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We introduce Weyl’s scale symmetry into the standard model as a local symmetry. This necessarily

introduces gravitational interactions in addition to the local scale invariance group ~Uð1Þ and the standard

model groups SUð3Þ � SUð2Þ �Uð1Þ. The only other new ingredients are a new scalar field � and the

gauge field for ~Uð1Þ we call the Weylon. A noteworthy feature is that the system admits the Stückelberg-

type compensator. The � couples to the scalar curvature as ð��=2Þ�2R and is in turn related to a

Stückelberg-type compensator ’ by � � MPe
�’=MP with the Planck mass MP. The particular gauge ’ ¼

0 in the Stückelberg formalism corresponds to � ¼ MP, and the Hilbert action is induced automatically. In

this sense, our model presents yet another mechanism for breaking scale invariance at the classical level.

We show that our model naturally accommodates the chaotic inflation scenario with no extra field.
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1. INTRODUCTION

We consider Weyl’s original idea on local scale invari-
ance [1] in the context of the extension of the standard
model (SM). This necessarily requires gravitational inter-
actions with the diffeomorphism group to be treated on par
with the other particle interactions. The symmetry of our
action is ðdiffeomorphismsÞ � SUð3Þ � SUð2Þ �Uð1Þ �
~Uð1Þ, where ~Uð1Þ is for local scale invariance.
However, scale invariance symmetry is broken symme-

try in nature. In this paper, we investigate the breaking of
local scale invariance [1], via the Stückelberg mechanism
[2–4]. The Stückelberg extension of the SM has been
recently considered for Abelian gauge groups [5]. Our
work is similar in spirit in the sense that we introduce local
scale invariance group ~Uð1Þ in addition to the standard
groups SUð3Þ � SUð2Þ �Uð1Þ.

However, the difference in our work from [5] is that
scale invariance also acts on the space-time metric. It is
also different from nonlinear realization of scale invariance
[6,7]. The most noteworthy feature of our model is the
economy in extending the SM with only a very limited
number of additional fields. The new fields added to the
particle spectrum of the SM are the graviton e�

m, a vector

boson S� we call the Weylon, and a real singlet scalar field

�, where � will be eventually absorbed into the longitu-
dinal component of S�.

Our total field content consists of the usual vierbein e�
m,

the quarks and leptons �gf and �gf
i , respectively,1 the

Higgs doublet �, the single real scalar �, the gauge field
S� for ~Uð1Þ we call the Weylon, and the usual SM gauge

fields A�, W� and B� for the gauge groups SUð3Þ, SUð2Þ

and Uð1Þ, respectively. Under ~Uð1Þ these fields transform
as [8]

e�
m ! eþ�e�

m; g�� ! eþ2�g��;

e � ffiffiffiffiffiffiffi�g
p ! eþ4� ffiffiffiffiffiffiffi�g

p
; �gf ! e�3�=2�gf;

�gf
i ! e�3�=2�gf

i ; � ! e���;

� ! e���; S� ! S� � f�1@��; (1.1)

with the finite local scale transformation parameter � �
�ðxÞ, while A�, W� and B� are invariant.

Before presenting our Lagrangian, we stress the basic
difference from past works in the literature on a dilaton2 or
scalar field coupled to a scalar curvature, in order to avoid
possible confusion. For example, in [9], a scalar ’ is
coupled to the scalar curvature like ð1=2Þ’2R together
with a potential Vð’Þ, such that h’i ¼ v will yield
Newton’s gravitational constant. However, no local scale
invariance was required in [9]. As other examples, in [10] a
dilaton-scalar curvature coupling is considered, while in
[11] fairly general couplings of a singlet and Higgs doublet
to a scalar curvature are considered, but there was no
introduction of local scale invariance, with no gauge field,
as opposed to our system with S�. In Ref. [12], local scale

invariance is considered, even without its gauge field,
because the usual kinetic term for a Dirac field possesses
local scale invariance without the Weylon. In our present
paper, we introduce local scale invariance (1.1) with its
gauge field S�, coupled also to the SM system, which is

clearly distinct from any past work on global scale
invariance.
Our total action invariant under ðdiffeomorphismsÞ �

SUð3Þ � SUð2Þ �Uð1Þ � ~Uð1Þ is [8]
*hnishino@csulb.edu
†rajpoot@csulb.edu
1The indices g ¼ 1; 2; 3 are for the three generations, and f ¼

q; l are for the quarks and leptons, while i ¼ 1; 2 are needed for
the right-handed fermions.

