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Since the structure of space-time at very short distances is believed to get modified possibly due to

noncommutativity effects and as the Dirac quantization condition, �e ¼ N
2 @c, probes the magnetic field

point singularity, a natural question arises whether the same condition will still survive. We show that the

Dirac quantization condition on a noncommutative space in a model of dynamical noncommutative

quantum mechanics remains the same as in the commutative case to first order in the noncommutativity

parameter �, leading to the conjecture that the condition will not alter in higher orders.
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I. INTRODUCTION

The idea of magnetic monopoles—the so-far hypotheti-
cal particles carrying magnetic charge—is one of the most
influential in modern theoretical physics. The first effective
theoretical proposal that magnetic charge should exist was
made by Dirac [1], who argued that in quantum mechanics
the unobservability of phase permits singularities that
manifest themselves as sources of magnetic fields. The
Dirac quantization condition (DQC) �e ¼ N

2 @c is a topo-

logical property, independent of space-time points, that
tells us that the mere existence of a single magnetic mono-
pole would imply that the electric charge is quantized.
Before Dirac, the surprising asymmetry in Maxwell’s
equations made Poincaré and Thompson introduce the
magnetic charge in the theory as an artefact for simplifying
the computation, while Curie suggested even the actual
existence of magnetic charge [2]. The idea of magnetic
monopoles was later extended by the discovery of mono-
pole solutions of classical non-Abelian theories [3,4] and
the introduction of the concept of dyons—particles carry-
ing both electric and magnetic charge [5], eventually lead-
ing to the concept of duality [6], with its significant
influence on the string theory.

In recent years magnetic monopole structures have cre-
ated a lot of interest in condensed matter physics. In study-
ing the anomalous Hall effect, magnetic monopole
structures in momentum space have been experimentally
verified and theoretically explained in [7,8].

However, to date no magnetic monopole has been found
(for a comprehensive review of magnetic monopole
searches, see, e.g. [9]), but the theoretical interest has
stayed, as nothing in the theory has ever been found to
contradict the DQC.

In the recent decade there has been a growing interest in
the research concerning noncommutative spaces mainly
due to the results in [10,11]. In [11] it was shown that
string theory in a constant background field leads to a
noncommutative field theory as a low energy limit.
Moreover, the result of [10] has encouraged many to

believe that noncommutative field theory is a step toward a
more complete description of physics. In the ’’gedanken’’
experiment of [10], it was argued that in the process of
measurement of space points, as the energy grows, even-
tually black holes are formed and consequently objects of
smaller extent than the diameter of the black holes cannot
be observed and one can think of space-time ’’points’’ as
operators obeying a Heisenberg-like uncertainty principle
from which it follows that space-time is homogeneous and
can be interpreted as being noncommutative.
Although the main interest in this field lies in the for-

mulation of a consistent field theory on a noncommutative
space-time, it is also interesting to apply the noncommu-
tative space to pure quantum mechanics to see whether it is
possible to extend ordinary quantum mechanics to the
noncommutative case. Specifically, the result [10] is quan-
tum mechanical in nature and some results such as the
DQC [1], which we will be exploring in this paper, are not
obtained directly from field theory.
In the noncommutative case, the space-time is particu-

larly sensitive to the short-distance effects. Since the DQC
in its essence probes the singularity structure of the mag-
netic field, one would think that this condition could no
longer remain valid in the noncommutative case. This is
the main motivation for the present work.
We shall start by briefly reviewing one known method

for deriving the DQC in the commutative case. Then,
starting from a classical Lagrangian corresponding to a
dynamical model of noncommutative quantum mechanics,
we shall derive the DQC to first order in the noncommu-
tativity parameter �, and finally we shall discuss the result
and its possible generalizations.
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II. ONE WAY OF DERIVING THE DQC

In the commutative case, there is an ingenious way to
derive the DQC, first introduced by Jackiw [12], which
uses a gauge-invariant algebra, dependent only on the
magnetic field. The derivation is an example of the three-
cocycles, which appear when a representation of a trans-
formation group is nonassociative; in particular, when the
translations group is represented by gauge-invariant opera-
tors in the presence of a magnetic monopole, the Jacobi
identity among the translation generators fails. The resto-
ration of the associativity of finite translations leads to the
DQC. A sketch of the derivation [12] will be quite illumi-
nating: for a nonrelativistic particle with the electric charge
e, moving in a magnetic fieldBðxÞ, one starts by finding the
noncanonical quantum brackets

