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We consider (4, 1)-dimensional branes constructed with two scalar fields � and � coupled to a Dirac

spinor field by means of a general Yukawa coupling. The equation of motion for the coefficients of the

chiral decomposition of the spinor in curved spacetime leads to a Schrödinger-like equation whose

solutions allow to obtain the masses of the fermionic modes. The simplest Yukawa coupling ����� is

considered for the Bloch brane model and fermion localization is studied. We found resonances for both

chiralities and related their appearance to branes with internal structure.
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I. INTRODUCTION

Braneworld scenarios have received great attention from
the physical community after addressing important prob-
lems such as gauge hierarchy [1–3] and the cosmological
constant [4,5]. The construction of domain walls em-
bedded in a higher dimensional bulk, however, has a
more ancient history in the literature [6–9]. As is well-
known, (4, 1)-D branes can be classified as thin and thick
ones. Thin branes are constructed after introducing a ten-
sion term in the action, localized by a Dirac delta function
(see [10] and references therein). The mathematical for-
malism that describes the metric around the brane allows to
obtain several interesting results in the domain of high
energy physics and cosmology. Usually, the issue of field
localization in such branes is addressed with the help of
Dirac delta functions, without any clear subjacent dynam-
ics. On the other hand, thick branes are constructed in a
dynamical way after introducing one or more scalar fields
coupled with gravity [11–14]. Thick branes are more natu-
ral in the sense that field and gravity localization can be
studied with the introduction of smooth functions (instead
of Dirac ones). Moreover, the thin brane solutions are
recovered in certain limits [15,16]. One important issue
in (4, 1)-D braneworld models is to consider spacetimes
with a bulk metric that extends the Randall-Sundrum result
[17] in a way that gravity can be localized in the (3, 1)-D
slice [10,18–21]. The spacetime around the Randall-
Sundrum brane is anti-de Sitter (AdS5), and several thick
brane models (that present this characteristic asymptoti-
cally) have been constructed.

Braneworld models with one or more scalar fields were
constructed in order to relate gravity localization with
brane thickness [22,23]. In particular, the Bloch brane
model [23] is composed of two scalar fields and is the
extension for the known Bloch walls [24–26] in the context
of braneworlds. Bloch branes are stable structures that can
be characterized as branes with interfaces located at the

maximum of energy density. The two interfaces signal the
presence of an internal structure in the brane. The presence
of an internal structure in topological defects was first
considered in Witten’s superconducting cosmic strings
[27]. There the internal structure is provided by the con-
densation of a (charged) field over the defect. In the Bloch
brane case, the appearance of internal structure is con-
cerned with a low value of the coupling constant that
guides the way the two fields interact with each other.
For a stronger interaction, a single peak for the energy
density characterizes a brane with simpler structure. It was
also shown [23] that in the presence of gravity the inter-
faces are located more closely in the extra dimension. As
such branes are able to localize gravity, one interesting
question is investigating how fermionic fields may be
localized. In this way, there arises the expectation that a
brane with richer internal structure could provide new
results when compared to a simple kinky brane.
The study of fermion localization on branes [28–40] is

rich and interesting. In order to localize fermions in branes
one needs a coupling between the spinors and the scalar
fields that form the brane. This is a condition also present
in Jackiw and Rebbi treatment of fermion localization on
solitons in flat space [41]. In branes, the procedure consists
in separating from the full spinor one scalar coefficient
with dependence only on the extra dimension, leading to a
Schrödinger-like equation and a probabilistic interpreta-
tion. Depending on the model, one can obtain resonant
massive states.
In particular, the authors of [37] analyzed the issue of

fermion localization on a brane constructed with the sine-
Gordon potential. That work considered general fermionic
Yukawa couplings between one scalar field and spinorial
fields. It was found that the simplest Yukawa coupling
���� allowed left-handed fermions to possess a zero
mode that localizes on the brane. The right-handed fermi-
ons, on the other hand, present no zero mode. The large
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massive fermionic modes (for both left and right chirality)
are plane waves and thereby are not localized on the brane.

