model is also a WZWmodel in which
case there are infinite-dimensional conserved currents on
the closed-string world sheet. In fact there are two inde-
pendent sets of such currents, one for the left movers and
one for the right movers, generating the GðzÞ �Gð�zÞ
isometry of the loop group. The insertion of boundary
implies that the left-moving and right-moving currents
are no longer independent. They are related to each other
at the boundary by a ‘‘reflection matrix,’’ R:

JaLðzÞ þRa
bJ

b
Rð�zÞ ¼ 0: (18)

Ra
b are the matrix components of a z dependent linear map

acting on the Lie algebra. The gluing matrix, R, encodes
both Dirichlet and Neumann boundary conditions. In flat
space þ1 corresponds to a Neumann direction and �1 is
Dirichlet. Comparing with the expression of boundary
condition (3) from the sigma-model analysis and using
J L ¼ �@gg�1 and J L ¼ g�1 �@g, we obtain

R a
b ¼ ½ðGþF Þ�1ðG�F ÞC�ab; (19)

where Gij, Bij denotes the components of the metric and

the B-field in terms of left invariant form fields, ds2 ¼
Gijðgdg�1Þiðgdg�1Þj, B ¼ Bijðgdg�1Þi ^ ðgdg�1Þj. Ca

b

denotes the adjoint map

TaC
a
b � AdðgÞ � Tb ¼ gTbg

�1: (20)

This relation between the background field, F , and the R
field is invertible as long as CþR does not have a kernel,
in which case we can write

F ¼ GðC�RÞðCþRÞ�1: (21)

In other words, this equation serves to relate the algebraic
data with the geometric data ofWZWmodels. If a metricG
and a background field F are given, then R can be
determined from it; and vice versa. The insight gained

3This is usually called ‘‘mixed Neumann Dirichlet’’ boundary
condition in the literature, which we found misleading.
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from the sigma-model analysis will enable us to find a
consistent background for open strings easily. This gives us
considerable advantage over the purely algebraic manipu-
lation as the consistency of a particular open-string back-
ground is not obvious in the closed-string picture.

Using this recipe we can directly compute the reflection
matrixR in the Nappi-Witten model. For the space-filling
D3-brane4 it turns out to be [11]

~J L þR ~J R ¼ 0 ! R ¼ AdðeuJÞ; (22)

where AdðgÞ denotes the adjoint action by the group ele-
ment g, AdðgÞX ¼ gXg�1. The boundary conditions (18)
are then explicitly given by

J �
L þ e�iuJ�

R ¼ 0 J L þJ R ¼ 0 T L þT R ¼ 0:

(23)

The gluing matrices were usually taken to be outer auto-
morphisms of the algebra, which give rise to a large body
of D-branes we know and love. Although the possibility of
using inner automorphisms, and hence field-dependent
gluing matrices, has been noticed by many researchers
[12,16,21,28,31] and the constraint equation that R has
to satisfy in order to be an inner automorphism has been
written down in [31], in many conformal field analyses,
due to the lack of geometric intuition, the components of
the gluing matrices are quickly taken to be field indepen-
dent. Adjoint action by a group element is of course an
inner automorphism of the algebra. The element J lives in
the Cartan of the Nappi-Witten algebra and it is the only
element in the Cartan subalgebra that has nontrivial action
on the rest of the algebra. In a sense what we have proposed
is the most natural generalization of the constant gluing
matrix.

Recall that the Nappi-Witten algebra5 is

½J; Jþ� ¼ iJþ; ½J; J�� ¼ �iJ�; ½Jþ; J�� ¼ iT:

(25)

We shall parametrize a generic group element by

g ¼ eaJþþ �aJ�euJþvT (26)

and use the definitions of Jþ ¼ �@þgg�1 and J� ¼
g�1@�g to obtain the following sets of chiral currents:

�Jþ
L ¼ @þ �aþ i �a@þu Jþ

R ¼ eþiu@� �a

�J�
L ¼ @þa� ia@þu J�

R ¼ e�iu@�a

�J L ¼ @þvþ i½a@þ �a� �a@þa� � a �a@þu

J R ¼ @�vþ i½ �a@�a� a@� �a�
�T L ¼ @þu T R ¼ @�u:

(27)

Let us remark that the minus sign in the definition of the
left-moving current is not arbitrary: it is to ensure that the
left-moving and right-moving currents obey the same Kac-
Moody algebra.
Now it is a straightforward exercise to plug in the

definitions of the left and right currents (27) above into
the gluing conditions (22) and obtain the following bound-
ary conditions:

� @þuþ @�u ¼ 0 (28)

� @þaþ @�aþ ia@þu ¼ 0 (29)

� @þ �aþ @� �a� i �a@þu ¼ 0 (30)

�@þvþ @�vþ a �a@þuþ i

2
½ �að@þ þ @�Þa

� að@þ þ @�Þ �a� ¼ 0: (31)

Comparing these with the boundary conditions obtained
earlier (14)–(17), one sees that they indeed describe a D3-
brane! We have made use of (16) and (17) to write (15) into
the form of (31). So by now we have succeeded in showing
that if we allow more general gluing conditions than those
have been considered in the literature we can have a space-
filling D-brane in the Nappi-Witten model. The geometry
of this D-brane is completely determined by the boundary
conditions imposed on the open-string end points. In our
case it is that of the plane-polarized gravitational waves
supported by the null Neveu-Schwarz three-from fluxes.
Whereas the consistency of the open-string background is
apparent from the sigma-model analysis, the symmetry
preserved by the underlying D-brane is most easily seen
from the algebraic study which we shall turn to in the
following section. This concludes the classical analysis.
We shall turn our attention to the quantum algebra, the
operator-product expansions (OPEs), of the currents at the
boundary.

III. CURRENT ALGEBRA

The gluing matrix relates the left-moving currents with
the right-moving ones as in (23). This particular linear
combination of the chiral currents, dictated by the
Neumann boundary condition, will be shown in this sec-
tion, to obey the same Kac-Moody algebra as the original
closed-string theory in the bulk. This combination of chiral
currents form a close algebra: an OPE of any two such
‘‘boundary’’ currents does not take one outside of this set

4The currents are vectors on the tangent space of the group
manifold, ~J � JþĴ� þ J�Ĵþ þT Ĵ þ J T̂, where Ĵ�, Ĵþ, Ĵ,
T̂, the generators of the algebra, act as the basis for the tangent
vectors of the group manifold. To save typing we will drop the
hats for the generators and only use the calligraphy letters to
denote chiral current components.

5This is a centrally extended two-dimensional Euclidean alge-
bra as it is manifest in the following way of writing it:

½J;P1� ¼ P2; ½J;P2� ¼ �P1; ½P1;P2� ¼ T; ½T;�� ¼ 0

(24)

In the note we have defined Jþ ¼ 1ffiffi
2

p ðP1 � iP2Þ and J� ¼ 1ffiffi
2

p �
ðP1 þ iP2Þ.
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of four boundary currents. The other linear combination
with a relative minus sign between the left and the right
chiral currents, corresponding to Dirichlet boundary con-
dition, would not form a close algebra. Alternatively in the
closed-string picture, we can construct boundary operators,
Qa, as the conserved charges of these boundary currents.
Qa will have to annihilate the boundary state [46] repre-
senting this D3-brane. Any commutators ½Qa;Qb� will
have to annihilate this very boundary state. This again
implies that it is consistent to impose the Neumann bound-
ary condition on all of these four directions. The under-
lying D3-brane, or the boundary state, thus preserves half
of infinite-dimensional GðzÞ �Gð�zÞ symmetries of the
WZW model. This is analogous to the Bogomol’nyi-
Prasad-Sommerfield (BPS) property of D-branes—pre-
serving half of the spacetime supersymmetry. Given that
the gluing condition is actually an inner automorphism of
the algebra, it is perhaps not surprising to see part of the
original symmetry get preserved after all.

To prove our claims let us recall that the bulk currents
satisfy the OPE:

J ðzÞJ�ðwÞ � �i
J�ðzÞ
z� w

JþðzÞJ�ðwÞ � 1

ðz� wÞ2 þ i
T ðzÞ
z� w

T ðzÞJ ðwÞ � 1

ðz� wÞ2 :

(32)

These OPEs are easily realized using the Wakimoto ‘‘free-
field’’ representation introduced in [42]:

�Jþ
L ðzÞ ¼ e�iuL@�L Jþ

R ð�zÞ ¼ eiuR �	R

�J�
L ðzÞ ¼ eiuL	L J�

R ð�zÞ ¼ e�iuR �@ ��R

�J LðzÞ ¼ @vL J Rð�zÞ ¼ �@vR

�T LðzÞ ¼ @uL T Rð�zÞ ¼ �@uR;

(33)

where 	 ¼ @ �� and �	 ¼ �@�. Using the following free
fields contraction rules,

uðzÞvðwÞ � lnðz� wÞ 	ðzÞ�ðwÞ � 1

z� w
; (34)

it is a straightforward exercise to verify that the chiral
currents (33) obey the OPEs given in (32).