½xi; xj� ¼ 0; ½xi; �j� ¼ i@�ij; (1)

½�i; �j� ¼ ie
@

c
�ijkBkðxÞ; (2)

where one defines the operators �i in the x representation
as

�i ¼ �i@@i � e

c
AiðxÞ; (3)

with AiðxÞ being the vector potential [13]. These commu-
tation relations, along with the Hamiltonian

H ¼ �2

2m
; � ¼ m _x; (4)

yield the well-known Lorentz-Heisenberg equations of
motion

_x ¼ i

@
½H; x� ¼ �

m
; (5)

_� ¼ i

@
½H;�� ¼ e

2mc
½� �B� B� ��; (6)

where � is the gauge-invariant mechanical momentum. So
far there is no restriction on B but the following Jacobi
identity violation

1

2
�ijk½½�i; �j�; �k� ¼ e@2

c
r � B (7)

indicates that the magnetic field has to be source free.
Otherwise, r �B � 0 will lead to a loss of associativity
of the translation operators TðaÞ � expð� i

@
a � �Þ,

ðTða1ÞTða2ÞÞTða3Þ ¼ exp

�
� ie

@c
!ðx;a1;a2;a3Þ

�

� Tða1ÞðTða2ÞTða3ÞÞ: (8)

Here, ai are constant vectors and the nontrivial phase
factor turns out to be the magnetic flux coming out of the
tetrahedron formed by ai:

exp

�
� ie

@c
!ðx;a1;a2:a3Þ

�
; (9)

which is nonzero if a magnetic monopole is enclosed by
the tetrahedron. The phase factor (9) becomes unity and
thus the associativity of finite translations in the presence
of the magnetic monopoles can be re-established for

Z
d3xr �B ¼ 2�

@c

e
N; (10)

where N is an integer. This condition, together with the
Gauss equation for a monopole of magnetic charge �, r �
B ¼ 4���3ðxÞ, yields the celebrated DQC

�e ¼ 1
2N@c: (11)

Note that the Jacobi identity is still violated at the location
of each monopole and these points are conventionally
excluded from the manifold.

III. THE NONCOMMUTATIVE DQC

The extension of the approach in [12] to the noncom-
mutative case can be achieved once one finds the algebra of
coordinate and gauge-invariant momentum operators for a
charged quantum mechanical particle in motion in a mag-
netic field in the noncommutative space-time, i.e. the
analogue of the algebra (1) and (2). It is expected that
the noncommutativity of space-time coordinates would
change the dynamics of the charged particle in the mag-
netic field (i.e. the Lorentz force), and this in turn will
require a change in the commutation relations (2).
However, we can find the new noncommutative algebra
by starting from a classical Lagrangian, for example, the
one for the model [14], and deriving the corresponding
Dirac brackets and then quantizing them. We therefore
consider a Lagrangian of the form

L ¼
�
Pi þ e

c
Ai

�
_Xi þ 1

2
�ijkPi

_Pj�k � 1

2m
P2 þ eA0;

(12)

where Pi is the momentum, �k—the noncommutativity
parameter, of dimension ðlengthÞ2=action, and Ai, A0—
the magnetic and electric potential, respectively. The
Lagrangian (12) is a straightforward generalization to three
dimensions of the one considered in [15], which is a
Lagrangian for the model [14].
The Lagrangian (12) is a Lagrangian of dynamical non-

commutativity of the space coordinates. This statement is
better understood once we derive the Dirac brackets from
this Lagrangian. For this, we need the canonical momenta,
which are given by

�i ¼ @L

@ _Xi

¼ Pi þ e

c
Ai; �P

i ¼ @L

@ _Pi

¼ � 1

2
�ijkPj�k:

These lead to the constraints
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�i � �i � Pi � e

c
Ai; c i � �P

i þ 1

2
�ijkPj�k:

In the classical framework, with fXi; �jg ¼ �ij, fPi; �
P
j g ¼

�ij, we calculate the constraint algebra

f�i; �jg ¼ e

c
ð@iAj � @jAiÞ ¼ e

c
Fij ¼ e

c
�ijkBk;

fc i; c jg ¼ �ijk�k; f�i; c jg ¼ ��ij:
(13)

