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The classical counterpart of noncommutative quantum mechanics is a constrained system containing

only second-class constraints. The embedding procedure formulated by Batalin, Fradkin and Tyutin (BFT)

enables one to transform this system into an Abelian gauge theory exhibiting only first class constraints.

The appropriateness of the BFT embedding, as implemented in this work, is verified by showing that there

exists a one to one mapping linking the second-class model with the gauge invariant sector of the gauge

theory. As is known, the functional quantization of a gauge theory calls for the elimination of its gauge

freedom. Then, we have at our disposal an infinite set of alternative descriptions for noncommutative

quantum mechanics, one for each gauge. We study the relevant features of this infinite set of corre-

spondences. The functional quantization of the gauge theory is explicitly performed for two gauges and

the results compared with that corresponding to the second-class system. Within the operator framework

the gauge theory is quantized by using Dirac’s method.
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I. INTRODUCTION

We shall be concerned here with quantum systems
whose dynamics is described by a self-adjoint

Hamiltonian operator ĤðQ̂; P̂Þ made up of the Cartesian

coordinate operators Q̂j, j ¼ 1; . . . ; N and their canoni-

cally conjugate momenta P̂j, j ¼ 1; . . . ; N. However, un-

like the usual case, coordinates and momenta operators are
supposed to obey the noncanonical equal-time commuta-
tion rules

½Q̂l; Q̂j� ¼ �2i@�lj; (1.1a)

½Q̂l; P̂j� ¼ i@�l
j; (1.1b)

½P̂l; P̂j� ¼ 0: (1.1c)

The distinctive feature is that the coordinate operators do
not commute among themselves. The lack of noncommu-
tativity of the coordinates is parametrized by the real
antisymmetric N � N constant matrix k � k . In Refs. [1–
5] one finds specific examples of noncommutative systems
whose quantization has been carried out. The conditions
for the existence of the Born series and unitarity were
investigated in Ref. [6] while a general overview of the
connection linking noncommutative theories with con-
strained systems was presented in [7]. As for the unique-
ness of the functional description, when using the time-
slice definition for the phase space path integral, it was
established in Ref. [8].

The classical counterpart of a quantum system involving
noncommuting coordinates must necessarily be a con-
strained system [9]. Indeed, the equal-time algebra in Eq.
(1.1a) could not have been abstracted from a Poisson
bracket algebra, simply because the Poisson bracket of

two coordinates vanishes. Now, the problem of finding a
constrained system mapping onto the noncommutative
theory specified in (1.1) has already been solved [16]. Its
classical dynamics is described by the Lagrangian [17]

L ¼ avj _q
j � h0ðqj; avjÞ þ a2 _vi�ijv

j; (1.2)

where repeated Latin indices sum from 1 to N. The con-
straint structure of this system reduces to the primary
second-class constraints

Gi � pi � avi � 0; (1.3a)

Ti � �i � a2�ijv
j � 0; (1.3b)

where pi (�i) is the momentum canonically conjugate to
the generalized coordinate qi (vi) and the sign of weak
equality ( � ) is being used in the sense of Dirac [10]. As
for the canonical Hamiltonian one finds that

Hð0Þðq; pÞ ¼ h0ðq; pÞ: (1.4)

We shall substantiate in the next section the fact that the
equal-time algebra in Eq. (1.1) is, in fact, the quantum
counterpart of the Dirac bracket algebra arising in connec-
tion with the model specified in Eq. (1.2).
Now, it is known that by appropriately enlarging the

phase space of a second-class theory one obtains a first
class one (a gauge theory). Then, the formulation of the
resulting gauge theory in different gauges yields different
realizations of the initial second-class model. In Sec. II we
display and discuss the results arising from applying the
embedding procedure of Batalin, Fradkin and Tyutin
(BFT) [18–20] to the second-class system that gives origin
to noncommutative quantum mechanics, namely, the one
specified by the Lagrangian in Eq. (1.2). The result is an
Abelian gauge theory whose gauge invariant sector maps
isomorphically onto the second-class model. This is shown
in Sec. III. Section IV is dedicated to formulate the phase
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space functional quantization of the second and first class
theories. The gauge theory is quantized in different gauges
and the results compared with those obtained for the
second-class one. In Sec. V we use the method put forward
by Dirac [10] to implement the operator quantization of the
BFT extension of noncommutative quantum mechanics.
The outcomes from this procedure will be shown to be in
agreement with the results obtained from the operator
quantization of the initial second-class model. Section VI
contains the conclusions.

