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The quantization of the giant magnon away from the infinite size limit is discussed. We argue that this

quantization inevitably leads to string theory on a ZM orbifold of S5. This is shown explicitly and

examined in detail in the near plane-wave limit.
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A significant amount of work on the AdS/CFT corre-
spondence [1–3] has been inspired by the idea that the
planar limit of N ¼ 4 Yang-Mills theory and its string
dual might be integrable models which would be com-
pletely solvable using a Bethe ansatz [4–6]. Computation
of the conformal dimensions of composite operators in
N ¼ 4 Yang-Mills theory can be mapped onto the prob-
lem of solving an SUð2; 2j4Þ spin chain. It is known that the
spin chain simplifies considerably in the limit of infinite
length where dynamics are encoded in the scattering of
magnons and integrability would imply a factorized
S matrix [7]. Beginning with this limit, a strategy advo-
cated by Staudacher [8], Beisert showed that a residual
SUð2j2Þ2 supersymmetry and integrability determine the
N ¼ 4 S matrix up to a phase [9,10]. More recent work
constrains [11] and essentially computes this phase [12–
17].

An important problem that the integrability program
would eventually have to address is that of finite size
corrections. In fact, recent four-loop computations of short
operators [18,19] suggest that the most advanced form of
the integrability ansatz, due to Beisert, Eden, and
Staudacher [15], is likely valid only in the infinite size
limit and it is spoiled by finite size effects. In the gauge
theory, these effects are thought to stem from wrapping
interactions [20–22].

A place where some progress has been made in studying
finite size effects is the spectrum of a single magnon. The
Bethe ansatz implies that the energy spectrum of a single
magnon (at least in infinite volume) has the form
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

�2
sin2

pmag

2

s
: (1)

Here, � is the conformal dimension and J is a Uð1Þ 2
SUð4Þ R charge which also dictates the length of the spin
chain. pmag is the magnon momentum. The string theory

dual of the magnon of the infinite size system, the ‘‘giant
magnon,’’ was identified by Hofman and Maldacena [23]
who showed that it had an energy spectrum of the expected
leading large � limit of (1). Then it was noted that the giant
magnon solution could also be found in finite volume [24–
31] where an asymptotic expansion of its spectrum is
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The finite size corrections are exponentially small with
large J. This was first found in the paper by Arutyunov,
Frolov, and Zamaklar [24] where, in their approach, it was
noted that the spectrum depended on a light-cone gauge
fixing parameter. This was not a problem in the strict
infinite volume limit, which turned out to be gauge invari-
ant, but it afflicted the exponentially small corrections.
Arutyunov et al. attributed this gauge variance to the fact
that a single magnon with nonzero momentum pmag is not a

physical state of either the string theory or its dual,N ¼ 4
Yang-Mills theory. In the gauge theory, a single magnon
would be an excitation of the exactly known ferromagnetic
ground state of the spin chain, the 1

2 -BPS (Bogomol’nyi-

Prasad-Sommerfield) chiral primary operator TrZJ, which
has exact conformal dimension of the classical value, � ¼
J, protected by supersymmetry. We shall denote the three
complex scalar fields of N ¼ 4 Yang-Mills theory as
ðZ;�;�Þ. The 16 states of the magnon multiplet are ob-
tained by a spin flip—a single insertion of D�Z or another

scalar or a fermion into the trace. They form a short
multiplet of the SUð2j2Þ � SUð2j2Þ subalgebra of
SUð2; 2j4Þ which commutes with TrZJ. Because of cyclic-
ity of the trace, all positions where one could flip one spin
in the ground state of the spin chain are equivalent andP

ne
inp TrZn�ZJ�n � �ðpÞ, the magnon momentum must

vanish.1 Single magnon states with finite magnon momen-
tum do not exist.2

The Hofman-Maldacena giant magnon [23] is a soliton
solution of the bosonic part of the IIB sigma model prop-

1This was not a problem in the limit of the infinite chain
discussed in Ref. [23] since there could be other operators
present to block cyclicity of the trace and they could be placed
infinitely far away from the magnon so that any wave-packet
state of the magnon is isolated.

