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We study baryons as Skyrmions in holographic QCD with D4=D8=D8multi-D brane system in type IIA

superstring theory, and also in the nonlinear sigma model with hidden local symmetry. Comparing these

two models, we find that the extra dimension and its nontrivial curvature can largely change the role of

(axial) vector mesons for baryons in four-dimensional space-time. In the hidden local symmetry approach,

the �-meson field as a massive Yang-Mills field has a singular configuration in Skyrmion, which gives a

strong repulsion for the baryon as a stabilizer. When the a1 meson is added in this approach, the stability

of Skyrmion is lost by the cancellation of � and a1 contributions. On the contrary, in holographic QCD,

the �-meson field does not appear as a massive Yang-Mills field due to the extra dimension and its

nontrivial curvature. We show that the �-meson field has a regular configuration in Skyrmion, which gives

a weak attraction for the baryon in holographic QCD. We argue that Skyrmion with �, �, and a1 mesons

become stable due to the curved extra dimension and also the presence of the Skyrme term in holographic

QCD. From this result, we also discuss the features of our truncated-resonance analysis on baryon

properties with � and � mesons below the cutoff scale MKK � 1 GeV in holographic QCD, which is

compared with other 5D instanton analysis.
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I. INTRODUCTION

In 1961, Skyrme proposed an idea that the baryon can be
described as a classical soliton in nonlinear meson field
theories, called ‘‘Skyrmion’’ [1]. Later, in the 1970’s,
Skyrmion was revived in the development of large-Nc

QCD, where the baryon mass MB is found to be propor-
tional to the inverse of the meson-meson coupling geff as
MB / 1=geff like a ‘‘soliton’’ [2,3]. Because of the Derrick
theorem [4], a stable soliton does not appear only with a
two-derivative term of the chiral field. In the Skyrme
model, a four-derivative term is supplemented as a stabil-
izer. Alternately, if one includes vector mesons like the �
meson, there appear �-2� coupling to give a nonlinear
coupling of the chiral field via �-meson propagation,
which can stabilize the soliton [5]. In this way, the impor-
tance of (axial) vector mesons for the Skyrmion is naturally
expected.

One of convenient approaches for meson phenomenol-
ogies is the ‘‘hidden local symmetry (HLS)’’ [6], where �
meson is introduced as the dynamical gauge boson of the
hidden local symmetry in the nonlinear sigma model with
SUð2ÞL � SUð2ÞR � SUð2ÞlocalV . Skyrmions with �, �, a1,
and ! mesons are discussed in HLS and its extended
models [5,7–9].

Recently, Skyrmion has been revived in holographic
QCD [10]. The solitonic description for a baryon naturally

appears in a holographic dual ofD4=D8=D8multi-D brane
system in type IIA superstring theory [11–13]. Today,
holographic QCD is known to reproduce many phenome-
nological aspects in hadron physics semiquantitatively,
from dual classical supergravity calculations. However,
important aspects in the difference between flat space
phenomenologies and holographic approach have not
been so much investigated.
In this paper, we compare the Skyrmion in HLS and that

in holographic QCD, and find that they have significantly
different soliton solutions, particularly in the vector-meson
profiles, due to the existence of the extra dimension and its
nontrivial curvature. As a result, we also discuss the fea-
tures of our truncated-resonance analysis for baryons with
� and � mesons below the cutoff scale MKK � 1 GeV in
holographic QCD [11], which is compared with other 5D
instanton approaches.

II. SKYRMIONS WITH HIDDEN LOCAL
SYMMETRY

First, we study the Skyrmion with � meson as the
dynamical gauge boson of the HLS in the nonlinear sigma
model. The nonlinear sigma model with scalar manifold on
coset spaceG=H can be generally formulated by the gauge
theory with linear symmetry G�Hlocal as ‘‘gauge equiva-
lence’’ [6]. In the case of the global chiral symmetry G ¼
SUð2ÞL � SUð2ÞR spontaneously broken into the isospin
subgroup H ¼ SUð2ÞV , the chiral field UðxÞ 2 SUð2ÞL �
SUð2ÞR=SUð2ÞV ’ SUð2ÞA can be divided into two pieces
with hidden variables �LðxÞ and �RðxÞ as
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UðxÞ � �y
LðxÞ � �RðxÞ: (1)

Then one can introduce chiral-symmetry transformation by
gLðRÞ 2 SUð2ÞLðRÞ and hidden local symmetry transforma-

tion by hðxÞ 2 SUð2ÞlocalV as

�LðRÞðxÞ ! hðxÞ�LðRÞðxÞgyLðRÞ; (2)