From this algebra we find that the constraints are second
class and, performing the Dirac constraint analysis [16,17],
we obtain the classical Dirac brackets as

fXi; Xjg ¼
�ijk�k

1� e
c� �B ; fXi; Pjg ¼

�ij � e
c Bi�j

1� e
c� �B ;

fPi; Pjg ¼
�ijk

e
c Bk

1� e
c� �B : (14)

These brackets have also been obtained in [18,19].
This is exactly how interactions have been introduced in

the model of [15]. In this model the noncommutativity of
coordinate operators is dynamical in the sense that it is
generated within the system. Thus, the gauge field cannot
be affected by the noncommutativity, which emerges upon
quantization. Therefore, the field Ai is the Abelian Uð1Þ
gauge field in this model of noncommutativity.

Our next step is to quantize the brackets. We do this by
promoting the classical variables Xi and Pi in the Dirac

brackets (14) to the status of operators X̂i, P̂i and multi-
plying the right-hand side of the Dirac brackets by i@. This
is the standard procedure [16,17]. We consider the Dirac
brackets (14) expanded to first order in � and hereafter we
perform all our calculations to this order only. We resort to
this approximation because we shall need to find represen-
tations for our operators in order to have a well-defined
quantum theory [17], and this is a task that is difficult to do
exactly for the algebra (14). The quantization of (14)
gives

½X̂i; X̂j� ¼ i@�ijk�k þOð�2Þ;

½X̂i; P̂j� ¼ i@

�
�ij � e

c
BiðX̂Þ�j þ e

c
�ij� �BðX̂Þ

�
þOð�2Þ;

½P̂i; P̂j� ¼ i@
e

c
�ijkBkðX̂Þ

�
1þ e

c
� �BðX̂Þ

�
þOð�2Þ:

(15)

The algebra (15) poses a twofold problem. Firstly, the

operator P̂j in (15) does not represent the translation

generator, since there are extra terms on the right-hand

side of ½X̂i; P̂j�, other than i@�ij. Secondly, we face the

problem of how to represent the operators X̂i, since they do
not commute to first order in �. This problem becomes
much simpler if we are able to define some new operators

xi, in terms of the old ones X̂i and P̂i, such that they
commute to first order in �. An appropriate definition for

our purpose is

xi ¼ X̂i þ 1
2�ijkP̂j�k: (16)

Then the functions of the operator X̂i can be expanded in
terms of the new coordinate operator xi as, e.g.,

Biðx̂Þ ¼ BiðxÞ � 1
2�njk�kP̂j@nBiðxÞ þOð�2Þ: (17)

We use the operator xi (16) and the expansion (17) to

obtain an intermediate algebra of xi and P̂j, and further

define the generator of translations corresponding to xi:

pj ¼ P̂j � 1

2

e

c
ðP̂jðB � �Þ � P̂ � B�jÞ: (18)

The newly defined operators pi and xi obey the algebra

½xi; xj� ¼ 0þOð�2Þ;
½xi;pj� ¼ i@�ij þOð�2Þ;
½pi;pj� ¼ i@

e

c
�ijkBk � e

2c
½i@ðp½j@i�ðB � �Þ þp½i�j�r �B

þ p � �½i@j�BÞ þp½j½pi�;B� � �þp � ½B;p½i��j��
þOð�2Þ; (19)

where the indices in brackets are antisymmetrized.
To have properly quantized the algebra (19), we need a

representation of its operators. From the similarity of the
algebras (2) and (19), we infer that in the x representation,
we can realize the translation generators as (3) plus an
extra term involving the first order noncommutativity con-
tribution. Explicitly,

pi ¼ �i@@i � e

c
AiðxÞ þ Tið�; xÞ þOð�2Þ: (20)

Inserting (20) into the right-hand side of the commutator
½pi; pj� of the algebra (19), it simplifies to

½pi; pj� ¼ i@
e

c
�ijkBk þ 1

2

e

c

��
i@@½i þ e

c
A½i

�
�j�r �B

�

þOð�2Þ: (21)

By directly computing the commutator of the operators pi

in the representation (20), we have to reproduce the result
(21), which holds true if we set