Inspired on the results obtained in [37], we investigate
the issue of fermion localization of fermions on a brane
constructed from two scalar fields coupled with gravity. In
Sec. II, we present the known first-order equations for a
brane model coupled with scalar fields [11]. Sec. III deals
with the fermionic sector of the model, where we extend
the results from [37] for two scalar fields � and � with
general coupling. Afterwards, we choose the simple cou-

pling �����. In Sec. IV, we consider the Bloch brane
model and our main results are presented. The
Schrödinger-like equation for the model is obtained and
numerically solved. The solutions correspond to massive
fermionic modes. We have found resonances on the brane
and have related their appearance with the simultaneous
increasing of the brane internal structure. Our conclusions
are presented in Sec. V.

II. SCALAR FIELD AND METRIC EQUATIONS

Our system is described by the action

S ¼
Z

d4xdy
ffiffiffiffiffiffi
jgj

q �
� 1

4
Rþ 1

2
@a�@a�þ 1

2
@a�@

a�

� Vð�;�Þ
�
; (1)

and the metric

ds2 ¼ gabdx
adxb; ds2 ¼ e2A���dx

�dx� � dy2;

(2)

where g ¼ detðgabÞ. Here a, b ¼ 0, 1, 2, 3, 4, and e2A is the
warp factor. We suppose that A ¼ AðyÞ, � ¼ �ðyÞ and
� ¼ �ðyÞ. The extra dimension y is infinite, and we have
the continuity of the first derivatives of�ðyÞ, �ðyÞ and AðyÞ
with respect to y as boundary conditions for the thick
brane.

The action given by Eq. (1) leads to the following
coupled differential equations for the scalar fields �ðyÞ,
�ðyÞ and the function AðyÞ from the warp factor:

�00 þ 4A0�0 ¼ @Vð�;�Þ
@�

; (3)

�00 þ 4A0�0 ¼ @Vð�;�Þ
@�

; (4)

A00 ¼ � 2

3
ð�02 þ �02Þ; (5)

A02 ¼ 1

6
ð�02 þ �02Þ � 1

3
Vð�;�Þ; (6)

where prime stands for derivative with respect to y.

With the potential [11],

Vð�;�Þ ¼ 1

8

��
@W

@�

�
2 þ
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@W
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�
2
�
� 1

3
W2; (7)

the first-order differential equations which also solve the
equations of motion are

�0 ¼ 1

2

@W

@�
; (8)

�0 ¼ 1

2

@W

@�
; (9)

A0 ¼ � 1

3
W: (10)

III. FERMIONIC SECTOR

Now, we consider a Dirac spinor field coupled with the
scalar fields by a general Yukawa coupling. The action for
this sector is

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p ½ ���MDM�� � ��Fð�;�Þ��: (11)

Here we consider the fields � and � as background fields
given as solutions of the Eqs. (3)–(6). In other words, we
neglect the backreaction from the spinor field on the brane
solutions.
We change variable from y to z with

z ¼
Z y

0
e�Að�Þd�; (12)

in order to rewrite Eq. (2) and get a conformally flat metric

ds2 ¼ e2Að���dx
�dx� � dz2Þ: (13)

This change of variable is usual in problems of gravity
localization. Indeed, for a large class of models, one can
achieve a Schrödinger-like form for the equations for
metric fluctuations, when decoupled from the scalar fluc-
tuations in a specific gauge. In the treatment of fermion
localization the same change of variable is used. The
equation of motion corresponding to the action given by
Eq. (11) is

½��@� þ �5ð@z þ 2@zAÞ � �eAFð�;�Þ�� ¼ 0: (14)

We apply the well-known procedure of a general chiral
decomposition for the spinor �:

�ðx; zÞ ¼ X
n

c LnðxÞ�LnðzÞ þ
X
n

c RnðxÞ�RnðzÞ; (15)

where the sum can be over discrete bounded modes or over
a continuum of modes. In this decomposition c LnðxÞ and
c RnðxÞ are, respectively, the left-handed and right-handed
components of the four-dimensional spinor field with mass
mn. Also, there are two scalars �Ln and �Rn that depend
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only on the extra dimension z. In order to turn the notation
easier, we dropped the index n in which follows. After
applying Eq. (15) in Eq. (14), we obtain two equations for
the scalars �L and �R:

½@z þ 2@zAþ �eAFð�;�Þ��LðzÞ ¼ m�RðzÞ; (16)

½@z þ 2@zA� �eAFð�;�Þ��RðzÞ ¼ �m�LðzÞ: (17)

