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We investigate the behavior of parallel Faddeev-Hopf vortices under energy minimization in a system

with physically relevant, but unusual boundary conditions. The homotopy classification is no longer

provided by the Hopf invariant, but rather by the set of integer homotopy invariants proposed by

Pontrjagin. The nature of these invariants depends on the boundary conditions. A set of tightly wound

parallel vortices of the usual Hopfion structure is observed to form a bunch of intertwined vortices or

unwind completely, depending on the boundary conditions.
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I. INTRODUCTION

The standard model with knot solitons, the Faddeev-
Skyrme (FS) model, was proposed by L. Faddeev in
1975 [1]. Since then, many analytical and numerical results
have been obtained about this model [2–10]. The localized
solutions of the FS model are characterized by the Hopf
charge, which can be defined if the field is constant at
infinity: limr!1 ~nðrÞ ¼ ~n1; this allows one point compac-
tification of the domain R3 [ f1g ’ S3 and the definition
of the Hopf charge using the homotopy group �3ðS2Þ.
However, this is not the only possible boundary condition.
Indeed, some physical systems, like rotating superfluid 3He
in the A phase [11,12] and certain insulating magnetic
materials, called topological insulators [13], can have dif-
ferent boundary conditions requiring a new topological
analysis. There have already been experimental observa-
tions of a two-dimensional topological insulator in
Bi1�xSbx, having the topological charge characterized by
of Z2 � Z2 [14].

In this paper we use large-scale numerical optimization
routines to investigate the minimum energy configurations
of the FS model in novel topological situations. The topo-
logical invariants that are relevant when the boundary
conditions are no longer the usual limr!1 ~nðrÞ ¼ ~n1 are
discussed in Sec. II. It turns out that the new topological
invariants, introduced by Pontrjagin [15], are needed
whenever some periodic boundary conditions are used. In
Sec. III, we describe the Faddeev-Skyrme model and the
initial configurations. In Sec. IV, we discuss the process
leading to minimum energy configurations from initial
configurations consisting of tightly wound and packed
vortices parallel to the z direction. We will demonstrate
how the topological invariants of Sec. II are conserved
while allowing the unwinding of the Hopfion vortices.
The behavior turns out to depend not only on the boundary
conditions, but also on the size of the periodic cell as
compared to the region occupied by the vortices.

Intermediate states of the energy minimization process
are used to illustrate the processes that unwind the knot.
Locally, these processes are quite similar to those seen in
the context of closed Hopfions [16].

II. TOPOLOGY

We study the FS model in situations where the physical
space cannot be compactified to S3 but is periodic in some
direction(s). In particular, we consider the case when the
domain can be identified as S2 � T1 (periodic in the z
direction) or T3 (periodic in all directions). In these cases,
the field ~n becomes a map ~n: S2 � T1 ! S2 or ~n: T3 !
S2, respectively. Here, we differentiate between S1 and T1:
If there is a special point x� such that fðx�Þ ¼ fð�x�Þ (e.g.
the point at infinity) we use S1, while if the periodicity can
be expressed by fðxÞ ¼ fðxþ LÞ, 8x, then we use T1.
Note that computationally the difference between the

three cases above is only that of the boundaries. If we want
to model the S3 boundary condition limr!1 ~nðrÞ ¼ ~n1
then in the computational lattice the fields at the edges of
the box will be fixed to ~n1 and no interaction can occur
across the edges. Next, suppose we use the same initial
configuration, but during minimization we only enforce the
periodicity condition ~nðxmax

i Þ ¼ ~nðxmin
i Þ for some i. If the

behavior of the system is such that the values of the field on
the edges of the box do not change much the system will
behave essentially as it behaves when the S3 boundary
condition is used. As we shall see, this is also reflected by
the fact that in the T3 case, the homotopy classification of
the system is still given by the Hopf invariant even though
the domain is not topologically S3. The above systems
behave differently only when there is strong interaction
across one or more edges of the periodic box.
The homotopy classification of the above cases is more