2We also note that these states can be obtained by commuta-
tors of symmetry generators and TrZJ so they are all in the same
1
2 -BPS multiplet of the full SUð2; 2j4Þ algebra and have exact
conformal dimensions �� J ¼ 1 which agree with (1) and (2)
when p ¼ 0.
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agating on an R1 � S2 subspace of AdS5 � S5. They
showed that a magnon corresponds to a closed string
with an open boundary condition, where the azimuth angle
spanned by the two ends of the string corresponds to pmag.

Arutyunov et al. [24] argued that the open boundary con-
dition led to a modification of the level-matching condition
and gauge parameter dependence of the spectrum was a
result. In Ref. [25] it was suggested that the single magnon
is well defined as the twisted state of a closed string on an
orbifold—where the orbifold group acts in such a way that
it identifies the ends of the string, resulting in a legitimate
state of closed string theory. This was advocated as a way
to study the spectrum of a single magnon in a setting where
it is a physical state and there are no issues with gauge
invariance. The giant magnon spectrum was computed
there and an asymptotic expansion in the size of the system
yields (2) (all results in this picture are identical to what
Arutyunov et al. [24] obtain if their gauge parameter a is
set to zero). In the following we shall develop this idea
further. Our main observation will be that if we consider
the single magnon state in the IIB string theory with the
boundary condition in which the string is open in the
direction of magnon motion, we are inevitably led to an
orbifold.

To get the gist of our argument, consider the following
(drastically oversimplified) example of the closed bosonic
string on flat Minkowski spacetime where we legislate that
one of the string coordinates is not periodic, but obeys the
‘‘magnon’’ boundary condition X1ð�; � ¼ 2�Þ ¼
X1ð�; 0Þ þ pmag, and all other variables, including

@�X
1ð�; �Þ, are periodic. Then, a solution of the world-

sheet equation of motion ð@2� � @2�ÞX1 ¼ 0 with the appro-
priate boundary condition is [32] X1 ¼ x1 þ �0p1�þ
�
2�pmag þ oscillators. One of the Virasoro constraints is

the level-matching condition L0 � ~L0 ¼ 0 which takes
the form

N � ~N þ p1
pmag

2�
¼ 0; (3)

whereN ¼ P1
n¼1 ��n � �n and ~N ¼ P1

n¼1 ~��n � ~�n. Since
the spectra of the operators N and ~N are integers, there is
no solution of the level-matching condition unless
p1pmag ¼ 2� � integer, i.e. the momentum p1 is quantized

in units of integer � 2�=pmag. This is identical to (and

indistinguishable from) the situation where the dimension

X1 is compactified with radius R ¼ pmag

integer and where we

consider a wrapped string with fixed momentum which is
then quantized in units of 2�

R . We see that the magnon

boundary condition leads us to string theory on a simple
orbifold, a periodic identification of the direction in which
the magnon boundary condition was taken. We shall ob-
serve a similar fact for the more complicated case of a
single magnon on AdS5 � S5 background.

The bosonic part of the IIB sigma model on AdS5 � S5

and in the conformal gauge is
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supplemented by Virasoro constraints. The eight fields ~Z

and ~Y transform as 4-vectors under SOð4Þ � SOð4Þ �
SUð2Þ4. We will impose the magnon boundary condition
on the angle coordinate

�ð�; � ¼ 2�Þ ¼ �ð�; � ¼ 0Þ þ pmag: (5)

If �ð�;�Þ ¼ ~�ð�; �Þ þ pmag�=2� with ~� periodic,

L ½T; ~Z; �; ~Y� ¼ L½T; ~Z; ~�; ~Y� �
ffiffiffiffi
�
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4�

��
pmag

2�

�
2
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4

1þ Y2

4

�
2
: (6)

The effect of the magnon boundary condition is to add
terms to the action. These, as well as similar terms which
appear in the Virasoro constraints, will break some of the
(super-)symmetries of the background. The last term in (6)
has the symmetries SUð2Þ2 � SUð2Þ2 � R2 where the R2

are translations of T and ~�. The bosonic part of the level-
matching condition is

0 ¼
Z 2�

0
d�f�TT

0 þ�ZZ
0 þ�~� ~�

0 þ�YY
0g þ pmag

2�
J;

(7)

where �� � @L=@ _X� are the canonical momenta conju-

gate to coordinates X� and the charge J is the generator of
translations of ~�, �! �þ const