2We can regard our scalar field � as a dilaton. However, the
word dilaton is used in the context of global transformation,
which we would like to avoid in this paper. We will come back to
this in Sec. II.
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I ¼
Z

d4xe

�
� 1

2
ð��y�þ ��2Þ ~R� 1

4
g��g��fTrðW��W��Þ þ B��B�� þU��U��g

þ X
f¼q;l
g¼1;2;3

�
��gf
L �

�D��
gf
L þ X

i¼1;2

��gf
iR�

�D��
gf
iR

�
þ X

f¼q;l
g;g0¼1;2;3

i¼1;2

ðYf
gg0

��gf
L
~��g0f

iR þ Y0f
gg0

��gf
L
~��g0f

iR Þ þ H:c:

þ g��ðD��ÞðD��
yÞ þ 1

2
g��ðD��ÞðD��Þ � �ð�y�Þ2 þ�ð�y�Þ2�2 � 	�4

�
; (1.2)

where �� � �mem
�, and any SUð3Þ color-related terms

and indices are suppressed. The field strengths W�� and
B�� are, respectively, those of W� and B�, while U�� �
@�S� � @�S�. These field strengths are all invariant under
~Uð1Þ. The scale-invariant scalar curvature ~R � g�� ~R��

and the Ricci tensor ~R�� � ~R���
� are defined in terms

of the scale-invariant Riemann tensor ~R���
� ¼ @�~���

� �
@�~���

� � ~���

~��


� þ ~���

~��


�, where the scale-
invariant affinity ~� is defined by ~���

� �
ð1=2Þg��ðD�g�� þD�g�� �D�g��Þ with D�g�� ¼
@�g�� þ 2fS�g��. The ~� is ~� � i�2�

y and the scale-
covariant derivative D� is defined on each field by

D��
gf
L ¼

�
@� þ ig
 �W� þ i

2
g0Ygf

L B�

� 1

4
~!�

mn�mn � 3

2
fS�

�
�gf

L ; (1.3a)

D��
gf
iR ¼

�
@� þ i

2
g0Ygf

iRB� � 1

4
~!�

mn�mn � 3

2
fS�

�
�

gf
iR;

(1.3b)

D�� ¼
�
@� þ ig
 �W� � i

2
g0B� � fS�

�
�;

D�� ¼ ð@� � fS�Þ�; (1.3c)

where the generators 
 are for SUð2Þ. The scale-invariant
Lorentz connection ~!�

rs is defined by ~!mrs ¼ ð1=2Þ�
ð ~Cmrs � ~Cmsr þ ~CsrmÞ, where ~C��

r ¼ D�e�
r �D�e�

r

and D�e�
r � @�e�

r þ fS�e�
r.

For readers who are bothered by the absence of the
imaginary unit ‘‘i’’ in front of the Weylon term in (1.3c)
compared with the Uð1Þ coupling by B�, we give the

following simple justification. The usual Uð1Þ current of
a complex scalar � is given by

J� ¼ i½�y@��� ð@��yÞ��: (1.4)

This current J� is Hermitian under a complex conjugation,

because two terms within the square brackets replace each
other with opposite sign, while that sign flip is compen-
sated by the imaginary unit i ! �i. In the case of our

~Uð1Þ, the corresponding current is

K� ¼ �y@��þ ð@��yÞ�: (1.5)