complicated than the usual case of S3 ! S2 and was first
proposed by Pontrjagin [15]. A more modern approach,
restricted to closed, connected, oriented 3-manifolds is due
to Auckly and Kapitanski [17]. Wewill further restrict their
result to maps from S2 � T1 and T3 to S2. The following
geometrical descriptions are due to Kapitanski [18].
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Let ~n: S2 � T1 ! S2. The topological properties of ~n
follow the topological properties of its restrictions ~njS2

and ~njT1. If we denote these restrictions by f and g,
respectively, we have f: S2 ! S2 and g: T1 ! S2. The
topological properties of f are described by the usual
homotopy classification of maps S2 ! S2, i.e. by �2ðS2Þ
and therefore the relevant homotopy invariant is s2 �
degf 2 Z. The topology of g is more subtle. It turns out
that for each value of s2 there is another invariant, here
called s1, which is defined by the map g. It can be shown
[18] that s1 2 Z2s2 .

As an example, consider the stereographic coordinate z
of S2 and the map ~n: S2 � T1 ! S2 for which fðzÞ ¼ zm,
where m 2 N. It can be shown [19] that for such a map,
degf ¼ m. Thus, s2 is the number (with multiplicities) of
zeros of f, i.e. the number of vortex cores. Now, for a
simple vortex s2 ¼ degf ¼ 1 and therefore s1 2 Z2. Thus,
there are two homotopy classes, represented by zeis1�,
where � 2 ½0; 2�� is the coordinate of T1. The function
g now describes how many full turns the S2 is rotated as �
goes from 0 to 2�. The domain can be regarded as a set of
cocentric 2-spheres for different values of � with the inner-
and outermost spheres identified. (If s1 ¼ 0, g is the con-
stant map � � 0 and fðw; �Þ ¼ w, 8� and there is no
rotation.) The full map ~n: S2 � T1 ! S2 represents a 1-
vortex, where two distinct preimages of points on the target
S2 have linking number H, which we still call the Hopf
invariant, but it is not a homotopy invariant in this case.

Detailed description of how the higher numbers of rota-
tions can in this case be unwound to either s1 ¼ �0 or s1 ¼
�1 can be found in [18], but we will not discuss this further.
The case of s2 ¼ 0 is rather special and is not needed here.

Next, consider ~n: T3 ! S 2. According to Pontrjagin
[15], there are three primary homotopy invariants, t1, t2,
and t3. In order to determine the values of ti, consider
~n�1ðpÞ 2 T3, the preimage of a regular value (under the
map ~n) p 2 S2. By the continuity of ~n, the preimage is a
closed loop and therefore can be represented by a directed
path �: S2 ! T3. Now, � 2 �1ðT3Þ ¼ Z� Z� Z and
each of the invariants ti belong to one of the Z of
�1ðT3Þ. Visually, ti count the number of times � travels
around the respective T1 of the T3 and can be determined as
follows: For each ti, find all the points (with multiplicities)
where � pierces a plane defined by êi, numbering them
with j 2 Z. For each of these points, let �ðjÞ ¼ þ1 if � is
directed in the same direction as êi and �ðjÞ ¼ �1 if the
directions are opposite. (Note that by ‘‘piercing’’ we mean
that the preimage has to go through the plane, not just
touch it at a point.) Now, for each i, we define ti :¼ P

j�ðjÞ.
In the ~n: T3 ! S2 case there is also a secondary homo-

topy invariant, which further divides the maps with equal
t1, t2, t3. For fixed values of ti, one defines t ¼
gcdðt1; t2; t3Þ and for each t there is a secondary homotopy
invariant, denoted ht. If t � 0, it can be shown that ht 2
Z2t [17,18], and thus for fixed ti and t > 0 there are 2t

different homotopy classes. If t ¼ 0, this invariant is ex-
actly the Hopf invariant, and we denote it by h0.
Two homotopic maps S2 � T1 ! S2 have the same

invariants si, and two homotopic maps T3 ! S2 have the
same invariants ti and ht, but due to the secondary invar-
iants s1 and ht, maps with the same s2 or ti are not
necessarily homotopic. In this work, we only deal with
the primary invariants ti and s2.