J ¼
Z 2�

0
d��~� ¼

ffiffiffiffi
�
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2�

Z 2�

0
d�
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4
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4

�
2
_~�: (8)

Since �� �þ 2�, the eigenvalues of J must be integers.3

Furthermore, being generators of translations of the world-
sheet � argument of the fields, and the fields involved
being periodic in �, the first four terms in (7) must be
integers plus a possible constant.4 Since the theory has a
symmetry under �! 2�� �, the constant must be either
zero or one-half. Thus, the spectrum of the first terms in (7)
is either integers or integersþ 1

2 . To eliminate the second

possibility, we shall see that, in the plane-wave limit, we

3When fermions are included, they could be half-integers.
4Consider the operator 	 which has the property ½	;’ð�Þ� ¼

i d
d�’ð�Þ. Consider eigenstates j�i and j�0i where 	j�i ¼ �j�i.
If h�0j’ð�Þj�i ¼ h�0je�i�	’ð0Þei�	j�i ¼ eið���0Þ�h�0j’ð0Þj�i,
the matrix element obeys h�0j’ð�Þj�i ¼ h�0j’ð�þ 2�Þj�i
only when �� �0 ¼ integers. The eigenvalues are equal to
integers plus a constant which is common to all eigenvalues.
If, there is a reflection symmetry �! 2�� � under which 	!
�	, the constant must be either an integer or half-integer.
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can solve for the spectrum explicitly and there we find that
it is integers. Then, since the spectrum should not change
discontinuously as the plane-wave limit is taken, we con-
clude that it should always be integers.

Since J comes in units of integers, and the first four

terms in (7) are integers, (7) will only have a solution if
pmag

2�

is a rational number, mM . Then, J is quantized in units ofM.

This is identical to what should occur for a m-times
wrapped string on a ZM orbifold of AdS5 � S5 where the
orbifold group ZM makes the identification �!
�þ 2� m

M .

To get the superstring, we must include the fermions. For
this, we must decide what their boundary conditions will
be. It is clear that, at large J, we will obtain the correct
magnon supermultiplet if we add them in such a way that,
in the modification of the Virasoro constraint (7), J also
contains the appropriate fermionic contribution J ! ~J ¼Rð�~� þ�c�c 0Þ. This gives the magnon boundary con-

dition for the fermions

c ð�; � ¼ 2�Þ ¼ eipmag
~Jc ð�; � ¼ 0Þe�ipmag

~J

¼ eipmag�c ð�; � ¼ 0Þ; (9)

where � ¼ diagð12 ;� 1
2 ;

1
2 ;� 1

2Þ and the orbifold identifica-

tion is

ð�; c Þ � ð�þ pmag; e
ipmag�c Þ: (10)

All of the fermions have a twist in their boundary condi-
tion. With this identification, all supercharges transform
nontrivially under the orbifold group and all of the super-
symmetries will be broken (in fact, the supercharges are set
to zero by the orbifold projection). This twist in the fer-
mion boundary condition and concomitant breaking of
supersymmetry is well known from orbifold constructions
in string theory [33] and was outlined in detail in a context
similar to ours in Ref. [34].

Some supersymmetry can be saved if we impose a
slightly more elaborate identification:

ð�; Y1 þ iY2; c Þ
� ð�þ pmag; e

�ipmagðY1 þ iY2Þ; eipmag
~�c Þ; (11)

where, now ~� ¼ diagð0; 0; 1;�1Þ. This contains the pre-
vious identification of the angle � as well as a simulta-
neous rotation of the transverse Y coordinates. Half of the
fermions are untwisted and this identification preserves
half of the supersymmetries. The giant magnon can still
be considered a wrapped state of this orbifold where the
identified Y coordinates are not excited.