II. BFT EMBEDDING

Our strategy follows closely that in Refs. [18–21]. We
start by compactifying the notation as follows

q� �
�
qj; 1 � � � N
vj; N þ 1 � � � 2N

; (2.1)

p� �
�
pj; 1 � � � N
�j; N þ 1 � � � 2N

: (2.2)

Clearly, p� is the momentum canonically conjugate to the

coordinate q� obeying the canonical Poisson bracket (PB)
algebra ½q�; p��PB ¼ ��

�.
We introduce, in the sequel, the singular 2N � 2N ma-

trix

jj�jj � 0N ag�;��N

0N a2���N;��N

" #
; (2.3)

where repeated Greek indices sum from 1 to 2N and g��

designates the Euclidean metric of the 2N dimensional
space. One can verify that

T ð0Þ
� � p� ����q

� ¼
�
Gi; 1 � � � N
Ti; N þ 1 � � � 2N

:

(2.4)

Hence, the elements (���) of the antisymmetric nonsin-

gular Faddeev-Popov matrix ( k � k ) are found to read

��� � ½T ð0Þ
� ;T ð0Þ

� �PB ¼ ��� ���� ¼ ���� (2.5)

or, more explicitly,

k � k¼ 0N �ag�;��N

ag��N;� �2a2���N;��N

" #
: (2.6)

We have already at hand all the ingredients needed for
computing the basic Dirac brackets (DB). We skip the
details and quote

½q�; q��DB ¼ ð��1Þ�� )
8><
>:
½qi; qj�DB ¼ �2�ij

½qi; vj�DB ¼ 1
a g

ij

½vi; vj�DB ¼ 0;

; (2.7)

½q�; p��DB ¼ �
�
� þ ð��1Þ�����

)

8>>>><
>>>>:

½qi; pj�DB ¼ �i
j

½qi; �j�DB ¼ �a�ij

½vi; pj�DB ¼ 0
½vi; �j�DB ¼ 0

; (2.8)

½p�; p��DB ¼ ���ð��1Þ����� ¼ 0

)
8><
>:
½pi; pj�DB ¼ 0
½pi; �j�DB ¼ 0
½�i; �j�DB ¼ 0

; (2.9)

where

k � k�1¼ �2��;�
1
a g�;��N

� 1
a g��N;� 0N

" #
: (2.10)

Within the DB algebra the constraints hold as strong
identities and may be used, for instance, to eliminate from
the game the sector of the phase space spanned by the
variables v and �. As for any two functions of the remain-
ing variables, fðq; pÞ and gðq; pÞ say, the correspondence
rule

½F̂; Ĝ� ¼ i@½f; g�DBjq!Q̂
p!P̂

(2.11)

provides us with a faithful quantization procedure. As
usual, a supplementary ordering prescription may be
needed. We emphasize that this rule, together with
Eqs. (2.7), (2.8), and (2.9), allows for recovering the
equal-time commutator algebra in Eq. (1.1) and, therefore,
confirms the assertion made in Sec. I about the Lagrangian
in Eq. (1.2) being the classical counterpart of noncommu-
tative quantum mechanics.
The first step towards the BFTembedding of the second-

class system under scrutiny consists in enlarging the origi-
nal phase space by adding 2N new coordinates (u�) and
their corresponding canonically conjugate momenta (s�)

[22]. The quantities of interest are, nevertheless, the com-
posite variables

z� � � 1

2
u� þ!��s�; (2.12)

where !�� is a 2N � 2N real constant matrix which, so
far, remains at our disposal. Since ½u�; s��PB�

¼ ��
� one

obtains [23]

½z�; z��PB�
¼ ð��1Þ��; (2.13)

where we have chosen, once and for all,

!�� � ð��1Þ��: (2.14)

We shall seek next for extensions of the constraints,

T ð0Þ
� ðq; pÞ ! T �ðq; p; zÞ, and of the Hamiltonian,

Hð0Þðq; pÞ ¼ h0ðq; pÞ ! H ðq; p; zÞ, verifying the strong
involution algebra
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½T �ðq; p; zÞ;T �ðq; p; zÞ�PB�
¼ 0; (2.15a)