V�ðxÞ ! ihðxÞ@�hyðxÞ þ hðxÞV�ðxÞhyðxÞ; (3)

where V�ðxÞ ¼ eV�aðxÞ �a2 is the ‘‘gauge field’’ of

SUð2ÞlocalV , regarded as the �-meson field in HLS. Here, e
is the ‘‘gauge coupling,’’ later corresponding to the Skyrme
parameter [5]. By using the covariant derivatives

D��LðRÞðxÞ ¼ @��LðRÞðxÞ � iV�ðxÞ�LðRÞðxÞ; (4)

several currents can be introduced as

�̂ �k ¼ ðD��L � �y
L þD��R � �y

RÞ=2i ¼ ��k � V�; (5)

�̂ �? ¼ ðD��L � �y
L �D��R � �y

RÞ=2i ¼ ��?; (6)

��k;? ¼ ð@��L � �y
L � @��R � �y

RÞ=2i; (7)

where �̂�k and �̂�? are parallel and perpendicular com-

ponents for SUð2ÞlocalV , respectively. By using these currents
(5) and (6), we can construct the chiral Lagrangian with
HLS in Euclidean space-time, invariant for SUð2ÞL �
SUð2ÞR � SUð2ÞlocalV as

L HLS ¼ LA þ aLV þLkin; (8)

L A ¼ f2� trð�̂2
�?Þ ¼ 1

4f
2
� trð@�U@�UyÞ; (9)

L V ¼ f2� trð�̂2
�kÞ; (10)

L kin ¼ 1

2e2
trðF2

��Þ; (11)

where a is an arbitrary parameter and f� is the pion decay
constant. � and �mesons can interact with each other only
through the part aLV , where the symmetry is gauged.
Therefore, the a parameter controls the coupling strength
between � and �. In this framework, a ¼ 2 is favored to
reproduce empirically successful relations such as the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation
[14] and the vector-meson dominance [15]. We have also
introduced the kinetic term of � mesons (11) with F�� ¼
@�V� � @�V� þ i½V�; V��, as a ‘‘dynamical pole genera-

tion’’ of HLS due to the quantum effects [6].
By taking the unitary gauge with �L ¼ ��1

R � �, LV

can be written as

L V ¼ f2� trðJ� � V�Þ2; (12)

where J� � ��k ¼ ð1=2iÞð@�UUy þ @�U
yUÞ= detð1þ

UÞ is the vector current of the chiral field.
For a baryon, we now take the hedgehog Ansatz for the

chiral field UðxÞ and the �-meson field V�ðxÞ as a

Skyrmion

U?ðxÞ ¼ ei�ax̂aFðrÞ ðx̂a � xa=r; r � jxjÞ: (13)

V?
0 ðxÞ ¼ 0; V?

i ¼ eV?
iaðxÞ

�a
2

¼ f"iabx̂bGðrÞ=rg �a2 ;

(14)

with the topological boundary condition to ensure the
baryon number B ¼ 1 as

Fð0Þ ¼ �; Fð1Þ ¼ 0: (15)

By substituting the Ansatz (13) and (14) into the action, we
get the hedgehog mass of the Skyrmion [5] as follows:

E½F;G� ¼ 4�
Z

dr

�
1

2
f2�ðr2F02 þ 2sin2FÞ

þ af2�fG� ð1� cosFÞg2

þ 1

2e2
f2G02 þG2ðG� 2Þ2=r2g

�
: (16)

It is convenient to take the Adkins-Nappi-Witten units
for energy and length as �E � 1

EANW
E ¼ 2e

f�
E and �r �

1
rANW

r ¼ ef�r [16]. Then (16) can be written as follows

(below, overlines of �E and �r are omitted for simplicity):

E½F;G� ¼ 4�
Z

dr½ðr2F02 þ 2sin2FÞ
þ 2afG� ð1� cosFÞg2
þ f2G02 þG2ðG� 2Þ2=r2g�; (17)

where the parameter dependence appears only in EANW,
rANW, and coupling strength a.
By solving the Eular-Lagrange equations for FðrÞ and