III. THE FADDEEV-SKYRME MODEL

The explicit form of the Lagrangian of the Faddeev-
Skyrme model can be written in terms of a unit 3—vector ~n
as

L ¼ c2@� ~nT@� ~nþ c4F��F
��; (1)

F�� ¼ 1
2�abcn

a@�n
b@�n

c; (2)

where c2 and c4 are coupling constants. Choosing the usual
metric ðþ;�;�;�Þ yields the static energy density

E FS � c2kr ~nk2 þ c4kFjkk2: (3)

If one requires the field to have a finite energy in R3, it is
necessary to impose the boundary condition

lim
r!1 ~nðrÞ ¼ ~n1 ¼ constant: (4)

However, if the physical space is periodic in one or more
dimensions, we have in the periodic direction(s) xi ~nðxiÞ ¼
~nðxi þ LÞ, where L is the length of the periodicity. The
space no longer compactifies to S3, but depending on the
number of periodic dimensions, it becomes i) S2 � T1 if
one direction is periodic and the two others have the usual
boundary condition Eq. (4), ii) T2 � S1, in the case where
two directions are periodic, and iii) T3 if all directions are
periodic. The homotopy classifications of such fields were
introduced in Sec. II. We will not consider case ii) in this
work.
The initial configuration of a single vortex is the same as

in [20]. Using cylindrical coordinates �, �, z and two
integers m, n, the form of the field ~n is

~n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fð�Þ2p

cosðm�þ 2�nz=LzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fð�Þ2p

sinðm�þ 2�nz=LzÞ
fð�Þ

0

B@

1

CA; (5)

where Lz is the box length in the z direction and f is just
some profile function with fð0Þ ¼ �1 and fð�Þ ¼ þ1
when � ¼ 1, which is then cut into a finite size box.
Case i) with initial states composed of a single straight

tightly wound vortex of (5) was studied in [20]. Those
initial states correspond to s2 ¼ 1 and values of the Hopf
invariant larger than 1. In principle they are homotopic to
configurations of lower Hopf invariants, namely, H 2
f0; 1g, but there is an energy barrier that prevents the
unwinding.
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In this paper, the initial configurations are such that the
preimages of ð0; 0;�1Þ are the cores of parallel vortices in
the z direction; one such vortex is displayed in Fig. 1. The
small bend visible in the figure was introduced in order to
speed up the minimization process and does not affect the
topology or linking number of the system. Such an initial
configuration has s2 ¼ m in case i) and t1 ¼ t2 ¼ 0, t3 ¼
m in case iii). In both cases, the linking number of pre-
images is mn. All of these are easy to verify visually.
Vortex bunches are constructed by putting several

identical vortices into the computational box, as shown in
Fig. 2(a). For the multivortex configurations investigated
here, we have used the same values n ¼ 6 and m ¼ 1 for
each vortex. The value of n may seem rather high, but we
have learned in [20] that for low values the vortex does not
bend much and therefore would not properly interact with
the neighboring vortices in the current situation.

FIG. 1 (color online). Single vortex in S2 � T1 or T3 domain.
The vortex core n3 ¼ �1 and one point from the latitude n3 ¼
0:1 are plotted as narrow blue and red tubes, respectively. The
wireframe indicates the boundary of the box.

FIG. 2 (color online). Relaxation of an initial configuration of four vortices in S2 � T1 domain. The colors are as in Fig. 1, but the
wireframe now shows the size of the lattice in z direction and the exact locations of the vortex cores (the vertical wires). The
computational box is larger and the thicknesses of the tubes are arbitrary.
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In this work, we use the same programs as in [6,7,16,20]
because the only difference in the computations are the
boundary conditions. For numerical computations, this
change of boundary conditions is rather minimal, since
the MPI library directly supports both periodic and fixed
boundary conditions defined independently for each
dimension.

IV. RESULTS

We now describe how an initial configuration of a bunch
of Hopfion vortices built from Eq. (5) continuously de-
forms to a minimum energy configuration while conserv-
ing the homotopy invariants si, ti. We will also describe,
how, depending on the details of the initial configuration,
the linking number or the Hopfion (the Hopf invariant) is
sometimes conserved and sometimes not.

All the computations have used fully periodic boundary
conditions, but in different computational lattices.