½T �ðq; p; zÞ;H ðq; p; zÞ�PB�
¼ 0; (2.15b)

and the boundary conditions T �ðq; p; z ¼ 0Þ ¼
T ð0Þ

� ðq; pÞ, H ðq; p; z ¼ 0Þ ¼ Hð0Þðq; pÞ. By definition,
Eqs. (2.15) specify an Abelian gauge theory [24]. In par-
ticular, we are interested in extensions of the form [18–21]

T �ðq; p; zÞ ¼ T ð0Þ
� ðq; pÞ þ Xþ1

M¼1

T ðMÞ
� ðq; p; zÞ; (2.16a)

H ðq; p; zÞ ¼ Hð0Þðq; pÞ þ Xþ1

M¼1

HðMÞðq; p; zÞ; (2.16b)

where

T ðMÞ
� ðq; p; zÞ ¼ XðMÞ

��1...�M
ðq; pÞz�1 . . . z�M; (2.17)

and

HðMÞðq; p; zÞ ¼ YðMÞ
�1...�M

ðq; pÞz�1 . . . z�M: (2.18)

The problem consists, of course, in determining X and Y.
We concentrate first on Eq. (2.15a). By substituting

Eq. (2.16a) and (2.17) into Eq. (2.15a) and, then, isolating
the terms of order z0 one obtains

��� þ Xð1Þ
��ð��1Þ��Xð1Þ

�� ¼ 0; (2.19)

where we have taken into account Eq. (2.5). It is clear that

Xð1Þ
�� ¼ ��� ¼ ���� (2.20)

solves Eq. (2.19). The relevant point to be noticed in

connection with this solution is that Xð1Þ
�� does not depend

on q and/or p. This implies that

½T ð0Þ
� ðq; pÞ;T ð1Þ

� ðq; p; zÞ�PB�
¼ 0; (2.21)

which in combination with the symmetry assumptions

XðMÞ
��1...�j...�k...�M

ðq; pÞ ¼ þXðMÞ
��1...�k...�j...�M

ðq; pÞ; (2.22a)

XðMÞ
��1...�j...�k...�M

ðq; pÞ ¼ �XðMÞ
�j�1...�...�k...�M

ðq; pÞ; 8 �j;

(2.22b)

yields

XðMÞ
��1...�j...�k...�M

ðq; pÞ ¼ 0 ) T ðMÞ
� ðq; p; zÞ ¼ 0;

8 M � 2:
(2.23)

Hence, Eq. (2.16a) reduces to

T �ðq; p; zÞ ¼ T ð0Þ
� ðq; pÞ þT ð1Þ

� ðq; pÞ
¼ p� ����q

� þ ���z
�; (2.24)

where we have substituted T ð0Þ
� ðq; pÞ in accordance with

Eq. (2.4). Moreover, Eqs. (2.3) and (2.10) allow for split-
ting Eq. (2.24) as follows

T jðq; p; zÞ ¼ pj � avj � agjkz
Nþk; (2.25a)

T Nþjðq; p; zÞ ¼ �j þ azj � a2�jkðvk þ 2zNþkÞ: (2.25b)

The problem of finding the BFT extension of the con-
straints is over.
What remains to be done is to find an extension for the

Hamiltonian. The fact that only T ð1Þ
� ðq; p; zÞ is nonvanish-

ing simplifies the set of recurrence relations arising from
Eq. (2.15b). For a generic M one finds

½T ð0Þ
� ðq; pÞ; HðMÞðq; p; zÞ�PB�

þ ½T ð1Þ
� ðq; p; zÞ; HðMþ1Þðq; p; zÞ�PB�

¼ 0: (2.26)

We claim that (see Eq. (2.18))

YðMÞ
�1...�M

ðq; pÞ ¼ 0; (2.27)

when any of the subscripts takes values in the interval ½N þ
1; 2N�, together with

YðMÞ
i1...iM

ðq; pÞ ¼ 1

M!