Implementing the change of variables �L ¼ e�2AL and
�R ¼ e�2AR [37], we get Schrödinger-like equations for
the wave functions RmðzÞ and LmðzÞ given by

HLLmðzÞ ¼ m2LmðzÞ; (18)

HRRmðzÞ ¼ m2RmðzÞ; (19)

with corresponding Hamiltonians

HL ¼
�
� d

dz
þ eA�F

��
d

dz
þ eA�F

�
; (20)

HR ¼
�
d

dz
þ eA�F

��
� d

dz
þ eA�F

�
: (21)

The structure of the Hamiltonians guarantees thatm is real,
the absence of tachyonic modes and the possibility of
interpreting jRmðzÞj2 and jLmðzÞj2 as the probability for
finding the right and left massive modes in a given coor-
dinate z. The Schrödinger equations can be also written
explicitly as

� L00
mðzÞ þ VLðzÞLmðzÞ ¼ m2Lm; (22)

� R00
mðzÞ þ VRðzÞRmðzÞ ¼ m2Rm; (23)

with

VLðzÞ ¼ e2A�2Fð�;�Þ2 � eA�@zFð�;�Þ
� ð@zAÞeA�Fð�;�Þ; (24)

VRðzÞ ¼ e2A�2Fð�;�Þ2 þ eA�@zFð�;�Þ
þ ð@zAÞeA�Fð�;�Þ; (25)

named as the Schrödinger-like potentials for the fermionic
fields. The Hamiltonians from Eqs. (20) and (21) can be
written as HL ¼ AyA and HR ¼ AAy. This shows that HL

and HR are conjugated Hamiltonian of supersymmetric
quantum mechanics and VLðzÞ and VRðzÞ are superpartner
potentials. In this way there is a zero mode for VLðzÞ and
the spectra of VLðzÞ and VRðzÞ are interrelated [42,43].

From now on, we consider the simplest Yukawa cou-
pling Fð�;�Þ ¼ �� and study the occurrence of massive
modes for the known Bloch brane model with two scalar
fields.

IV. THE BLOCH BRANE MODEL

A rich model that leads to branes with internal structure
is [24–26]

Wð�;�Þ ¼ 2�� 2

3
�3 � 2a��2; (26)

with a being a real parameter (0< a< 0:5). In this case,
the first-order Eqs. (8)–(10) can be solved analytically,
leading to the following results [23]:

�ðyÞ ¼ tanhð2ayÞ; (27)

�ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

a
� 2

�s
sechð2ayÞ; (28)

and

AðyÞ ¼ 1

9a
½ð1� 3aÞtanh2ð2ayÞ � 2 lncoshð2ayÞ�: (29)

Figure 1(a) shows how the warp factor tends to zero
going to the AdS5 limit far from the brane. The brane
thickness decreases with a, and this can be seen by the
plots of the field solutions in Figs. 1(b) and 2(a).
Now, we turn to the z-variable according to Eq. (12). For

general values of a, the expression for AðyÞ from Eq. (29) is
not suitable to be integrated in a known explicit form and
numerical methods are necessary. However, for the par-
ticular case a ¼ 1=3 we have

AðyÞ ¼ � 2

3
ln coshð2ayÞ; (30)

and

z ¼
Z y

0

�
cosh

�
2

3
y

��
2=3

: (31)

After simple integration, we get an expression for zðyÞ in an
explicit form in terms of an hypergeometric function:

z ¼ y

jyj
�
9

4

�
cosh

�
2

3
y

��
2=3

2F1

�
� 1

3
;
1

2
;
2

3
;

�
cosh

�
2

3
y

���2
�

� 9

8	
�

�
2

3

�
�

�
5

6

��
: (32)

Unfortunately, even in this simpler case, we can not obtain
the inverse yðzÞ in an explicit form. However, this explicit
form for zðyÞ is already useful to produce sequences of
pairs of points ðz; yÞ with a constant step in z. Indeed, given
a value z, the corresponding y can be found after numeri-
cally solving the implicit equation [Eq. (32)]. This leads to
the determination of the functions �ðzÞ, �ðzÞ, AðzÞ with
good precision. The corresponding derivative with respect
to z, A0ðzÞ, can be found as

dA

dz
¼ dA

dy

dy

dz
¼ dA

dy

�
cosh

2

3
y

��2=3
; (33)

with dA=dy stemming from the explicit expression for AðyÞ
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(Eq. (30)). Similarly, we can construct the functions �0ðzÞ,
�0ðzÞ. All the former calculations can be used to construct
the Schrödinger potentials VL and VR displayed in Fig. 3
with good precision; this was used with the purpose of
validating the numerical method used for general values
of a.