A. 2� 2 vortices in a large box

Let us first consider an initial configuration consisting of
2� 2 vortices parallel to the z axis, put into a very large
box. It is expected that there would be negligible interac-
tion across the edges of the box, i.e. the system would
behave as it would in S2 � T1. In the initial configuration,
it was necessary to pack the vortices into a tight formation
with enough twisting (n ¼ 6) to ensure that they interact,
but not across the boundary. Technically, this was accom-
plished by building the initial configuration from 16 nar-
row boxes: the four central ones contained a single vortex
each, while the remaining 12 pieces were filled with the
vacuum, ~n ¼ ð0; 0; 1Þ. In contrast to [20] we do not fix the
field value at the x, y boundary but only require periodicity;
this allows us to see whether the behavior of the vortex
bunch is the same in S2 � T1 and T2 � T1, where the T2 is
the large box in the xy plane. Indeed, the values on the xy
boundaries do not change much during the minimization
process.

The initial configuration is shown in Fig. 2(a). Since
~n1 ¼ ð0; 0; 1Þ, as seen from Eq. (5), the vortex core is at
~n ¼ ð0; 0;�1Þ. It is easy to count the linking number of
preimages, which equals to 24 (recall that there is a 1=2
factor involved—there are 48 crossings) and also the ho-
motopy invariants ti: t1 and t2 are zero (no winding the in x
and y directions) and t3 ¼ 4 (four cores pierce the
xy-plane).

Energy minimization is applied to the initial configura-
tion using a gradient based algorithm [6]. Initially, the
interaction between vortices is negligible, but after around
50 000 iterations, certain parts of different vortices are
close enough to produce evolution, which differs from
that of a single vortex. At 60 000 iterations, these parts
touch and the corresponding preimages reconnect, joining
two vortices together. Figure 2(b) shows the situation
before and 2(c) just after the reconnection. The wireframe

box showing the initial locations of the vortex cores is also
displayed for reference. The reconnection process is al-
lowed because mathematically, the red curve is a single,
albeit multiply connected, preimage, and the elementary
process is exactly the same as is described in [16] for a
single vortex. Such deformation processes repeat several
times in different parts of the lattice until after 300 000
iterations, the initially separate vortices have formed a
tangled bunch where the cores (and preimages of a point
where n3 ¼ 0) wind around each other (see Fig. 2(d)).
Visual inspection of the intermediate configurations con-
firms that, as expected, there is no interaction across the xy
boundary. Note that there are six cores (and preimages)
piercing the box at the top and bottom edges, but the
direction of one of them is opposite to the others, giving
t3 ¼ 4 as required.
The final, minimum energy configuration, has the same

linking number of preimages and integers ti as the initial
state. This is despite the fact that the linking number is no
longer guaranteed to be conserved. Its conservation is
solely due to the boundaries of the box being very far
from the vortices. Indeed, in the next part, we will see
that nonconservation is possible.

B. Vortices in a small box

In this case the same initial configuration is put into a
box half the previous size, with the expectation that there
now would be interaction across the edges of the box.
Technically, this was accomplished by taking the same
four vortices as above but omitting the 12 vacuum pieces.
Again, the x, y directions are periodic but now the vortices
are equally spaced with no change in the spacing at the
boundary of the computational box.
The beginning stages of the energy minimization pro-

cess are identical to that of the large box, but when the
vortices start to feel each other the configuration develops
in a different manner. Instead of reconnecting to join two
vortices together, the reconnected preimages tend to de-
velop into straight filaments extending through the whole
periodic lattice. Later, some of the filaments again recon-
nect and form loops, but since these loops have trivial
linking with all other preimages, they can be deformed
into nothing.
This is illustrated schematically in Fig. 3, where initially

(a), processes familiar from [16,20] have already led to
each of the four preimages to split into a relatively straight
part parallel to z axis and a loop around it. The preimage
loops extend, eventually touching each other, and then
reconnect along the dashed curves (b). Upon further energy
minimization, the filaments will in turn reconnect along the
dashed curves to form loops (c). The resulting loops have
trivial linking with other preimages and are therefore free
to collapse and vanish (d). The vertical preimages stay
relatively unchanged through this process. This is the
general mechanism of Hopfion unwinding.
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Indeed, the energy minimization process shows how this
process of filament and loop formation, followed by the
loops shrinking and vanishing, is repeated a number of
times in different parts of the computational box so that the
final linking number of preimages is zero. The only pre-
images left in the system are preimages piercing the xy
plane. At the same time, the energy approaches the energy
of one or more straight unwound vortices.