Tið�; xÞ ¼ � 1

2

e

c
�ir � BþGi; (22)

where

@jGi ¼ 1

2@

�
e

c

�
2
Aj�ir �B: (23)

Thus, the quantized algebra (19) is given by
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½xi; xj� ¼ 0þOð�2Þ;
½xi; pj� ¼ i@�ij þOð�2Þ;
½pi; pj� ¼ i@

e

c
�ijkBk þ e

2c

��
i@@½i þ e

c
A½i

�
�j�r �B

�

þOð�2Þ (24)

in the x representation.
We can now calculate the Jacobi identities of the algebra

(24), and find that the only nonvanishing one is

1

2
�ijk½½pi; pj�; pk� ¼ �@

2 e

c
r �B

þ i@

2

�
e

c

�
2
�ijk@kðAi�jr � BÞ

þOð�2Þ: (25)

Since the nonvanishing terms in the right-hand side of (25)
are proportional to r � B, for a divergenceless magnetic
field there are no Jacobi indentity violations. However, if
the magnetic field is produced by monopoles r �B ¼
4���3ðxÞ, the Jacobi identity (25) is violated, meaning
nonassociativity of the translation generators pi.

We would like to remark at this point that although the
Lagrangian (12) contains no magnetic sources, the algebra
(24) is valid whether the magnetic field is source free or
not. The reason is simply that the Lorentz force describes
the movement of electrically charged particles in a mag-
netic field, but does not set any requirement on how the
magnetic field is produced.

Thus, in the noncommutative space we end up with a
Jacobi identity violation consisting of the original commu-
tative space term plus a �-dependent total-derivative term.
Let us recall that the DQC appears in the commutative case
[12] through a volume integration [see (9)] over the tetra-
hedron formed by the three translation vectors a1, a2, a3.
Now, the � term in (25), being a total derivative, should
contribute at the boundary of the tetrahedron. However,
this contribution will be necessarily zero, because the
integrand contains the � function coming from r �B ¼
4���3ðxÞ, which has support only at the origin, i.e. on the
monopole. Hence, these two features conspire to cancel the
effect of the � term. The DQC remains unchanged in the
presence of spatial noncommutativity, since the argument
for restoring the associativity of the noncommutative trans-
lation operators goes through in the same manner as in the
commutative case [12], but now with the translation op-
erators

TNCðaÞ ¼ exp

�
� i

@
a � p

�
; (26)

generated by p as the element of the algebra (24), valid to
first order in � and with the x representation (20).

IV. SUMMARYAND DISCUSSION

We have explicitly shown that the DQC (11) remains
unaltered in noncommutative space to first order in �.
Based on the structure of the classical algebra (14) and
the representation of the quantum algebra (20), and also
considering the fact that the form of any topological cor-
rection is strongly constrained, we conjecture that the DQC
will hold true in all orders in the noncommutative space-
time. We intend to elucidate this issue in the future.
We would also like to emphasize that, had we obtained a

correction to the DQC involving �, it would immediately
invalidate the DQC as a topological result in the noncom-
mutative case. This is simply due to the fact that the �
parameter is dimensionful, and any correction involving it
has to necessarily introduce model-dependent factors, such
as the mass of the electron or the length of the trajectory of
the electron around the monopole. Since the DQC must
remain dimensionless to be a topological result, any cor-
rection to it involving � is not permissible.
It would be interesting to obtain the same kind of

indication of a DQC to first order in � using a noncommu-
tative non-Abelian vector potential [11,20], especially
since a gauge-covariant noncommutative Aharonov-
Bohm effect has been formulated in [21]. However, this
formulation gives the required phase factor with the help of
non-Abelian noncommutative Wilson lines, which are no-
toriously tedious to work with even to first order in �, due
to the path ordering appearing in the Wilson line.
Therefore, obtaining a possible DQC in this approach
stands as a challenge for the future.
Our conclusion is that the DQC remains unchanged in

the noncommutative case, to the first order in � and ex-
pectably to all orders. This is of significance, since a vast
amount of work has been devoted to studying various
effects of noncommutative space only to the lowest order
in �. Finally, we would like to mention that our work
reinforces similar topological results in the noncommuta-
tive case for other nonperturbative monopole, soliton, and
dyon solutions [22], although these solutions are purely
noncommutative in origin and have no commutative
counterpart.
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