Note the relatively positive sign between these two terms,
and the absence of the imaginary unit in front. Under a
complex conjugation, the two terms replace each other,
without any sign flip. This also justifies the absence of the
imaginary unit in front. Because of this feature, there is no
Hermiticity problem with the minimal coupling of the
Weylon S� to the scalar fields � and � at the

Lagrangian level.
Note that the potential terms3 as the last three terms in

(1.2) are the most general ~Uð1Þ- and SUð2Þ-invariant poly-
nomial combinations of � and �. Additionally, the terms
in the first line with�, � and ~R are the most general scale-
invariant combinations. In our previous work on scale
invariance in the SM [8], local scale invariance [1] was

broken ‘‘by hand’’ with h�i ¼ �=
ffiffiffi
2

p
. In this paper, we

provide a simple scheme to achieve the same goal.

II. EXPRESSING � IN TERMS OF
COMPENSATOR ’

We now show that the original � field is rewritten in
terms of a ‘‘dilaton,’’4 which plays the role of a compen-
sator for local scale symmetry. The � and the dilaton are
related by

� ¼ ��ð1=2ÞMPe
��’; (2.1)

where MP � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�GN

p ’ 2:44� 1018 GeV, and as usual
in gravitational theory, � � 1=MP is the natural unit pro-
viding the dimension of ðmassÞ�1. This choice of ’ is very
natural, because � transforms as � ! e���, while the
dilaton ’ transforms under ~Uð1Þ as

’ ! ’þMP�ðxÞ: (2.2)

Rewriting � in terms of ’ everywhere in the Lagrangian
(1.2), we get the action

3Let us symbolize these potential terms by �Vð�; �Þ.
4We use the quotation marks for dilaton, because in our system

the usual global dilaton-shift symmetry ’ ! ’þ const is re-
placed by the local one (2.2).
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I ¼
Z

d4xe

�
� 1

2
ð��y�þ �M2

Pe
�2�’Þ ~R� 1

4
TrfðW��Þ2g � 1

4
ðB��Þ2 � 1

4
ðU��Þ2

þ X
f¼q;l
g¼1;2;3

�
��gf
L �

�D��
gf
L þ X

i¼1;2

��gf
iR�

�D��
gf
iR

�
þ X

f¼q;l
g;g0¼1;2;3

i¼1;2

ðYf
gg0

��gf
L ��g0f

iR þ Y0f
gg0

��gf
L
~��g0f

iR Þ þ H:c:

þ g��ðD��
yÞðD��Þ þ 1

2
e�2�’ðD�’Þ2 � �ð�y�Þ2 þ�M2

Pe
�2�’ð�y�Þ � 	M4

Pe
�4�’

�
; (2.3)

where D�’ � @�’þ fMPS�, which is invariant (stronger than covariant) under our ~Uð1Þ.
If we redefine S� by �S� � S� þ f�1�@�’, then D�’ ¼ fMP

�S�, and the kinetic term of ’ becomes the mass term of
�S�:

1
2 e

�2�’ðD�’Þ2 ¼ 1
2ðfMPÞ2e�2�’ð �S�Þ2; (2.4)

while the �S�-kinetic term stays form invariant: �ð1=4ÞðU��Þ2 ¼ �ð1=4Þð �U��Þ2. All the covariant derivatives are now

D��
gf
L ¼

�
@� þ igW� � 
þ i

2
g0Ygf

L B� � 3

2
f �S� þ 3

2
�@�’� 1

4
~!�

mn�mn

�
�gf

L ;

D��
gf
iR ¼

�
@� þ i

2
g0Ygf

iRB� � 3

2
f �S� þ 3

2
�@�’� 1

4
~!�

mn�mn��gf
iR;

D�� ¼ ½@� þ igW� � 
� 1

2
g0B� � f �S� þ �@�’��: (2.5)

If @�� ¼ 0, the ’ field is essentially the usual dilaton

also used in string theory [13]. However, in our system ’ is

not really a dilaton, and it serves as the Stückelberg-type
compensator [2] under ~Uð1Þ, as (2.2) clearly shows.