@MHð0Þðq; pÞ
@qi1 � � � @qiM ; (2.28)

solve Eq. (2.26). If true, this implies that

H ðq; p; zÞ ¼ Hð0Þðq; pÞ þ Xþ1

M¼1

HðMÞðq; p; zÞ

� : Hð0Þðqþ z; pÞ (2.29)

since

HðMÞðq; p; zÞ ¼ YðMÞ
i1...iM

ðq; pÞzi1 . . . ziM

¼ 1

M!

@MHð0Þðq; pÞ
@qi1 � � � @qiM zi1 . . . ziM ; (2.30)

as it follows from Eqs. (2.16b), (2.18), (2.27), and (2.28).
Thus, the extension of the Hamiltonian is obtained by
translating qi ! qi þ zi. It remains to be shown that the
assertions made in this paragraph indeed hold. To that end
we shall follow a two steps procedure. We first set� ¼ i in
Eq. (2.26) which, then, goes into

½T ð0Þ
i ðq; pÞ; HðMÞðq; p; zÞ�PB�

þ ½T ð1Þ
i ðq; p; zÞ; HðMþ1Þðq; p; zÞ�PB�

¼ 0: (2.31)

It must be kept in mind thatT ð0Þ
i ðq; pÞ as well asHð0Þðq; pÞ

only depend on those qi’s and pi’s for which i � N. In

view of Eq. (2.30), the same applies for HðMÞðq; p; zÞ. Let
us consider the problem of evaluating the first term in the
left hand side of Eq. (2.31). By bringing into it the explicit
form in Eq. (2.4) and after recalling Eqs. (2.3) one arrives at

½T ð0Þ
i ðq; pÞ; HðMÞðq; p; zÞ�PB�

¼ � @HðMÞðq; p; zÞ
@qi

: (2.32)

The evaluation of the second term in the left hand side of
Eq. (2.31) is more involved. To begin with one reads
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T ð1Þ
i ðq; p; zÞ directly from Eq. (2.24) and, therefore, writes

½T ð1Þ
i ðq; p; zÞ; HðMþ1Þðq; p; zÞ�PB�

¼ YðMþ1Þ
i1...iMþ1

ðq; pÞ�i�½z�; zi1 . . . ziMþ1�; (2.33)

where Eq. (2.30) has been taken into account. The compu-
tation of the commutator in the right hand side of this last
equation, which requires the repeated use of Eq. (2.13),
yields

�i�½z�; zi2 . . . ziMþ1�PB�
¼ �i1

i z
i2 � � � ziMþ1 þ . . .

þ zi1 . . . ziM�iMþ1

i : (2.34)

We observe that YðMÞ
i1...iM

ðq; pÞ is symmetric under the ex-

change of any pair of indices. This greatly simplifies the
expression arising after the replacement of Eq. (2.34) into
Eq. (2.33). It is found to read

½T ð1Þ
i ðq; p; zÞ; HðMþ1Þðq; p; zÞ�PB�

¼ ðMþ 1ÞYðMþ1Þ
ii1...iM

ðq; pÞzi1 . . . ziM

¼ @YðMÞ
i1...iM

ðq; pÞ
@qi

zi1 . . . ziM ¼ þ @HðMÞðq; p; zÞ
@qi

: (2.35)

Clearly, Eqs. (2.32) and (2.35) assert the validity of Eq.
(2.31). Secondly, we set� ¼ N þ i in Eq. (2.26) and, thus,
obtain

½T ð0Þ
Nþiðq; pÞ; HðMÞðq; p; zÞ�PB�

þ ½T ð1Þ
Nþiðq; p; zÞ; HðMþ1Þðq; p; zÞ�PB�

¼ 0: (2.36)

Furthermore, Eqs. (2.3) and (2.4) lead to

½T ð0Þ
Nþiðq; pÞ; HðMÞðq; p; zÞ�PB�

¼ ½�i � a2�ikv
k; HðMÞðq; p; zÞ�PB�

¼ 0; (2.37)

since HðMÞðq; p; zÞ does not depend on the variables be-
longing to the sector N þ 1 � � � 2N. As for the evalu-
ation of the second term in the left hand side of Eq. (2.36),
we invoke Eqs. (2.13), (2.24), and (2.30) to get

½T ð1Þ
Nþiðq; p; zÞ; HðMþ1Þðq; p; zÞ�PB�

¼ YMþ1
i1���iMþ1

ðq; pÞ�Nþi�½z�; zi1 . . . ziMþ1�
¼ YMþ1

i1...iMþ1
ðq; pÞð�i1

Nþiz
i2 � � � ziMþ1 þ � � �

þ zi1 . . . ziM�iMþ1

NþiÞ ¼ 0; (2.38)

since the indices in each Kronecker symbol belong to non
overlapping sectors. Therefore, the left hand side of
Eq. (2.36) vanishes identically which completes the pur-
ported proof.