For some values of a;we integrated numerically Eq. (12)
obtaining zðyÞ;whose graphic is depicted in Fig. 2(b). With

this, we can numerically determine AðzÞ, �ðzÞ, �ðzÞ. In
order to obtain the derivatives A0ðzÞ,�0ðzÞ, �0ðzÞ, a numeri-
cal procedure was constructed for generating sequences
with constant step in z. In this way the procedure for
general values of a is more involved once we do not
have an explicit form for zðyÞ to guide us as in the a ¼
1=3 previous case. Equations (24) and (25) are then used to
provide a graphical form for the potentials VL and VR. We

FIG. 3. Comparing procedures: Schrödinger-like potential (b) VLðzÞ (left) and (c) VRðzÞ (right) for a ¼ 1=3, obtained with explicit
function zðyÞ (points) and with the full numerical procedure (line). Note that both procedures give almost indistinguishable results.

FIG. 2. (a) Field �ðyÞ (left) and (b) function zðyÞ (right) for a ¼ 0:05 (thinner trace, larger curves), a ¼ 0:10 and a ¼ 0:20 (thicker
trace, narrower curves).

FIG. 1. (a) Warp factor e2AðyÞ (left) and (b) field �ðyÞ (right) for a ¼ 0:05 (thinner trace, larger curves), a ¼ 0:10 and a ¼ 0:20
(thicker trace, narrower curves).
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applied this procedure for the a ¼ 1=3 case, whose results
are depicted in Figs. 3(a) and 3(b). Such graphics reveal
that both procedures described here lead to almost the same
results.

Now, we can use the general numerical procedure to
investigate the potential VL for other values of a. Some
results are exhibited in Fig. 4(a). We note from this figure
that VL has a volcanolike shape, that goes asymptotically to
zero far from the brane. This form of potential is usually
found in problems involving gravity localization. Here, we
can search for the existence of a zero mode followed by a
continuum of massive modes by means of an analogy.
Indeed, we note that the potential is negative at the brane
location; this guarantees the existence of a normalized zero
mode after integrating Eq. (18) for m ¼ 0:

L0 / exp

�
��

Z z

0
dz0eAðz0Þ�ðz0Þ�ðz0Þ

�
: (34)

Figure 4(b) shows that the potential VR is always positive at
the brane position, which is not compatible with the ex-
istence of bound fermions with right chirality. However,
we note the appearance of a hole in the potential that grows
for lower values of a. This fact is new and our hypothesis is
that it can be related, in some way, to the internal structure
[22] of the brane constructed with two fields. It is remark-
able that such behavior of the VR potential was not ob-
served in a previous treatment for one-field models. The
appearance of this hole in the potential can be responsible
for resonances or at least for a light increase in the decay
rate of massive fermions on the brane. Note also that the
hole around z ¼ 0 for VR is absent for larger values of a, in
principle prohibiting the existence of resonances for
this range of parameter. In order to look for resonant
effects, we must consider now the massive modes, solving
numerically the Schrödinger-like equation with purely nu-
meric potentials.

A. Right-handed fermions

Firstly we will consider the case of right-handed fermi-
ons with the small parameter a ¼ 0:05. We can vary m2 to
get the wave functions RmðzÞ. Equation (23) shows that we
need two initial conditions. As we are dealing with thick
brane with no tension at z ¼ 0, the Israel junction condi-
tions applied to the brane give RðzÞ and R0ðzÞ continuous at
z ¼ 0. Note that the absence of negative values for the
potential VR prohibits the existence of bound states.
However, the tunneling process across the barrier (local-
ized at the region between the maximum of the potential
and the origin) can result in different rates for the leaking
process depending on the mass of the modes. Here the
region of interest corresponds to masses satisfying 0:42<
m2 < 2:44, where the tunneling process is effective (see
Figure 4(b)—thinner trace).
Figures 5(a)–5(d) shows typical even massive fermionic