The gauge theory duals of both of these models are well-
known orbifold projections of N ¼ 4 theory [33]. They
are obtained by beginning with the parent theory, N ¼ 4

super Yang-Mills with gauge group SUðMNÞ and coupling
constant gYM. Then, we consider a simultaneous
R-symmetry transformation by a generator of the ZM orbi-
fold group and a gauge transform by a constant SUðMNÞ
matrix 
 ¼ diagð1; !;!2; . . . ; !M�1Þ where ! is the Mth
root of unity. Each diagonal element of the MN �
MN-matrix 
 is multiplied by the N � N unit matrix.
The projection throws away all fields which are not invari-
ant under the simultaneous transformation. This reduces a
typical field which was anMN �MN matrix in the parent
theory to M N � N blocks embedded in that matrix in the
orbifold theory.
For example, consider a field Z of the parent theory

which is charged under the orbifold group and transforms
as Z! !Z. The orbifold projection reduces it to a matrix
which obeys

Z
 ¼ !
Z: (12)

By similar reasoning, a field � which was neutral in the
parent theory commutes with 
 once the orbifold projec-
tion is imposed,

�
 ¼ 
�: (13)

Given any single-trace operator of the parent N ¼ 4
theory, for example, a single magnon state such as TrZJ�,
there are a family of M states of the orbifold theory
Tr
mZJ� with m ¼ 0; 1; . . . ;M� 1. The operator must
be neutral under the orbifold group transformation in the
parent theory. To see this we could insert 1 ¼ 
M�1
 into
the trace and use the commutators such as (12) and (13)
and cyclicity of the trace to show that the trace of any
operator which is not a singlet under the orbifold group
must vanish. In our example, if � is neutral, this requires
quantization of J in units of M, J ¼ kM, in the state
Tr
mZJ�. This is the gauge dual of the quantization of
the momentum J in units of M � integers, rather than
integers after the orbifold projection is imposed in the
sigma model, discussed after Eq. (8). In addition, the
single-trace operator of the parent theory descends to a
family of M operators which are distinguished as an addi-
tional quantum number,m. It is easy to see that moving the
position where � was inserted into Tr
mZJ� changes the
operator by an overall factor of !m. This implies that this
trace is already an eigenstate of magnon momentum,
pmag ¼ 2� m

M . The integer m is the gauge theory dual of

the wrapping number of the string state on the orbifold
cycle.
There is a theorem to the effect that, in the planar limit of

the orbifold gauge theory, untwisted operators (withm ¼ 0
in the above examples) have the same correlation functions
with each other as those in the planar parentN ¼ 4 gauge
theory—with the only difference being a rescaling of the
coupling constant by the order of the orbifold group [35].
For this reason, in the planar limit, the gauge theory
resulting from either of the orbifold projections (10) or
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(11) is a conformal field theory. In the nonsupersymmetric
case (10) nonplanar corrections would give a beta function,
whereas in the N ¼ 2 supersymmetric case (11) the beta
function would vanish in the full theory.

On the orbifold, the spectrum of states in the N ¼ 4
magnon supermultiplet is expected to be split according to
the residual symmetries. In the two cases we considered,
the first (10) has no supersymmetry but has SUð2Þ4 � R2

bosonic symmetry. We would expect that the fermionic
states gain different energies than the bosonic states and
that the SUð2Þ multiplets within the bosonic states also
split. In the other case (11), there remains N ¼ 2 super-
symmetry and the spectrum should represent the super-
algebra SUð2j1Þ2 � R2. The N ¼ 4 magnon
supermultiplet becomes

Tr
mD�ZZ
kM�1; (14)

Tr
m�ZkM; Tr
m ��ZkM;

Tr
m ��ZkMþ1; Tr
m�ZkM�1;
(15)

Tr
m�1�Z
kM; Tr
m�3�Z

kM�1;

Tr
m ��2
_�Z

kM; Tr
m ��4
_�Z

kMþ1:
(16)

Here m gives the number of units of magnon momentum
pmag ¼ 2�

M m and k is the number of units of spacetime

momentum J ¼ kM. There are two limits where the op-
erators in the set (14)–(16) are degenerate and have ener-
gies �� J ¼ 1: One is when we turn off the ’t Hooft
coupling � ¼ g2YMMN ! 0 so that the operators have their
classical conformal dimension. The other is when magnon
momentum vanishes, m ¼ 0. In the latter, the ‘‘untwisted
operator’’ with m ¼ 0 is known to have identical correla-
tion functions with the operators in the parent N ¼ 4
theory and therefore have exact conformal dimension � ¼
J þ 1. The spectrum away from these limits will depend on
both � and m. It would be interesting to check the splitting
of the supermultiplet in perturbative gauge theory, a task
which we reserve for a later publication. In particular, it
would be interesting to study the orbifold Bethe ansatz
[36,37].