To summarize, we have presented in this Section the
BFT embedding of the second-class theory that gives ori-
gin to noncommutative quantum mechanics. Our findings
are not unique but, however, a different choice for !��

leads to an extension differing from ours by a canonical
transformation [18–20].

III. THE GAUGE INVARIANT SECTOR

Let us see what we learn from the counting of the
degrees of freedom in the second-class model as well as
in its BFT extension. The number of dimensions of the
phase space of the second-class theory is d½�� ¼ 4N while
the number of independent phase space variables is 4N �
2N ¼ 2N, being 2N the number of second-class con-
straints. As for the gauge theory, the number of dimensions
of its phase space is d½�� ¼ 8N whereas the number of
independent phase space variables is 8N � 4N ¼ 4N,
where 4N includes the first class constraints and the gauge
conditions. Therefore, it is not self-evident that both mod-
els describe the same physical reality. To show that this is
indeed the case we shall start by constructing the physical
phase space which is the one spanned by gauge indepen-
dent degrees of freedom. We shall derive, afterwards, the
PB algebra fulfilled by these phase space coordinates.
Also, the constraints and the Hamiltonian will be written
in terms of gauge invariant phase space variables. As we
shall see, through this procedure one uniquely recovers the
Hamiltonian formulation of the second-class model.
To begin with, we recall that the generator of infinitesi-

mal gauge transformations (G) is given by the expression
[11,25]

G ¼ ��T �; (3.1)

where ��, � ¼ 1; . . . ; 2N, denote a set of independent
infinitesimal gauge parameters and T � is given at Eq.

(2.24). Then, under infinitesimal gauge transformations
the q’s, p’s and z’s change, respectively, as

��q� ¼ ½q�;G�PB�
¼ ��; (3.2a)

��p� ¼ ½p�;G�PB�
¼ �	��

	

)
� ��pi ¼ 0

���i ¼ a�i � a2�ik�
Nþk

; (3.2b)

��z� ¼ ½z�;G�PB�
¼ ���: (3.2c)

Hence, the composite objects Q� and P�,

Q� � q� þ z�; (3.3a)

P� � p� þ z���� )
�
Pi ¼ pi

PNþi ¼ �i þ azi � a2�ikz
Nþk

;

(3.3b)

remain invariant under gauge transformations. We conjec-
ture that they serve for spanning the physical phase space.
To confirm this we first evaluate their PB algebra. The
calculations are straightforward and yield
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½Q�;Q��PB�
¼ ð��1Þ��; (3.4a)

½Q�; P��PB�
¼ ��

� þ ð��1Þ�����; (3.4b)

½P�; P��PB�
¼ ���ð��1Þ����� ¼ 0; (3.4c)

which exactly duplicates the DB algebra of the correspond-
ing variables spanning the phase space of the second-class
system (see Eqs. (2.7), (2.8), and (2.9)). We emphasize that
the comparison is between PB’s involving gauge invariant
quantities belonging to the first class system with DB’s
involving the corresponding counterparts in the second-
class one.

However, to establish the equivalence between the origi-
nal second-class theory and its BFT extension demands
further work. In fact, we must investigate the form assumed
by the first class constraints and the Hamiltonian when
written in terms of the gauge invariant phase space coor-
dinates defined at Eq. (3.3). Let us first concentrate on the
constraints. We notice that Eqs. (2.5), (2.24), and (3.3) lead
to

T �ðq; p; zÞ ¼ P� ����Q
� ¼ T ð0Þ

� ðQ;PÞ; (3.5)

in agreement with Eq. (2.4). As for the Hamiltonian,

Eqs. (2.29) and (3.3) yield

H ðq; p; zÞ ¼ Hð0ÞðQ;PÞ; (3.6)

which completes the desired proof of equivalence. In fact,
we have carried out a complete reconstruction of the
Hamiltonian formulation of the dynamics of the initial
second-class model.
One should notice that the transition from q, p, z to Q

and P implies in a dimensional reduction process and,
hence, it is not a canonical transformation.