modes before normalization for the region z > 0. Fig-
ures 5(a)–5(c) belongs to the more interesting region
0:42<m2 < 2:44whereas Fig. 5(d) is for a higher massive
mode. The lower massive modes show that there is a
transient behavior followed by typical plane wave oscilla-
tions, characteristic of a free mode. This shows that these
modes represent massive fermions that certainly will be
leaked from the brane. Comparing Fig. 5(a) with Figs. 5(b)
and 5(c), we note that the transition region roughly corre-
sponds to�20< z < 20. Note also that for lower values of
m2 the values of the non-normalized wave functions RðzÞ
depart largely from the initial value 1. More important is to
estimate how larger is the solution RðzÞ in the transition
region �20< z < 20 in comparison to the amplitude of
the plane wave oscillations. Indeed, one would expect that
broader differences would correspond to greater lifetimes
for the massive fermionic states near to the brane. This
difference assumes a huge amount form2 ¼ 2:1, as we can
see from Fig. 5(c).
This lead us to the point of normalization of the massive

modes and to the better estimate of Rmð0Þ. Their impor-

FIG. 4. Schrödinger-like potentials (a) VLðzÞ (left) and (b) VRðzÞ (right) for a ¼ 0:05 (thinner trace), a ¼ 0:10 and a ¼ 0:20 (thicker
trace).
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tance is that we can rewrite Eq. (23) as Oy
RORRðzÞ ¼

m2RðzÞ, which ensures that we can interpret jRmð0Þj2 as
the probability for finding the massive modes on the brane.
In particular, large peaks in the distribution of Rð0Þ as a
function of m would reveal the existence of resonant states
closely related to the existence of a brane with internal
structure.

We can consider a normalization procedure for the wave
functions RmðzÞ in a box with borders located far from the
turning point, where the solutions have characteristics of
plane waves toward the brane. In this way, we considered a
box with �100< z < 100. An important information can
be obtained from the normalized jRmð0Þj2, since from it we
can compare the relative probability for finding a massive
mode on the brane. The result is depicted in Fig. 6(a). We
note from the figure a huge peak around m2 ¼ 2:1, char-

acterizing the occurrence of a resonance and a long-lived
massive fermionic mode on the brane. We note from the
figure that low massive modes have negligible associated
probabilities, whereas high massive modes are character-
ized by a plateau in the probability distribution. This is
related to the finite size of the box used for normalization.
Indeed, for m2 � VR we can approximate the Schrödinger
equation as �R00ðzÞ �m2RðzÞ, with normalized solution
RðzÞ � 1=

ffiffiffiffiffiffiffiffiffi
zmax

p
cosðmzÞ, where 2zmax is the size of the box

used for normalization. For our choice zmax ¼ 100, we
have jRð0Þj2 ¼ 1=ðzmaxÞ ¼ 0:01, corresponding to the pla-
teau observed in Fig. 6(a).
Since in our model the extra dimension is infinite, one

may wonder about the influence of zmax on the normaliza-
tion of the spectral density. Indeed, another choice of zmax

would lead to another plateau in the probability distribu-

FIG. 5. Non-normalized even massive right-handed fermionic modes for a ¼ 0:05 with (a) m2 ¼ 1 (upper left), (b) m2 ¼ 2 (upper
right), (c) m2 ¼ 2:1 (lower left) and (d) m2 ¼ 4 (lower right).
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tion. The physical information, however, is contained in
the value of the resonance peak, which does not depends on
zmax since it is chosen sufficiently large.

Figure 6 shows the peak of resonance with the horizontal
scale now taken asm. We can estimate the lifetime 
 for the
observed resonance from the width at half maximum of the
peak appearing in the figure. Indeed, the width in mass � ¼
�m of the peak is related to the lifetime. In this way, in its
own reference frame, the fermion disappears toward the
extra dimension with time scale 
� ��1 [44]. The peak
was located at m ¼ 1:451ð1Þ with the maximum probabil-
ity around 0.109. The width at half maximum is �m ¼
0:0083, resulting in a lifetime 
a ¼ 
0:05 ¼ 120. These
results are in arbitrary units, and their significance will
be better understood after comparison with the results for
other values of the parameter a.