To conclude, we examine the plane-wave limit of
AdS5 � S5 where the string theory sigma model is exactly
solvable [38]. We redefine the string coordinates as T ¼
Xþ, and � ¼ 1ffiffiffi

�
p X� � Xþ. This has been chosen so that

�� J ¼ 1
i ð @@T � @

@�Þ ¼ 1
i

@
@Xþ . In addition we rescale the

transverse coordinates ~Y ! ~Y=�1=4, and ~Z! ~X=�1=4.
The appropriate plane-wave limit [39] then takes �! 1
simultaneously with �! 1 and J ! 1 with �� J and
Jffiffiffi
�
p finite. From (7) we see that the limit should be taken so

that pmagJ is finite. This implies that

pmag � 1ffiffiffiffi
�
p : (17)

The magnon boundary condition (5) implies

X�ð� ¼ �Þ ¼ X�ð� ¼ 0Þ þ pmag

ffiffiffiffi
�
p

: (18)

The scaling (17) then gives a finite radius for X�.
We have already argued that J ¼ 1

i
@
@� ¼

ffiffiffiffi
�
p

1
i

@
@X�

should be quantized in integral units. In fact, in the magnon
sector, we have argued that the level-matching condition
(7) has a solution only when pmag ¼ 2� m

M where m andM

are integers and J is quantized in units ofM, J ¼ kM with
k an integer. To get the correct scaling of pmag we must

therefore take the plane-wave limit by takingM to be large
so that Mffiffiffi

�
p is held finite.

What is effectively the same limit was discussed in
Ref. [40] where it was shown to result in a plane-wave
background with a periodically identified null direction,

X� � X� þ 2�R� whereR� ¼
ffiffiffi
�
p
M . [To be consistent with

(18), the integerm which appears in pmag is interpreted is a

wrapping number.] The resulting discrete light-cone quan-
tization of the string on the plane-wave background is a
simple generalization of Metsaev’s original solution [38].
Here, we are interested in a wrapped sector where X�ð� ¼
2�Þ ¼ X�ð� ¼ 0Þ þ 2�R�m. In Ref. [40] the spectrum of
the IIB string theory in this plane-wave limit was matched
with the appropriate generalization of the Berenstein-
Maldacena-Nastase limit of theN ¼ 2 Yang-Mills theory
which is obtained from N ¼ 4 by the orbifold projection
corresponding to (11). It was also used to study nonplanar
corrections [41] and finite size corrections at weak cou-
pling [42].
Together with the limit, we take the light-cone gauge,

Xþ ¼ pþ�. Periodicity of X� quantizes pþ ¼ k=R�. We
obtain the sigma model as a free massive world-sheet field
theory

L ¼ � 1

4�
f@a ~Y � @a ~Y þ @a ~Z � @a ~Zþ ðpþÞ2ðY2 þ Z2Þg

� ipþ

2�
ð �c @� �c þ c @�c þ 2ipþ �c�c Þ (19)

with � ¼ diagð1; 1; 1; 1;�1;�1;�1;�1Þ. In this limit,
the magnon parameter pmag does not appear in the

Lagrangian or the mass-shell condition which determines
the light-cone Hamiltonian:

p� ¼ 1

pþ
X1

n¼�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ ðpþÞ2

q
ð��1 _�1y

n �n�1 _�1

þ ��2 _�2y
n �n�2 _�2

þ ��1 _�2y
n �n�1 _�2

þ ��2 _�1y
n �n�2 _�1

Þ:
(20)

Its only vestige is in the level-matching condition,
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km ¼ X1
n¼�1

nð��1 _�1y
n �n�1 _�1

þ ��2 _�2y
n �n�2 _�2

þ ��1 _�2y
n �n�1 _�2

þ ��2 _�1y
n �n�2 _�1

Þ; (21)

where k are the number of units of J ¼ kM and m is the
wrapping number. The bosonic �n... and fermionic �n...

oscillators have the nonvanishing brackets

½�m�1 _�1
; ��1

_�1y
n � ¼ �mn�

�1

�1
� _�1

_�1
;

f�m�1 _�2
; ��1

_�2y
n g ¼ �mn�

�1

�1
� _�2

_�2
;

(22)

½�m�2 _�2
; ��2

_�2y
n � ¼ �mn�

�2

�2
� _�2

_�2
;

f�m�2 _�1
; ��2

_�1y
n g ¼ �mn�

�2

�2
� _�1

_�1
;

(23)

and bispinors of SOð4Þ � SOð4Þ � SUð2Þ4.5 We confirm in
(21), which is the plane-wave limit of (7), there is solution

of the level-matching constraint unless
pmag

2� J ¼ integer.