GðrÞ in the minimization of the energy (17), we find a
stable Skyrmion as shown in Fig. 1. One should note that
GðrÞ has a nonzero value at the origin: Gð0Þ ¼ 2.
Therefore, to keep the total energy finite, the �-meson field
(14) appears as a singular configuration with Vi / 1

r around

r ¼ 0, having a spatially ‘‘broad’’ extension to gain the
kinetic energy in (17). Then such a broad �-meson field
will pull up the pion field along the radial direction, which
is the origin of the strong repulsion for the Skyrmion with a
finite size (see a schematic plot in Fig. 2). In fact, by
increasing the coupling strength a, pion field FðrÞ is pulled
up to outside of baryon, while the �-meson field GðrÞ is
pulled down to inside. Furthermore, without the �-meson
field, the leading term of the chiral fieldLA alone does not
support the stable Skyrmion due to the Derrick theorem
[4]. Therefore, the �-meson field as the broad singular
configuration in the massive Yang-Mills sector of HLS
plays the essential role as the stabilizer of the Skyrmion.
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(Such singular solution was first analyzed in the Yang-
Mills theory in Ref. [17].)

Now, dividing the chiral field UðxÞ in (1) into three
hidden pieces as UðxÞ ¼ �1�2�3, one can introduce �

and a1 mesons for two independent hidden symmetries,
which we now call the ‘‘HLS2 model.’’ However, the
repulsive effect of the � meson was found to be canceled
by a1 meson in HLS2, giving the catastrophic instability of
Skyrmions. Then, the ! meson was additionally intro-
duced as the origin of the strong repulsion for the baryons
[7,8].

III. SKYRMIONS WITH HOLOGRAPHY

Next, we study the Skyrmion in holographic QCD. Let
us begin with the non-Abelian Dirac-Born-Infeld (DBI)
action of D8 branes with D4 supergravity background, to
be dual of strong-coupling large-Nc QCD. After dimen-
sional reductions, one gets the five-dimensional Yang-
Mills action [10] as

SDBID8 ¼ �
Z

d4xdz tr

�
1

2
KðzÞ�1=3F2

�� þ KðzÞF2
�z

�

þOðF4Þ; (18)

with � ¼ 	Nc=216�
3, and 	 is the ’t Hooft coupling.

KðzÞ ¼ 1þ z2 expresses the nontrivial curvature in the
fifth dimension z. After proper mode expansions for the
five-dimensional gauge field AMðx; zÞ (M ¼ 0� 3, z) with
a complete orthogonal basis in the fifth dimension z, one
can get an action written by physical meson degrees of
freedom with definite parity and G-parity in four-
dimensional space-time [11]. In holographic QCD, all the
(axial) vector meson fields are naturally introduced so as to
obey a homogeneous transformation under the hidden local
symmetry transformation [10,11], so that we also adopt
such a definition in this paper. The resulting Euclidean
effective action for chiral field UðxÞ, �-meson field V�ðxÞ
and infinite number of (axial) vector mesons is as follows:

SDBID8 ¼ f2�
4

Z
d4x trðL2

�Þ � 1

32e2

Z
d4x tr½L�;L��2

þm2
�

e2

Z
d4x trðV2

�Þ þ 1

2e2

Z
d4x trð@�V� � @�V�Þ2

þ i
1

2e2
2g3�

Z
d4x trfð@�V� � @�V�Þ½V�;V��g

� 1

2e2
g4�

Z
d4x tr½V�;V��2 þ S�-� þ Sa1;�0;a01;�

00;���;

(19)

where L� ¼ ð1=iÞUy@�U is one-form of the chiral field,

S�-� interaction terms between � and �, and Sa1;�0;a01;�
00;���

contributions from higher excited resonance of (axial)
vector mesons (see Ref. [11] for details; 1

e V�, eg3�, and

e2g4� in (19) correspond to V�, g3�, and g4� in Ref. [11] as

just field redefinitions). There appear infinite number of
coupling constants like pion decay constant f�, �-meson
mass m�, Skyrme parameter e, three-point coupling g3�,

four-point coupling g4�, and other coupling constants in

FIG. 2. Schematic figure of Skyrmion in HLS. Dashed black
and grey lines show the configurations of FðrÞ and GðrÞ without
interactions, respectively. GðrÞ appears as broad singular con-
figuration with the boundary Gð0Þ ¼ 2.
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FIG. 1. FðrÞ and GðrÞ of Skyrmion in the HLS approach with
various values of a parameters in (8).
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S�-� and Sa1;�0;a01;�
00;���. However, holographic QCD has just

two independent parameters: � / Nc and MKK as the
Kaluza-Klein compactification scale of D4 branes.
Therefore, by taking two experimental inputs like f� ¼
92:4 MeV and m� ¼ 776:0 MeV, all the coupling con-

stants are uniquely determined.
Here, we remark several interesting features of the me-

son effective action (19). First, the Skyrme termR
d4x tr½L�; L��2 naturally appears as a stabilizer of the