Now, we repeat our analysis for other values of a to
investigate the effects of the coupling parameter a between
the fields� and � for the existence of resonances and their
lifetimes.

For a ¼ 0:10 the results for jRð0Þj2, as a function of m2,
are depicted in Fig. 7(a). Note from the figure that we also

have one resonant peak as before. Now, however, the larger
value of a results in a smaller value of the mass for the
resonant state. Also, the resonant peak is more pronounced.
Figure 7(b) shows that the peak was located at m ¼ 0:968
with the maximum probability around 0.202. The width at
half maximum is �m ¼ 0:02, resulting in a lifetime 
a ¼

0:1 ¼ 50. Comparing this result with 
a ¼ 
0:05 ¼ 120,
we conclude that smaller values of a result in resonances
with larger lifetimes.
We compare both cases in Fig. 8, where we display the

resonances for a ¼ 0:05 (second smaller peak) and a ¼
0:10 (first larger peak). We know that smaller values of a
correspond to branes with a richer internal structure [23].
Then the observed thinner peaks for smaller parameters a
mean resonances more pronounced and a trapping mecha-
nism more effective. This is connected with the larger
amount of matter now forming the brane due to the cou-
pling of the scalar field � to the other field �.
The reduction of the lifetime for resonances with larger

values of a poses the question if there are no resonances at
all on the brane for values of a above a certain threshold a�.
We noted the decreasing of the associated mass for the

FIG. 6. (a) Normalized squared wave function for a right-handed fermion on the brane, jRð0Þj2, as a function of m2. Note the high
peak characteristic of resonance. For the present case we have a ¼ 0:05. (b) Normalized squared wave function for a right-handed
fermion on the brane, jRð0Þj2, as a function of m, identifying better the region defining the peak of resonance.

FIG. 7. (a) Normalized squared wave function for a right-handed fermion on the brane, jRð0Þj2, as a function ofm2, for a ¼ 0:10 and
�100< z < 100. (b) Normalized squared wave function for a right-handed fermion on the brane, jRð0Þj2, as a function of m,
identifying better the region defining the peak of resonance.
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resonances with larger values of a. Also, it was noted a
qualitative change on the potential VR above a certain value
a�. For example, for a ¼ 0:20, Fig. 9(a) shows that now the
potential assumes the form of a volcano. One characteristic
of this type of potential is the occurrence of a zero mode
when the central part, around the brane, assumes negative
values. This is the potential observed in Fig. 4(a) for left
fermions. Here, however, the central part of the potential is
positive and the zero mode is absent. For a ¼ 0:20
there were observed no resonances on the brane. In fact,
Fig. 9(b) depicts the probability jRð0Þj2 as a function of the
mass of excitations. Here we can see that the width at half
maximum �m is larger that the position of the peak m ¼
0:95ð1Þ. This characterizes a state with a lifetime 
 ¼
1=�m too small to result in any physical effect, character-
izing the absence of a resonant state.

We can relate these results with the behavior of the
energy density of the brane without fermions as studied

in Ref. [23]. The energy density Ta
00ðyÞ as a function of the

coordinate y and for a fixed parameter a is given by

Ta
00ðyÞ ¼ e2AðrÞ

�
1

2

��
d�ðyÞ
dy

�
2 þ

�
d�ðyÞ
dy

�
2
�

þ Vð�ðyÞ; �ðyÞÞ
�
: (35)

Figure 10 shows that the structure of the brane changes
when the parameter is a ¼ 0:17. Indeed, we note that for
0:17< a< 0:5 the energy density characterizes a defect
with the energy density centered around a central peak,
whereas for a < 0:17 the appearance of two symmetric
peaks signals the occurrence of a brane with internal
structure (more details in Ref. [23]). Now, we connect
this known result with our findings of resonance peaks
for small values of a and with the absence of such reso-
nances for larger values of a. There appears to be a
connection between the occurrence of metastable states
on the brane and the occurrence of two peaks in the energy
density characterizing these branes. From this we conclude
that branes with internal structure favor the appearance of
resonance states for right-handed fermions. Also, for
branes without internal structure, we were not able to
find resonance states.
A further point to remark is that we have considered

analytical fittings for the Schrödinger potentials VRðzÞ in
terms of finite series with oscillating terms. For fittings that
agreed visually with our numerical points, the Runge-Kutta
method was applied and the normalized massive modes
were constructed. The results for the resonances were
roughly the same, corroborating our conclusions.