Here, we can think of the null identification as the vestige
of the orbifold identification.

The level-matching condition (7) allows 1-oscillator
states and the magnon supermultiplet is the 16 states

�ykm�1 _�1
jpþi; �ykm�2 _�2

jpþi;
�ykm�1 _�2

jpþi; �ykm�2 _�1
jpþi:

(24)

These states are degenerate, and their spectrum is given by

p� ¼ 1

pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkmÞ2 þ ðpþÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðR�Þ2m2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �0

M2
m2

s
; (25)

which has the form expected from the plane-wave limit of
(1) when pmag ¼ 2� m

M . Note that in this plane-wave limit

the finite size corrections that occur in (2) vanish due to the
limit of small pmag.

The degeneracy of the states in (24) can be attributed to
an enhancement of the supersymmetry which is well
known to occur in the Penrose limit. One would expect,
and we shall confirm, that the supersymmetry is broken
when corrections to the Penrose limit are taken into ac-
count. Before that, we recall that in Refs. [9,10] Beisert
argued that magnon states form a 16-dimensional short
multiplet of an extended superalgebra SUð2j2Þ �
SUð2j2Þ � ðR1Þ3 where the spectrum (1) is the shortening
condition. The superalgebra SUð2j2Þ has generatorsR�1

�1

and L _�2
_�2

of SUð2Þ � SUð2Þ, supercharges Q _�2
�1

and

S�1
_�2
, and the algebra

½R�1
�1
;J 
1� ¼ �
1

�1
J �1 � 1

2�
�1

�1
J 
1 ;

½L _�2
_�2
;J _
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2

_�2
J _�2 � 1

2�
_�2
_�2
J _
2 ;

fQ _�2
�1
;S�1

_�2
g ¼ ��1

�1
L _�2

_�2
þ � _�2

_�2
R�1

�1
þ ��1

�1
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C;
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�1
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P ;

fS�1
_�2
;S�1

_�2
g ¼ � _�2

_�2
��1�1K:

J ��� represents any generator with the appropriate index,
and K, P , and C are central charges. In our application,
C ¼ �� J ¼ p� and

R�1
�1
¼X

n

f�y�1 _

n �n�1 _
1

þ �y�1
2
n ��1
2

g � 1

2
��1

�1

X
n

f�y
1 _
1
n �n
1 _
1

þ �y
1
2
n �
1
2

g;

L _�2
_�2
¼X

n

f�y
2 _�2
n �n
2

_�2
þ �y _�2 _
1

n � _
1
_�2
g � 1

2
� _�2

_�2

X
n

f�y
2 _
2
n �n
2 _
2

þ �y _
1 _
2
n � _
1 _
2

g;

Q _�2
�1
¼ �ffiffiffiffiffiffiffiffiffi

8pþ
p X

n

f�eðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!n þ pþ

q
�yn�1 _
1

�
_
1

_�2
n þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!n � pþ

q
�n�1 _
1

�y _
1
_�2

n � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!n � pþ

q
�yn�1
2

�
2
_�2

n

þ eðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!n þ pþ

q
�n�1
2

�y
2
_�2

n g;
S�1

_�2
¼ �ffiffiffiffiffiffiffiffiffi

8pþ
p X

n

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!n � pþ

q
�y�1 _
1
n �n _
1

_�2
� ieðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!n þ pþ

q
��1 _
1
n �y

n _
1
_�2
þ ieðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!n þ pþ

q
�y�1
2

n �n
2
_�2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!n � pþ

q
��1
2

n �y
n
2

_�2
g; (26)

5Indices are raised and lowered with ��i�i and ���i�i
, respectively, always operating from the left.