IV. FUNCTIONAL QUANTIZATION AND
QUANTUM EQUIVALENCE

We shall next be concerned with the equivalence be-
tween the quantized version of the second-class model and
that associated with the gauge theory arising from the BFT
embedding.
It follows from the specialized literature on systems with

constraints [11–14] that the phase space path integral
yielding the generating functional of Green functions (Z)
is, in the case of the second-class model,

Z ¼ N
Z
½D2Nq�

Z
½D2Np�

�Y2N
�¼1

�½T ð0Þ
� ðq; pÞ�

��Y
t

detk � k
�
1=2

exp

�
i

@

Z tf

tin

dt½p� _q� �Hð0Þðq; pÞ�
�

¼ N
Z
½D2Nq�

Z
½D2Np�

�Y2N
�¼1

�½T ð0Þ
� ðq; pÞ�

�
exp

�
i

@

Z tf

tin

dt½p� _q� �Hð0Þðqi; piÞ�
�

¼ N
Z
½DNq�

Z
½DNp� exp

�
i

@

Z tf

tin

dt½pi _q
i þ _pi�

ijpj �Hð0Þðqi; piÞ�
�
; (4.1)

where in going from the second to the third term of the
equality we took into account that k � k is an irrelevant
constant matrix (see Eq. (2.6)). Moreover, for arriving to
the last term of the equality we explore the fact that the lack
of dependence of Hð0Þ upon the variables q�, p�, � ¼
N þ 1; . . . ; 2N, allows for using the constraints to integrate
out the just mentioned phase space sector.

As for the gauge theory obtained through the BFT
scheme one has that [11–14]

Z
 ¼ N 


Z
½D2Nq�

Z
½D2Np�

Z
½D2Nu�

Z
½D2Ns�

�
�Y2N
�¼1

�½T �ðq; p; zÞ�
��Y2N

�¼1

�½
�ðq; p; zÞ�
�

�
�Y

t

det½T �; 

��PB�

�
exp

�
i

@

Z tf

tin

dt½p� _q� þ s� _u�

�Hð0Þðqi þ zi; piÞ�
�
: (4.2)

Here, N 
 is a normalization constant whereas 
 ¼

ðq; p; zÞ denotes a set of arbitrarily chosen gauge func-

tions. The question now posses itself: does the right hand
side of Eq. (4.2) falls back into that in Eq. (4.1), for any 
?
We shall illustrate the situation for two different gauges.
The first gauge to be analyzed, commonly referred to as

the unitary gauge, is specified by the subsidiary conditions


� ¼ z� � 0: (4.3)

Then, Eqs. (2.13), (2.24), and (4.3) lead to

det½T �; 

��PB�

¼ ��
� )

�Y
t

det½T�; 

��PB�

�
¼ 1:

(4.4)

We notice that the T ’s, 
’s and H depend on the variables
u and s only through the combination z� ¼ �1=2u� þ
ð��1Þ��s�. This strongly suggests the convenience in per-
forming the change of dummy integration variables u� !
u0� ¼ z�, s� ! s0� ¼ s�. The path integrals on s0 de-

couple from the rest and can be explicitly evaluated. One
ends up with
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Zz¼0 ¼ N
Z
½D2Nq�

Z
½D2Np�

Z
½D2Nz�

�
�Y2N
�¼1

�½T �ðq; p; zÞ�
��Y2N

�¼1

�½z�
�

� exp

�
i

@

Z tf

tin

dt

�
p� _q� þ 1

2
z���� _z

�

�Hð0Þðqi þ zi; piÞ
��
: (4.5)

The z-integration is straightforward and yields

Zz¼0 ¼ N
Z
½D2Nq�

Z
½D2Np�

�Y2N
�¼1

�½T ð0Þ
� ðq; pÞ�

�

� exp

�
i

@

Z tf

tin

dt½p� _q� �Hð0Þðqi; piÞ�
�
: (4.6)