Skyrmion. In this sense, the Skyrme soliton picture is
supported by the holographic approach [11]. Second, the
relation g23�=g4� ¼ 1 does not hold. In fact, due to the

existence of the fifth dimension z and its nontrivial curva-
ture, the ratio g23�=g4� deviates from unity in holographic

QCD as

g23�

g4�
¼ ½�Rþ1

�1 dzKðzÞ�1=3c 1ðzÞ3�2
�
Rþ1
�1 dzKðzÞ�1=3c 1ðzÞ4

’ 0:90; (20)

where c 1ðzÞ is a proper basis corresponding to the
�-meson wave function in the z dimension [11]. Note

that, with c 1ðzÞ / ��1=2, the value g23�=g4� in (20) is

independent of the parameters, � andMKK, in holographic
QCD. This implies that the kinetic term of the � meson
differs from the Yang-Mills type, i.e., the �-meson field
does not appear as a massive Yang-Mills field in four
dimensions due to the curved z dimension, which should
be compared with the case of HLS with g23�=g4� ¼ 1 in

Eq. (11). In fact, the masses mn of (axial) vector mesons
(e.g., m1 ¼ m�, m2 ¼ ma1 , m3 ¼ m�0 , m4 ¼ ma0

1
, etc.) are

given by the eigenvalues 	n of the meson wave function
c nðzÞ in z dimension as m2

n ¼ 	n [11]. In this sense, the
existence of the curvature KðzÞ in the z dimension is
essential to give the discrete mass spectra for mesons
with m� < ma1 <m�0 <ma0

1
< � � � , similarly to the

Kaluza-Klein mechanism with the dimensional reductions
(see Fig. 3). [If extra dimensions have no curvatures, all the
modes belong to the continuum as plane waves, which
contradicts meson properties.] In the following, we pro-
pose that any deviation of the ratio g23�=g4� from unity can

drastically change the hadron properties in four-
dimensional space-time.

Now we take only � and � mesons below MKK �
1 GeV as the ultraviolet cutoff scale in holographic ap-
proach. This strategy is called the ‘‘truncated-resonance
model’’ for the baryons [11]. By substituting the hedgehog
configuration Ansatz (13) and (14) in the action (19), we
get the hedgehog mass of the Skyrmion in Adkins-Nappi-
Witten unit as

E½F;G� ¼ 4�
Z

drr2"½F;G�; (21)

r2"½F;G� ¼ ðr2F02 þ 2sin2FÞ þ sin2Fð2F02 þ sin2F=r2Þ

þ 2
m2

�

e2f2�
G2 þ ð4G2=r2 þ 2G02Þ

� 2g3�ð2G3=r2Þ þ g4�ðG4=r2Þ
þ r2"�-�½F;G�; (22)

where "�-� is the contribution from S�-� in (19) [see

Ref. [11] for details; 1
2e G in (22) corresponds to G in

Ref. [11] as just field redefinition with hedgehog Ansatz
(14)].
By solving the Eular-Lagrange equations for FðrÞ and

GðrÞ, we find a stable Skyrmion as shown in Fig. 4. One
should note that the �-meson field appears as a regular
configuration with Gð0Þ ¼ 0, not as the broad singular one
with Gð0Þ ¼ 2 in Sec. II. Therefore, the �-meson field
appearing in the core region of the baryon will pull down
the pion field to inside of the baryon, giving the weak
attraction for the baryon with a slight shrinkage of its total
size [11] (see a schematic plot in Fig. 5). This result is
clearly different from the case of HLS in Sec. II, where the
�-meson field gives the strong repulsion for the baryon. We
find that such a remarkable difference comes from the
value g23�=g4�. In fact, substituting GðrÞ ¼ � (constant)

near the origin r ¼ 0, the energy density in (22) is domi-

extra
dimensions

D brane
1m

2m
3m

1

23discrete
mass spectra 

gauge theory

supergravity

A

B

‘‘holography’’

FIG. 3 (color online). Schematic figure of holographic duality
between gauge theory as QCD on D brane and supergravity
around D brane. Masses of mesons mn¼1;2;3;��� are given by the

oscillation of meson wave functions c nðzÞ in the extra dimen-
sion z [11]. Therefore, the curvature in the extra dimension
around the D brane is essential to give the discrete meson
mass spectra as QCD on the D brane. Then, regions A and B
have different curvatures, and the gauge symmetry on A will be
distorted on B except for the gauge symmetry of QCD, giving
the relation g23�=g4� � 1.
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nated by ð@�V� � @�V�Þ2, three-point and four-point