FINITE SIZE GIANT MAGNON PHYSICAL REVIEW D 79, 126006 (2009)

126006-5



where !n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþÞ2 þ n2

p
and eðnÞ ¼ n

jnj . We have used
Metsaev’s [38] conventions for the supercharges (those
called Q� and �Q�) and notation for oscillators as summa-
rized, for example, in Ref. [43]. Computing their algebra,
we find that the plane-wave background supercharges in-
deed satisfy Beisert’s extended superalgebra with the cen-
tral extensions set to the plane-wave limits of those found
by Beisert [9]

P ¼ �i
ffiffiffiffi
�
p

pmag

4�
 

ffiffiffiffi
�
p
4�
ðe�ipmag � 1Þ;

K ¼ i

ffiffiffiffi
�
p

pmag

4�
 

ffiffiffiffi
�
p
4�
ðeipmag � 1Þ:

(27)

The existence of the central extension follows directly
from the fact that the unextended algebra closes up to
the level-matching condition and the level-matching con-
dition (7) contains the term with km ¼ 1

2� 2�
m
M � kM ¼

1
2�pmagJ.

A derivation of Beisert’s superalgebra in the context of
the AdS3 � S5 sigma model was first given in Ref. [44]
and developed in Ref. [45]. They worked with the unorbi-
folded theory by ‘‘relaxing’’ the level-matching condition.
Then, there is a central charge in the superalgebra which
depends on the level mismatch. The idea is that, once
the resulting algebraic structure is used to study magnon
and multimagnon states, the level-matching condition
should be reimposed so as to get a physical state of the
string theory. They work in the ‘‘magnon limit,’’ where
J ! 1, but magnon momentum is not necessarily small
(in our case it relaxes the plane-wave limit by taking M
as not necessarily large). They obtain the full central
extension, rather than the form linearized in pmag that

we have found in (27). In their work, they use a generalized
light-cone gauge xþ ¼ � ¼ ð1� aÞT þ a�, x� ¼ �� T
with a a parameter. They also use the identification,
x�ð�; � ¼ 2�Þ � x�ð�;� ¼ 0Þ ¼ pws with pws an eigen-
value of the level operator and xþ ¼ � trivially periodic
in �. For the variables in (4), this amounts to using
the boundary condition �ð�; � ¼ 2�Þ � �ð�; � ¼ 0Þ ¼
�ð1� aÞpws and Tð�;� ¼ 2�Þ � Tð�; 0Þ ¼ apws which
is different from the one which we use when a � 0
(they primarily use a ¼ 1

2 ), where Tð�; � ¼ 2�Þ ¼
Tð�; � ¼ 0Þ and �ð�; � ¼ 2�Þ � �ð�; � ¼ 0Þ ¼ pmag.

This makes no difference at infinite J where the effect
of a is diluted by scaling. However, it matters at finite
size. In fact, the same gauge fixing was used in
Ref. [24] and the a dependence of the one-magnon
spectrum found there (away from the infinite J limit)
can be attributed to this a dependence of boundary con-
ditions, rather than the gauge variance which is claimed
there.

To see how the spectrum will be split in the near plane-
wave limit, we must include corrections to the Lagrangian
and the Virasoro constraints that are of order 1ffiffiffi

�
p . A system-

atic scheme for including these corrections in the usual
pmag ¼ 0 sector is outlined in the series of papers [46–48]

and nicely summarized in Ref. [49]. There they find that
the correction terms to the Hamiltonian add normal or-
dered terms which are quartic in oscillators. They also
adjust the gauge by adjusting the world-sheet metric in
such a way that the level-matching condition remains
unmodified. We have shown, and will present elsewhere,
that the modifications of a procedure in the magnon sector
are minimal. The corrections to the free field theory light-
cone Hamiltonian are of two types, quartic normal ordered
pieces from near-plane-wave limit corrections to the sigma
model identical in form to those found in Refs. [46–49] and
terms such as the last one in Eq. (6) which arise from the
orbifolding.
To leading order in perturbation theory, the normal

ordered quartic interaction Hamiltonian cannot shift the
spectrum of 1-oscillator states. Furthermore, none of the
extra terms displayed in Eq. (6) contribute in the leading

order in 1=
ffiffiffiffi
�
p

. However, recall that, to preserve some
supersymmetry, the orbifold identification (11) that we
have been discussing also acts on the transverse direction
and this action must also be taken into account. This
generates simple correction terms in the Hamiltonian to
order 1ffiffiffi

�
p . The relevant part of the interaction Hamiltonian

is

Hint ¼ i
pmag

2�

1

2�

Z 2

0
�d�ðY11 _21

Y0
21 _11
þ ipþðc ~�c

þ �c ~� �c ÞÞ: (28)

With this orbifold identification exactly half of the
supersymmetries are preserved in the near plane-
wave limit. Specifically, out of the 16 supersymmetries

Q _�2
�1
, S�1

_�2
, only S�1

_12
=Q

_12
�1

and S22
_�1
=Q _�1

22
survive. This

leads to a splitting of the energies of the single impurity
states.