Since we are dealing with a Stückelberg system [2],
there must be a convenient frame where the compensator
’ vanishes. In fact, we can consider a particular scale
transformation with the parameter � ¼ ��’, such that
the transformed field of’ becomes exactly zero:’ ! ’þ
MP� ¼ ’� ’ ¼ 0, In this case, the Weylon field �S� is

invariant, because �S� ¼ f�1�D�’ with the manifestly

invariant derivative D�’. Therefore, under this special

transformation� ¼ ��’, the Lagrangian (2.3) transforms
to the frame, where ’ in all the exponents is set to zero,

while the ’-kinetic term becomes the mass term of �S�.

Also, ’-dependent terms in the covariant derivatives in
(2.5) disappear. In terms of expressions in our original
paper [8], all of these are equivalent to ’ ¼ 0 ) � ¼
MP and � � ffiffiffi

2
p

MP, with the � field now eaten up by the
Weylon. To be more explicit, our final action is

I ¼ R
d4xe

�
� 1

2 ð��y�þM2
PÞ ~R� 1

4 TrfðW��Þ2g � 1
4 ðB��Þ2 � 1

4 ð �U��Þ2 þ P
f¼q;l
g¼1;2;3

�
��gf
L �

� �D��
gf
L þ P

i¼1;2

��gf
iR�

� �D��
gf
iR

�

þ X
f¼q;l

g;g0¼1;2;3
i¼1;2

ðYf
gg0

��
gf
L ��

g0f
iR þ Y0f

gg0
��
gf
L
~��

g0f
iR Þ þ H:c:þ g��ð �D��

yÞð �D��Þ

þ 1

2
ðfMPÞ2ð �S�Þ2 � �ð�y�Þ2 þ�M2

P�
y�� 	M4

P

�
; (2.6)

where the Hilbert action has been produced after we fix
� ¼ 1, while �D� implies the covariant derivatives in (2.5)

with the ’ field set to zero. After all, the Weylon �S�
acquires the mass fMP, the compensator ’ is absorbed
into the longitudinal component of �S�, and the potential
terms are reduced to the Higgs potential in the SM
Vð�; �Þ ! V̂ð�Þ � þ�ð�y�Þ2 ��M2

P�
y�þ 	M4

P, as
in our previous papers [8,14,15].

We mention a subtlety about estimating the mass of �S�.

Strictly speaking, the interpretation of the fourth term from

the end in (2.6) as the mass term of �S� is not quite correct.

This is because the longitudinal component of S� mixes

not only with ’, but also with the Higgs field �, after the
SUð2Þ breaking.
In order to clarify this more correctly, we perform a

Weyl rescaling from the Jordan frame into Einstein frame
with � fixed to be � ¼ 1 [16]:

e�
m !
�ð1=2Þe�m; g�� !
�1g��; e!
�2e;

�1
2e
R!�1

2�
�2eRþ 3

4�
�2
�2eg��ðD�
ÞðD�
Þ

þ��2@�ðeW�Þ;

� e�2�’½1þ��2e2�’ð�y�Þ�: (2.7)

This rescaling gets rid of the multiplications of scalar terms
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in front of the scalar curvature. After this Weyl rescaling,
the bosonic terms in the total action become

IB ¼
Z

d4xe

�
� 1

2
��2eR� 1

4
ðU��Þ2 � 1

4
ðW��Þ2

þ 1

2
~
�1ðD�’Þ2 þ 3

�
ðD�’Þ2 � 1

2
��1@�ðln ~
Þ

�
2

þ 1

2

�
D�

~�y ��y
�
�D�’� 1

2
@�ðln ~’Þ

��
2

� ½�ð ~�y ~�Þ2 ��M2
P
~
�1ð ~�y ~�Þ þ 	M4

P
~
�2�

�
;

(2.8)

where ~� and ~
 are scale-invariant combinations defined
by

~� � 
�ð1=2Þ�; ~
 � ½1� ��2ð ~�y ~�Þ��1: (2.9)