As in the case of the second-class system we use the
constraints to integrate out the variables q�, p�, � ¼ N þ
1; . . . ; 2N, which send us back to Eq. (4.1), i.e.,

Z z¼0 ¼ N
Z
½DNq�

Z
½DNp� exp

�
i

@

Z tf

tin

dt½pi _q
i

þ _pi�
ijpj �Hð0Þðqi; piÞ�

�
: (4.7)

For our present purposes, the unitary gauge is the easiest
one to deal with because the gauge conditions (4.3) explic-
itly kill the variables responsible for bringing the gauge
freedom into play. On the other hand, it is also worth
mentioning that our proof of equivalence is model inde-
pendent. This is due to the fact that all that is required for
obtaining the BFT extension of the Hamiltonian is to
perform the translation q ! qþ z.

Next in the sequel is the gauge


� ¼ q� � 0: (4.8)

By starting from Eqs. (2.24) and (4.8) we obtain again a
functional determinant that reduces to a nonvanishing ir-
relevant constant, i.e.,

det½T �; 

��PB�

¼ ���
� )

�Y
t

det½T�; 

��PB�

�

¼ nonvanishing constant: (4.9)

As for the results obtained in connection with the integra-
tion on the variables s they remain as before. This enables
us to write Eq. (4.2) as

Zq¼0 ¼ N
Z
½D2Nq�

Z
½D2Np�

Z
½D2Nz�

�
�Y2N
�¼1

�½p� ����q
� þ ���z

��
��Y2N

�¼1

�½q�
�

� exp

�
i

@

Z tf

tin

dt

�
p� _q� þ 1

2
z���� _z

�

�Hð0Þðqi þ zi; piÞ
��
; (4.10)

where Eq. (2.24) has been taken into account. The integra-
tions on q’s and p’s can be carried out at once and yield

Zq¼0 ¼ N
Z
½D2Nz�

� exp

�
i

@

Z tf

tin

dt

�
1

2
z���� _z

� �Hð0Þðzi; azNþiÞ
��

¼ N
Z
½D2Nz� exp

�
i

@

Z tf

tin

dt

�
a

2
zNþi _z

i � a

2
zi _zNþi

þ a2 _zNþi�
ijzNþj �Hð0Þðzi; azNþiÞ

��
(4.11)

which, after relabeling azNþi ! pi, z
i ! qi and neglecting

a surface term, goes into

Zq¼0 ¼ N
Z
½DNq�

Z
½DNp�

� exp

�
i

@

Z tf

tin

dt½pi _q
i þ _pi�

ijpj �Hð0Þðqi; piÞ�
�

(4.12)

in agreement with Eq. (4.1). Again, the proof of equiva-
lence does not call for restrictions on the structure of the
Hamiltonian.
Up to this point we have, loosely speaking, analyzed the

quantum equivalence between the second and the first class
theories for two kind of extreme gauges. First, the gauge
conditions were chosen so as to eliminate the variables that
were not present in the second-class model. It is then
natural to expect that the gauge theory falls back into the
second-class one. Second, the gauge conditions set to zero
the basic variables (q). The corresponding canonically
conjugate momenta (p) were also integrated out.
Nevertheless, the variables zi and zNþi took over, respec-
tively, the roles of q and p allowing for the reconstruction
of the original second-class theory.

V. OPERATOR QUANTIZATION

What comes next is the quantization of the gauge theory
within the operator approach and its relationship with the
outcomes obtained for the second-class model when sub-
jected to the same scheme of quantization.
The gauge theory will be quantized by using the method

put forward by Dirac [10] which, unlike the functional
method, does not demand for the elimination of the gauge
freedom. The main ingredients are: (i) the physical states
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(j�ðtÞi) are required to fulfil

T̂ �ðQ̂�; P̂�; Ẑ
�Þj�i ¼ 0; (5.1)

while (ii) the dynamics is controlled by the equation

Ĥ ð0ÞðQ̂i þ Ẑi; P̂iÞj�ðtÞi ¼ i@
dj�ðtÞi

dt
: (5.2)

Needless to say, T̂ �ðQ̂�; P̂�; Ẑ
�Þ and Ĥð0ÞðQ̂i þ Ẑi; P̂iÞ are

the quantum counterparts of Eqs. (2.24) and (2.29), respec-
tively. We recall that, within Dirac’s method of quantiza-
tion, the basic operators obey an equal-time algebra
abstracted from the corresponding Poisson bracket algebra,
i.e.,

½Â; B̂� ¼ i@½a; b�PB�
ja!Â
b!B̂

; (5.3)

where a and b may either be qi, vi, pi, �i, u
� or s�, while

Â and B̂ may either denote Q̂i, V̂i, P̂i, �̂i, Û
� or Ŝ�.