B. Left-handed fermions

For left-handed fermions, as we already noted, there is a
normalized zero mode. We repeated the analysis from the
previous section and also found resonances. However, for
left-handed fermions there are differences with respect to
the position of the resonance peak, in comparison to which

FIG. 8. Normalized squared wave function for a right-handed
fermion on the brane, jRð0Þj2, as a function of m2. We used
�100< z < 100, and the resonant peaks correspond to a ¼ 0:05
(third narrow and smaller peak), a ¼ 0:10 (higher peak). Also it
is showed the broader peak for a ¼ 0:20.

FIG. 9. (a) Schrödinger-like potential VRðzÞ for a ¼ 0:20. Note the appearance of a region with negative potential, absent for the
lower values of a considered previously. (b) Normalized squared wave function a for right-handed fermion on the brane, jRð0Þj2, as a
function of m. Note now the presence of a broader peak with �m>m.
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was obtained for right-handed ones. For instance, for a ¼
0:05, we found a resonance peak around m ¼ 1:59, with
�m ¼ 0:07, corresponding to a lifetime 
 ¼ 14. When
comparing with corresponding results for right-handed
fermions (m ¼ 1:45 and 
 ¼ 120), we see that the left-
handed resonance is the more massive and the less stable.
Analysis for the resonance peak for a ¼ 0:10 showed that,
similarly to the observed for right-handed fermions, an
increasing a also thickens the resonance peak for left-
handed fermions.

C. Correspondence between the spectra and realization
of Dirac fermions

The lack of correspondence between the spectra of left-
and right-handed fermions appears to be in contradiction to
the fact that VL and VR are superpartner potentials. The
reason for this is that the parity-odd modes do not couple to
the four-dimensional braneworld at z ¼ 0, because for
such modes we have Rð0Þ ¼ 0 and Lð0Þ ¼ 0. This was
also noted in the case of gravity localization in another

model [45]. After we submitted this work, we knowed
about Ref. [46], where a study of odd parity modes is
done. According to ref. [46], we set Lð0Þ ¼ 0 and L0ð0Þ ¼
5 for parity-odd wave functions as our starting point for the
application of the numerical Numerov method. We use the
scheme with step h in z corresponding to the points zi
described by

Lð0Þ ¼ 0; (36)

LðhÞ ¼ hL0ð0Þ; (37)

LðziÞ ¼ 2½1þ 5Fðzi�1�Lðzi�1Þ � ½1� Fðzi�2Þ�Lðzi�2Þ
1� FðziÞ ;

(38)

where

FðzÞ ¼ � 1

12
h2ðVLðzÞ �m2Þ: (39)

The condition L0ð0Þ ¼ 5 is arbitrary and will be fixed after
the normalization process.
Thick branes are extended objects along the extra di-

mension that allow us to interpret, after normalizing LðzÞ,
the probability for finding the massive modes on the brane
(not necessarily at z ¼ 0) as

R
zb�zb

dzjLmðzÞj2. The parame-

ter zb is chosen in order to allow the influence of the odd
modes in small regions around z ¼ 0. We can consider a
normalization procedure for the wave functions LmðzÞ in a
box with borders located at z ¼ �zmax, far from the turn-
ing point, where the solutions have characteristics of plane
waves far from the brane. After normalization of LðzÞ, the
probability for finding the massive modes on the brane is
given by [46]

Pbrane ¼
R
zb�zb

dzjLmðzÞj2R
zmax�zmax

dzjLmðzÞj2
: (40)

We followed the same procedure for right-handed fermions

FIG. 10. (a) Plots of the matter energy density T0:05
00 ðyÞ (thinner

trace), T0:10
00 ðyÞ, T0:17

00 ðyÞ and T0:20
00 ðyÞ (thicker trace).