Note that when the Higgs field develops its vacuum

expectation value (VEV) ~�0 � OðMHÞ, the VEV ~
0 of
~
 will be of order Oð1Þ:

~
 0 ¼ ½1� ��2ð ~�y
0
~�0Þ��1 � Oð1Þ: (2.10)

We now can estimate how the �S� mass term is modified by

the kinetic term of ~�0. After expressing in terms of �S�, the
~�-kinetic term does have a contribution to the �S� mass

term, as ð ~�y
0
~�0Þ �S2� � M2

H
�S2�, so that the modified ðmassÞ2

of �S� is now

M2
�S
¼ f2M2

P

�
1þ 2

f2

�
MH

MP

�
2
�
� f2M2

P � M2
P: (2.11)

However, the modification compared with the first leading
term of Oðf2M2

PÞ is negligible suppressed by the factor
ð2=f2ÞðMH=MPÞ2 � 10�32 for f � Oð1Þ, if fine-tuning of
couplings is avoided due to arguments relating to
naturalness.

Other good low-energy aspects in [8] are maintained
here. For example, the right-handed neutrinos �1l

1R ¼
�eR, �

2l
1R ¼ ��R, and �3l

1R ¼ �
R can be introduced into

the SM for a seesaw mechanism. The relevant Yukawa
couplings are [8]

L� ¼ X
g;g0¼1;2;3

i¼1

�
Yl

gg0
��
gl
L��

g0l
iR þ H:c:þ 1

2
YRR

gg0�
gl
iR

TC��
g0l
iR

�
:

(2.12)

In the frame � ¼ MP, i.e., � ¼ ffiffiffi
2

p
MP, there are super-

heavy Majorana masses for the right-handed neutrinos.
The subsequent SUð2Þ breaking gives Dirac masses con-
necting the left- and right-handed neutrinos with the famil-
iar 6� 6 mass matrix

M � ¼ 1ffiffiffi
2

p 0 �Yl
gg0

�Yl
g0g

ffiffiffi
2

p
YRR

gg0

 !
; (2.13)

where � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�MP

2=�
q

’ Oð250 MeVÞ is the SUð2Þ

breaking scale. Six seesaw masses come out as the eigen-
values of this matrix, yielding the three light neutrinos and
three heavy neutrinos. The scale of right-handed neutrino
masses is directly related to MP. The absence of a right-
handed light neutrino is thus attributed to the superheavy
mass of OðMPÞ [8].

III. CHAOTIC INFLATION

Our model has an additional good feature of accommo-
dating chaotic inflation with no extra field. Chaotic infla-
tion via a Higgs doublet in the SM has been recently
discussed in [17]. However, our model is distinguished
from the latter due to local scale invariance in the system.
Even though our original model in [8] does not address

inflation, it contains all the ingredients necessary to ac-
commodate the chaotic inflationary scenario. The standard
model Higgs particle h serves as the inflaton field with a
strong nonminimal coupling � to gravity. Our basic action
is treated in the physical gauge with the following interac-
tion terms [15]:

I ¼
Z

d4xe

�
L̂� 1

2
ð�h2 þM2

PÞRþ 1

2
g��ð@�hÞð@�hÞ

� 1

4
�ðh2 � �2Þ2 �M4

P

�
	� 1

4
�2��1

��
: (3.1)

Here we adopt the particular gauge ’ ¼ 0 as before, and L̂
contains the SM and the massive Weylon ( �S�) particle

interactions. In the physical gauge the effective real

Higgs field h � ffiffiffi
2

p
Re�0 serves as the inflaton developing

a nonzero VEV. After inflation h settles in the minimum of
its potential at the symmetry breaking scale � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�M2