It is not difficult to convince oneself that the above
implies that Eqs. (2.29) and (2.30) may be cast, at the
quantum level,

Ĥ ð0ÞðQ̂i þ Ẑi; P̂iÞ ¼
X1
M¼0

1

M!

@MĤð0ÞðQ̂i; P̂iÞ
@Q̂i1 � � �@Q̂iM

Ẑi1 � � � ẐiM :

(5.4)

We emphasize that any reordering in the right rand side of
Eq. (5.4) would give rise to the appearance of products of c-

number antisymmetric factors i@ð�ð�1ÞÞij [see Eq. (2.13)]
which can be disregarded in view of the symmetry of the

coefficient operator @MĤð0ÞðQ̂i;P̂iÞ
@Q̂i1 ���@Q̂iM

.

Let us now return to Eq. (5.1). After solving for zi from
Eq. (2.24) and then transferring the result to the quantum
level one finds

Ẑ ij�i ¼
�
�a�ijV̂j þ 2�ijP̂j � 1

a
�̂i

�
j�i; (5.5)

and, whence,

Ẑi1 � � � ẐiM j�i ¼
�
�a�iMjMV̂jM þ 2�iMjMP̂jM � 1

a
�̂iM

�
� � �

�
�
�a�i1j1 V̂j1 þ 2�i1j1P̂j1 �

1

a
�̂i1

�
j�i:
(5.6)

By substituting Eq. (5.6) into Eq. (5.4) and the result thus
obtained into Eq. (5.2) one gets

Ĥ ð0Þ
�
Q̂i � a�ijV̂j þ 2�ijP̂j � 1

a
�̂i; P̂i

�
j�ðtÞi

¼ i@
dj�ðtÞi

dt
; (5.7)

which does not longer involves the phase space variables Û

and Ŝ. We observe that the gauge freedom has been elim-
inated without recourse to subsidiary conditions.

One may check that the new variables

Q̂0i � Q̂i � a�ijV̂j þ 2�ijP̂j � 1

a
�̂i; (5.8a)

P̂0
i � P̂i; (5.8b)

obey the equal-time commutator algebra in Eq. (1.1).
Furthermore, in terms of them Eq. (5.7) acquires the form

Ĥ ð0ÞðQ̂0i; P̂0
iÞj�ðtÞi ¼ i@

dj�ðtÞi
dt

; (5.9)

which reproduces the time evolution of the quantized
second-class system. Again, the equivalence becomes
established.

VI. CONCLUSIONS

This work was dedicated to formulate noncommutative
quantum mechanics as a gauge theory. The tool for carry-
ing out that task was the BFT embedding procedure. The
extensions of the constraints and of the Hamiltonian gives
origin to an involution algebra defining an Abelian gauge
theory. We provided a detailed and rigorous proof of the
consistency of this formulation by demonstrating that the
initial second-class system can be uniquely recovered from
the gauge invariant sector of the gauge theory. This con-
firms the equivalence of the second and first class formu-
lations at the classical level.
The quantization of the gauge extension within the func-

tional framework follows along the standard lines. The
flexibility offered by the gauge choice opens new avenues
for carrying out explicit model calculations. We carried out
the quantization in two specific gauges. For both of them it
was possible to show that the phase space functional
integral yielding the Green functions generating functional
maps into the corresponding one arising in connection with
the second-class model. Moreover, the equivalence be-
tween the alternative descriptions of noncommutative
quantum mechanics turns out to be model independent.
The quantization of the first class model within the

operator approach was implemented by using the formal-
ism put forward by Dirac [10]. Its outcome naturally con-
vey to the formulation of the quantum dynamics of the
second-class system within this scheme of quantization.
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