We can now proceed to verify that the linear combina-
tions of the chiral currents in the left-hand side of (23) are
consistent, i.e. the algebra closes onto itself:

½Jþ
L ðzÞ þ eiuðz;�zÞJþ

R ð�zÞ�½J�
L ðwÞ þ e�iuðw; �wÞJ�

R ð �wÞ�

� 1

ðz� wÞ2 þ
1

ð�z� �wÞ2 þ
iT LðzÞ
ðz� wÞ þ

iT Rð�zÞ
ð�z� �wÞ (35)

½J LðzÞ þ J Rð�zÞ�½Jþ
L ðwÞ þ eiuðw; �wÞJþ

R ð �wÞ�

� i

�
Jþ

L ðzÞ
ðz� wÞ þ

eiuðz;�zÞJþ
R ð�zÞ

ð �z� �wÞ
�

(36)

½J LðzÞ þ J Rð�zÞ�½J�
L ðwÞ þ e�iuðw; �wÞJ�

R ð �wÞ�

� �i

�
J�

L ðzÞ
ðz� wÞ þ

e�iuðz; �zÞJ�
R ð�zÞ

ð�z� �wÞ
�

(37)

½T LðzÞ þT Rð �zÞ�½J LðwÞ þ J Rð �wÞ�
� 1

ðz� wÞ2 þ
1

ð�z� �wÞ2 : (38)

All other OPEs are regular. The right-hand side of the
equations are to be evaluated at the boundary, z ¼ �z.

Let us remark that the phase eiuðz;�zÞ being nonchiral is
essential for the closure of the above OPEs. The contribu-

tion from J Le
iuðz;�zÞ is equal and opposite of that from

J Re
iuðz;�zÞ:

J LðzÞeiuðw; �wÞ ��ieiuðz;�zÞ

z�w
J Rð�zÞeiuðw; �wÞ� ieiuðz;�zÞ

�z� �w
(39)

which is the magic that enables the algebra to close.
Notice however that the central charge of the system is

the total of the left-moving and right-moving parts. One
can also prove that the above currents are conserved and
indeed generate the symmetry transformations advertised.
This is left as an exercise to the readers. An interesting
open question is to investigate the implication of this
infinite-dimensional symmetry present in the D3-branes
on the BPS property of the object. The interplay of these
extra infinite-dimensional symmetries with the other
(super)symmetries in the target space should also be under-
stood better and will be reported in a separate publication.
Furthermore, using the free fields we can rewrite the

boundary conditions (14)–(17) as

@uL � �@uR ¼ 0 (40)

@vL � �@vR ¼ 0 (41)

@ ��L � e�iHuR �@ðeiHuR ��RÞ ¼ 0 (42)

e�iHuL@ðeiHuL�LÞ � �@�R ¼ 0; (43)

where we have reinstated the dependence on the field
strength, H, a real parameter. In the cases of the physical
free fields like u and v, they are the familiar Neumann
boundary conditions. The twisting (a phase factor) in the
other two equations is due to the fact that ��L and �R are not
physical fields. They are related to the physical ones, ��R

and �L, respectively, at the boundary by nontrivial phases,
eiHuR and eiHuL , respectively. The readers are referred to
Sec. 3.2 of [42] for a detailed discussion on how the two
sets of fields come about in the NW model. This explains
the form of the boundary conditions above.

INNER BRANE: A D3-BRANE IN THE NAPPI-WITTEN . . . PHYSICAL REVIEW D 79, 126007 (2009)

126007-5



To conclude. we have successfully shown that it is much
more straightforward to study D-branes if one fully ex-
ploits the dual geometric and algebraic properties of WZW
models. We demonstrate our technique by uncovering a
space-filling D-brane in a particular WZW model, that
discovered by Nappi and Witten. This D-brane arises
when one allows for a field-dependent gluing matrix. The
reflection matrix is shown to be an adjoint action by a
particular group element, euJ, on the algebra. These gluing
conditions on the chiral currents are shown to be identical
to the Neumann boundary condition of the open strings.
The merit of the method is that it allows the geometric
property D-branes to remain transparent by fully utilizing
the geometric aspect of WZW models. In order for it to be
useful however the technique should be generalized. On
the conformal field theory side, one would like to general-
ize the boundary states to reflect the field dependence in the
gluing matrix. It is also educational to apply our techniques
to the better understood models like SLð2Þ and SUð2Þ to
see if one gets new insight into these theories. It also serves
as a cross-check for our techniques.
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