�-meson coupling terms as

ð4�2r�2Þ � 2g3�ð2�3r�2Þ þ g4�ð�4r�2Þ; (23)

which is ultraviolet divergent in the integration over r.
Therefore, for GðrÞ ¼ � to be realized near r ¼ 0 as a
finite energy configuration, the coefficient of r�2 in (23)
should vanish as

�2ðg4��2 � 4g3��þ 4Þ ¼ 0: (24)

Furthermore, the Eular-Lagrange equation ofGðrÞ can also
be dominated near r ¼ 0 by the terms (23) as

1

4�

�

E½F;G�

GðrÞ � d

dr

�

E½F;G�

G0ðrÞ

��
r!0

¼ 4�ðg4��2 � 3g3��þ 2Þr�1 ¼ 0: (25)

Therefore, for GðrÞ to take a nonzero value near r ¼ 0 as a
finite energy soliton solution, the following must be sat-
isfied as the necessary condition from (24) and (25) as

� � 0 and � ¼ 2=g3� and g23�=g4� ¼ 1; (26)

otherwise, � ¼ 0. Actually, (26) is the condition of the
Yang-Mills field, reproducing the results of HLS in Sec. II
with g3� ¼ 1 and Gð0Þ ¼ 2. In the case of holographic

QCD, g23�=g4� � 1, and therefore only the regular

�-meson configuration with Gð0Þ ¼ 0 is allowed. As a
whole, even any deviation of the ratio g23�=g4� from unity

due to the curved extra dimension can drastically change
the baryon profiles: for g23�=g4� ¼ 1 the � meson with a

strong repulsion, and for g23�=g4� � 1 with a weak attrac-

tion for the baryon.
Here, we note several expected features. Even if a1

meson is included for the Skyrmion analysis in holographic
QCD, there is no catastrophic instability as in the case of
HLS2 in Sec. II for the following reasons: First, the Skyrme
term naturally appears from the DBI action of the D8 brane
as a stabilizer of the Skyrmion. Second, because of the
relation g23�=g4� � 1 in holographic QCD, the � meson

has weak attraction, not strong repulsion for the baryon.
Therefore, even if the �-meson contributions could be
canceled by the a1 meson, there is no catastrophic insta-
bility of Skyrmion into zero size in the presence of the
Skyrme term.
Recently, the baryon has also been discussed as the

holonomy of an instanton in the five-dimensional gauge
theory on D8 branes with D4 supergravity background
[18–21]. Since the instanton is introduced before the
mode expansions of five-dimensional gauge field
AMðx; zÞ, one would expect that it is composed by pion
and infinite tower of (axial) vector mesons
�; a1; �

0; a01; �
00 � � � . Actually, the DBI action of the D8

brane is known to lead the instability of instanton into zero
size, so that the inclusion of the Chern-Simons (CS) action

FIG. 5. Schematic figure of Skyrmion in holographic QCD.
Dashed black and grey lines show the configurations of FðrÞ and
GðrÞ without interactions, respectively. GðrÞ appears as regular
configuration in the core region of a baryon with the boundary
Gð0Þ ¼ 0.
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is claimed as the stabilizer [18–21], though the CS sector
is, in the ’t Hooft coupling expansion, higher-order con-
tribution relative to the DBI sector. Then, one might relate
the instability of instanton with the instability of Skyrmion
with �, �, and a1 mesons as in the case of HLS2 in Sec. II.
However, we can argue that Skyrmion with �, � and a1
mesons have no catastrophic instability in holographic
QCD due to the curved extra dimension. Once the stability
is established, additional inclusion of the CS sector, corre-
sponding to the effects of the!meson [22], does not affect
the present discussions of the stability with the a1 meson in
holographic QCD.

Here, it is noted that holographic QCD has the ultravio-
let cutoff scale MKK � 1 GeV. In fact, there exist an
infinite number of non-QCD Kaluza-Klein modes in the
S1 compactification of D4 branes. Therefore, the

D4=D8=D8 multi-D brane system can be regarded as
QCD below the MKK scale. Indeed, the appearance of
MKK is essential to reproduce the non-SUSY nature in
QCD, which breaks the conformal invariance to give color
confinement and chiral-symmetry breaking. Now, in the
formation of the instanton in the five-dimensional space-
time, the infinite number of non-QCD modes above MKK

are also included. Therefore, one should be careful to their
possible artifacts, which may cause the instability of the
instanton. In our study, we truncate the meson resonances
at the MKK scale to include only the relevant QCD modes
at the level of the classical supergravity.