In order to calculate the invariants ti during the minimi-
zation process, it is necessary to keep track of the direc-
tions of the preimages, just as must be done for the
computation of the linking number. Now, initially we
have t1 ¼ t2 ¼ 0 and t3 ¼ 4, so whenever a preimage
reaches a boundary of the computational box and pierces
it, there must always be a corresponding piercing of the
same boundary but in the opposite direction, so that ti are
unchanged. Indeed, this has been observed.

In order to further investigate the processes involved in
the unwinding of the Hopfion, we simulated a system
where the initial condition is a single vortex. Again, we
use m ¼ 1 and n ¼ 6, but instead of packing several
vortices together, we take just one vortex (5) and add no
vacuum to the system. The boundary conditions are again
fully periodic, but now the length of the period in xy
directions is half of that in Sec. IVB. Any splitting and
recombination of preimages is now expected to occur
across the lattice boundary. This is indeed observed with
no new processes present in the system.

V. CONCLUSIONS

We have studied how the Faddeev-Skyrme model be-
haves when the domain of the model is taken to be S2 � T1

and T3 instead of the usual S3. The new domains require a
new homotopy classification, which is due to [15,17,18].
For S2 � T1 there is a primary homotopy invariant s2
related to the S2 part of the field configuration and when
s2 � 0, there is also a secondary invariant s1 related to the
T1 part. We discuss the invariant s2 only and it is seen to be

conserved in the energy minimization process. For T3,
there are three primary homotopy invariants, t1, t2, t3
related to the winding numbers around the three tori T1

of the T3. There is a secondary invariant in this case also.
When at least one ti � 0, one defines t ¼ gcdðt1; t2; t3Þ and
the secondary invariant takes values in Z2t. If all ti ¼ 0, the
secondary invariant becomes the Hopf invariant. We have
discussed the primary invariants only.
We have constructed a set of initial configurations con-

sisting of a number of twisted vortices where energy
minimization is known to lead to knotted Hopfions in the
S2 � T1 case [20]. It is observed in this case, that in the
continuous deformation driven by energy minimization the
conservation of s1 and s2 does not allow for the unwinding
of the knot and leads to an intertwined vortex bunch. In the
T3 case neither the conservation of ti nor energy minimi-
zation requires that the knotted structure remains intact and
indeed the Hopfion unwinds. The conservation of the
homotopy invariants is confirmed by a visual inspection
in all cases.
The results have been compared with previously known

deformation processes of preimage splitting and recon-
necting and found to follow the same deformation ‘‘rules’’
as previously [16,20]. No new deformation processes were
observed.
The results presented here have possible experimental

relevance to the observations of vortices in a rotating
superfluid 3He in the A phase [11,12]. Another physically
relevant situation where maps from T3 ! S2 arise are
insulating magnetic materials in three dimensions, which
can have topologically nontrivial properties [13].
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(a) (b) (c) (d)

FIG. 3. Schematic illustration of the formation of filaments and contractible loops. The solid and dashed lines represent the
preimages and the dotted parallelopiped is the outer boundary of the periodically repeating region containing the four unit cells of the
initial vortices.
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[16] J. Hietarinta, J. Jäykkä, and P. Salo, Proc. Sci.,
UNESP2002 (2002) 017.

[17] D. Auckly and L. Kapitanski, Commun. Math. Phys. 256,
611 (2005).

[18] L. Kapitanski, in London Mathematical Society Durham
Symposium, Operator Theory and Spectral Analysis, (un-
published), http://www.maths.dur.ac.uk/events/Meetings/
LMS/2005/OTSA/.

[19] N. S. Manton and P. Sutcliffe, Topological Solitons
(Cambridge University Press, Cambridge, England,
2004), ISBN 0521838363.
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