The original multiplet had 16 states (8 bosons �y�1 _�1
j0i,

�y�2 _�2
j0i and 8 fermions �y�1�2

j0i, �y_�1 _�2
j0i). In the near

plane wave, it breaks up into 4 supermultiplets of the
residual superalgebra: one with 9 elements (5 bosons and
4 fermions) and two with 3 elements (2 fermions and 1
boson in each) and 1 boson singlet.
The following equation illustrates the breaking of the

original supermultiplet:
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S21
_12
=Q

_12
21

Q
_12
11
=S11

_12
S11

_22
=Q

_22
11

Q
_22
21
=S21

_22

�y
21 _21
j0i � �y_21 _12 j0i � �y

11 _21
j0i �y_21 _22 j0i

Q
_21
22
=S22

_21
j j j j

�y2122 j0i � �y
22 _12
j0i � �y1122 j0i �y

22 _22
j0i

S22
_11
=Q

_11
22

j j j j
�y
21 _11
j0i � �y_11 _12 j0i � �y

11 _11
j0i �y_11 _22 j0i

Q
_11
12
=S12

_11

�y2112 j0i � �y
12 _12
j0i � �y1112 j0i �y

12 _22
j0i:

S12
_21
=Q

_12
21

(29)

Here, columns and rows with dashes represent the sur-

viving supersymmetry transformations S�1
_12
=Q

_12
�1

and

S22
_�1
=Q _�1

22
. Columns and rows without dashes represent

the broken supersymmetries S�1
_22
=Q

_22
�1

and S12
_�1
=Q _�1

12
.

The energy degeneracy of the original multiplet is like-
wise broken by the interaction Hamiltonian in the near
plane-wave limit. One of the triplets gets positive energy
shift, its energy becomingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �
m2

M2

s
þ 1

2
ffiffiffiffi
�
p � m2

M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ � m2

M2

q :

The other triplet gets equal but negative energy shift:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

m2

M2

s
� 1

2
ffiffiffiffi
�
p � m2

M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ � m2

M2

q :

A singlet and a 9-multiplet are annihilated by the interac-
tion Hamiltonian and thus retain the energy of the original
multiplet: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �
m2

M2

s
:

In conclusion, we have made a number of observations
about the giant magnon solution of string theory. We

observed that the previously noted resemblance of the
magnon to a wrapped string on a ZM orbifold of AdS5 �
S5 seems to be the only solution of the Virasoro constraints
in the string sigma model. We argued that this point of view
is consistent with AdS/CFT duality as single magnons are
physical states of the orbifold projections ofN ¼ 4 super-
symmetric Yang-Mills theory. We also argued that this
point of view is consistent with the plane-wave limit,
where the sigma model is solvable. In that limit, the orbi-
fold identification appears as a periodic identification of
the null coordinate and the magnon is a wrapped string.
There, we can see explicitly how the wrapping modifies the
supersymmetry algebra and is consistent with the magnon
spectrum. The N ¼ 2 supersymmetry of the orbifold is
enhanced to N ¼ 4 supersymmetry in the plane-wave
limit, so that the full 16-dimensional magnon supermulti-
plet appears there. We end with a question. We have shown
that the supersymmetry is broken again by near-plane-
wave limit corrections to the sigma model by showing
that the energies of the magnon multiplet are split.
However, there is another limit, the magnon limit, which
is similar to the plane wave in that � and J are taken to
infinity but it differs in that pmag remains of order 1, rather

than scaling to zero. It would be interesting to understand
whether the supersymmetry is also enhanced in this limit
so that the orbifold quantization of the infinite volume limit
has more supersymmetry than the orbifold itself.
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