If one would like to see a fine structure of the baryon and
also its excitations, a larger MKK is to be taken. In such a
case, heavier meson resonances are also systematically
treated in a way consistent with the cutoff scale. In fact,
the upper bound of MKK comes from the local approxima-
tion of the fundamental strings on the D4 branes, which is
compactified with a radiusM�1

KK. Therefore, if one can, e.g.,

include the effect of finite string length in the action (18),
MKK might be taken sufficiently large with fixed �QCD

[13,23]. In this sense, the instability of the instanton into
zero size might imply a need for more consistent treatment
with quantum corrections and string length at short
distance.

Such a situation may resemble that of the strong-
coupling expansion in QCD with the plaquette lattice
gauge action [24]. For a strong coupling with large g2,
the expansion in powers of 1=g2 gives a basic picture of
quark confinement [25] and chiral-symmetry breaking
[26], providing also an analytical method to calculate
hadron properties [26]. The strong-coupling QCD, how-
ever, corresponds to a large lattice spacing a, and has a
limitation on its spatial resolution. Then, if one includes
higher-order terms of 1=g2 in the cluster expansion [24], a
finer structure of the theory becomes gradually visible.

Now, for a larger MKK, the relation g23�=g4� � 1 still

holds due to the curvature in the extra dimensions, and the
Skyrme term generally exists as a stabilizer of the

Skyrmion in dual of QCD, which is manifest in the clas-
sical limit as in the action (18). With these considerations,
we can expect the stability of the Skyrmion in the present
study even for the larger MKK, which will be more rigor-
ously discussed elsewhere in the near future.

IV. SUMMARYAND OUTLOOK

We have studied baryons as the Skyrmions in HLS and
also in holographic QCD. We conclude that the relation
g23�=g4� � 1 due to the extra dimension and its nontrivial

curvature can drastically change the roles of (axial) vector
mesons for the baryons in four dimensions. In fact, the
effective action density of the Yang-Mills shape as
FMNF

MN (M, N ¼ 0� 3, z) on the probe D8 brane can
be inevitably distorted through the projection into the flat
four-dimensional space-time, giving the relation
g23�=g4� � 1. Then, we also discuss the features of our

truncated-resonance analysis for baryons with � and �
mesons below MKK � 1 GeV in holographic QCD.
Our results are not limited in the case of the holographic

model with D4=D8=D8 multi-D brane configurations as
the Sakai-Sugimoto model. Even if one starts from any
multi-D brane configuration with gauge theory on its sur-
face, and also if one relies on the gauge/gravity duality,
there is no reason for the (axial) vector mesons to appear as
the Yang-Mills field with the constraint g23�=g4� ¼ 1, be-

cause of the curved extra dimension. Note here that, in the
holographic framework, the curvature in the extra dimen-
sion is needed to give the discrete mass spectra of hadrons
in the projected four-dimensional theory as QCD.
Furthermore, also from the phenomenological point of
view in four dimensions, the constants g23� and g4� can

be easily shifted at the quantum level, spoiling the condi-
tion g23�=g4� ¼ 1. As a whole, our results in Sec. III should

be more general relative to the case of HLS in Sec. II.
Of course, HLS has an interesting physical meaning.

Actually, dividing the chiral field (1) into a sequence of
products as UðxÞ ¼ �1�2 � � ��Nþ1, one can introduce the
gauge field Ak

�ðxÞ (k ¼ 1; 2; � � � ; N) for each gauge sym-

metry acting at each cutting point. If one takes the limit
N ! 1 to include an infinite tower of (axial) vector me-
sons, one can naturally introduce the five-dimensional
gauge field A�ðx; zÞ by shifting the discrete index k into

a continuous variable z. This strategy is called the dimen-
sional deconstruction model of QCD, or the bottom-up
holographic approach [27]. In this sense, a fact that certain
local symmetry is hidden within the chiral field [6] has
implied the existence of a larger gauge symmetry extend-
ing to the extra dimensions, which corresponds to the
theoretical background of HLS today.
However, HLS does not have the concept of curvature or

gravity in the extra dimension. In this paper, we suggest
that such a curved extra dimension can drastically change
the view of our daily life in four-dimensional space-time.
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