P=�
q

. Compared with M2
P=�, � is small, but large

enough to render h massive. Present-day gravitational
interactions are mediated by the effective Planck mass
squared M2

eff ¼ M2
P þ ��2 such that Meff ’ MP is main-

tained to a very good approximation.
The desirable inflationary scenario requires � � 1. We

can perform a newWeyl rescaling g�� ! ð1þ ��2h2Þg��

in order to reach the physical frame in which the h2

interactions with the scalar curvature are absent. This is a
Weyl rescaling for field redefinitions that is separate from
our original local scale transformation ~Uð1Þ, because the
latter is now ‘‘fixed’’ under our particular gauge ’ ¼ 0.
The action I in the physical frame is

I !
Z

d4xe

�
~L� 1

2
M2

PRþ 1

2
g��ð@�H Þð@�H Þ

� 1

4
�ð1þ ��2h2Þ�2ðh2 � �2Þ2

�
; (3.2)

where g��, R and H are all calculated in the new frame.

The H is given in terms of h as dH =dh ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��2h2 þ 6�2�2h2

p
=ð1þ ��2h2Þ, whose exact solu-

tion is [15]
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H ¼MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�þ 1

�

s
cosh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2ð6�þ 1Þh2 þ 1

q

�
ffiffiffi
6

p
MP

2
ln

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð6�þ 1Þh2 þM2

P

q
þ ffiffiffi

6
p

�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð6�þ 1Þh2 þM2

P

q
� ffiffiffi

6
p

�h

3
75: (3.3)

In the paradigm of the inflationary scenario, initially the
inflaton field is larger than MP and slow rolls down the
potential, signifying the inflationary phase characterized
by the rapid exponential expansion of the Universe. The
end of inflation occurs when the inflaton reaches the mini-
mum of the potential where it loses energy via rapid
oscillations. The energy released results in particle produc-
tion that interact strongly and come to thermal equilibrium
at some temperature T? also known as the reheat tempera-
ture. The latter is restricted to be � 2:8� 1016 GeV [18]
to respect the WMAP bound on tensor fluctuations [19].
The two regions of interest are when h � MP=

ffiffiffiffi
�

p
and

h � MP=
ffiffiffiffi
�

p
. Our solution for H implies that in the first

case H ’ h, while in the second case h ’ ðMP=
ffiffiffiffi
�

p Þ�
exp½H =ð ffiffiffi

6
p

MPÞ�. In these two extreme cases the potential
takes the following forms:

VðhÞ ’
8<
:

�M4
P

4�2 ð1� 2M2
P

�h2
Þ�2 ! �M4

P

4�2 ðfor h�MP=
ffiffiffiffi
�

p Þ;
1
4�h

4 ðfor �� h<MP=
ffiffiffiffi
�

p Þ:
(3.4)

The customary slow roll parameters "̂, �̂ and �̂ [20] in our
model are [15]

"̂ ¼ M2
P

2V2

�
dV

dH

�
2 ’ 4M4

P

3�2h4
;

�̂ ¼ M2
P

V

�
d2V

dH 2

�
’ � 4M2

P

3�h2
;

�̂2 ¼ M4
P

V2

�
d3V

dH 3

��
dV

dH

�
’ 16M4

P

9�2h4
:

(3.5)

Slow roll ends when �̂ ’ 1, so hend ’ ð4=3Þ1=4MP=
ffiffiffiffi
�

p
at

the end of inflation. The e-foldings number in the inflation
era, when h evolves from h to hend, is

N ¼ �
Z hend

h

1

MP

1ffiffiffiffiffiffi
2�̂

p dH ’ 3�

4M2
P

ðh2 � h2endÞ: (3.6)

The numerical value of e-foldings required depends on the
Cosmic Background Explorer (COBE) normalization [21].
WithN � NCOBE ¼ 60 and h � hCOBE ¼ 4NCOBE=ð3

ffiffiffiffi
�

p Þ,
we get h2COBE=h

2
end ’ 4NCOBE=3 � 1. The spectral index

ns, the ratio r of the tensor to scalar perturbations, and the
spectral index running nr can now be calculated from ns ¼
1� 6�̂þ 2�̂, r ¼ 16�̂, nr ¼ 16�̂ �̂�24�̂2 � 2�̂2 for h ’
hCOBE and at wave number k ’ 0:002 Mpc�1 [22]. We find
ns ’ 1� 8ð4NCOBE þ 9Þ=ð4NCOBEÞ2 ’ 0:97 and r ’
12=ðNCOBEÞ2 ’ 0:0033 and nr ’ �2=NCOBE ¼ �0:0006
and fall in the acceptable regime of parameter space.

IV. CONCLUDING REMARKS

Our model has, in a sense, solved the long-standing
puzzle about the breaking of local scale invariance at the
classical level without Higgs mechanism. It has been well
known that scale invariance [23] or conformal invariance
[24] can be broken by quantum corrections. What we have
shown above is that by the Stückelberg mechanism [2],
Weyl’s local scale invariance [1] is broken at the classical
level. In particular, this breaking is neither explicit nor
artificially put by hand [8].
The main aspects in our original papers [8] are intact,

such as theWeylon not coupling to fermions in their kinetic
terms. This also implies the absence of the ~Uð1Þ anomaly.
Even though our potential terms are reduced exactly to the
SM Higgs potential, the Weylon still couples to the Higgs
doublet�. However, theWeylon-� couplings are different
from vector-fermion minimal couplings, because of either
derivative couplings, e.g., f�yS�@��, or the two-Weylon

coupling f2�y�S�S�. Hence its effective coupling is

suppressed by ðmomentumÞ=MP, and is very hard to be
detected by the near-future collider experiments.5

In our system, the dilaton ’ automatically becomes a
compensator. No matter how many general complex sca-
lars are present, it is always one real scalar singled out that
becomes the compensator. Hence in any locally scale-
invariant system with a gauge field S�, if at least one real

scalar is present, that scalar becomes a compensator, and
local invariance is necessarily broken by the Stückelberg
mechanism [2].
The identification of a dilaton with a compensator is also

motivated by our recent success of axion and dilaton
regarded as compensators with N ¼ 1 supersymmetry
[25,26]. The success with both global [25] and local [26]
supersymmetry provides supporting evidence for the con-
sistency of identifying the dilaton with a Stückelberg com-
pensator [2].
Finally we address the issue of quantum corrections in

our model. There are several issues to consider. First,
gravitational interactions are nonrenormalizable. Second,
one’s prejudice in the choice of the physical frame as
opposed to the choice of any other frame is ambiguous.
Third, the choice of a particular gauge in calculating
physically relevant quantities may induce ambiguities.
Fourth, there remains the problem of choosing the cutoff.
In the absence of a clear procedure, we follow the philoso-
phy advocated by Donoghue [27] and further elaborated
upon by Robinson andWilczek [28]. We treat our model as
an effective theory of gravity. In this regard, quantum
corrections are computed in the Einstein frame. One loop

5Notice, however, that the mass factor in (2.1) can be arbitrary,
but not necessarilyMP, even though the latter is the most natural
scale. That mass can be much lighter than MP, and so can be the
Weylon mass more detectable in the near future. The Hilbert
action is still induced by an appropriate value of � .
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quantum corrections due to gravitational and other SM
interactions give small contributions relative to the physi-
cal quantities calculated at the tree level. Our main results
will only be marginally shifted due to these corrections, but
the broader features of the model will still be upheld.

Fifth, we need to mention the issue of a trace (confor-
mal) anomaly, not arising from the chiral fermion loops,
that is different from the one mentioned above. A trace
anomaly can arise from various fields with various spins.

Even though we do not address ourselves to this issue in
this paper, we cite the works [12,29,30] for basic trace
anomaly computations, or the paper by Christensen and
Duff [31], where various trace anomaly coefficients are
listed. Since some fields, such as the third-rank field 
���,

have anomaly coefficients with signs opposite to those of
the graviton e�

m and the quarks and leptons, we have good

chance that the total trace anomaly is cancelled.
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