FIG. 11. Plots of Pbrane for zmax ¼ 100, zb ¼ 10, a ¼ 0:05. Curves for a) VR (left) and b) VL (right) constructed with even (thicker
trace) and odd (thinner gray trace) wave functions.
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and depicted in Fig. 11 the results for Pbrane in the particu-
lar case of a ¼ 0:05. The values of m for the resonance
peaks in the figure corresponding to the parity even wave
functions agree with the obtained previously in the plots of
the normalized jRð0Þj2 [Fig. 6(b)] and jLð0Þj2. The figure
also shows that with this procedure the resonance peaks for
left- and right-quirality agree with good precision and the
formation of Dirac fermions is realized. Larger values of
the parameter zb do not change the results for the position
of the resonance peaks, but small values of zb are more
efficient to identify the peaks. One example of such pro-
cedure in a model with three thin branes was done in
Ref. [30], where one of the wave functions (right or left-
handed) is symmetric and the other corresponding to the
same mass is antisymmetric with respect to the center of
the orbifold. This is a consequence of demanding the
action to be even under the Z2 orbifold symmetry [47].
In this way it is shown the existence of metastable massive
Dirac modes trapped on the brane. In our case of one thick
brane immersed in a bulk with infinite extra dimension, if
we allow measurements only at z ¼ 0, the evidence of
Dirac fermions is lost. In the more realistic scenario, one
must consider the finite size of the brane and a nonzero
overlap between the parity-odd wave functions with the
SM fields [47], which would be sensitive to the extra
dimension in the vicinity of the brane, justifying the pro-
cedure followed in this section.

D. Dimensional analysis and phenomenology

After restoring the dimensional parameters in the action
(1), it reads as

S ¼
Z

dx4dy
ffiffiffiffiffiffi
jgj

q �
� 1

4Gð5Þ Rþ 1

2
gab@a�@b�

þ 1

2
gab@a�@b�� Vð�;�Þ

�
: (41)

In a five-dimensional spacetime, the mass dimension for

the fields and coupling constants in the action are: ½�� ¼
½�� ¼ M3=2, ½Vð�;�Þ� ¼ M5, ½gab� ¼ 1, ½R� ¼ M2 and
the five-dimensional gravitational constant has dimension

½Gð5Þ� ¼ M�3.
The potential of the scalar fields (7) is written as

Vð�;�Þ ¼ 1

8

�
@W

@�

�
2 þ 1

8

�
@W

@�

�
2 � 1

3
Gð5ÞW2; (42)

where W is the superpotential with mass dimension 4. The

coupling Gð5Þ in the last term guarantees the possibility of
the model to have some compatibility with the expected
LHC phenomenology.

In that way, the Bloch brane is defined by the following
superpotential

W ¼ 2�Z�� 2�

3Z
�3 � 2a�

Z
��2 (43)

with ½Z� ¼ M3=2, ½�� ¼ M and ½a� ¼ 1. It yields the fol-
lowing solutions for the scalar fields

� ¼ Z tanhð2a�yÞ; � ¼ Z

�
1

a
� 2

�
1=2

cosh�1ð2a�yÞ;
(44)

where Z, the kink amplitude, is given in terms of the five-

dimensional gravitational constant as Z�2 ¼ Gð5Þ and, the
parameter ��1 is related with the brane width. Thus, we

have only two free parameters in the model � and Gð5Þ.
From the explicit form of the potential in term of the

scalars fields

Vð�;�Þ ¼ �2

2Z2
ðZ2 ��2 � a�2Þ2 þ 2a2�2

Z2
�2�2

� 4�2Gð5Þ

3Z2
�2

�
Z2 � 1

3
�2 � a�2

�
2
; (45)

we get the masses for the fields � and � as being

m� ¼
ffiffiffiffiffiffi
14

3

s
�; m� ¼ ffiffiffiffiffiffi

2a
p

�; (46)

therefore, the parameter � is explicitly related with the
field masses. It offers an opportunity for � to be the energy
scale of the model.
The action for massless Dirac fermion is given by

Sf ¼
Z

dx4dy
ffiffiffiffiffiffi
jgj

q
½ ���aDa�� �� ��Fð�;�Þ��; (47)

where � is a dimensionless parameter and ½�� ¼ M2. As
the function Fð�;�Þ ¼ �� has dimension 3, we have
½�� ¼ M�2.
In order to obtain an expression for the effective cou-

pling constant � in terms of our two free parameters, we
check the linear equations of motion (16) and (17) after the
change of variables �L ¼ e�2AL and �R ¼ e�2AR:

½@z þ ��eAFð�;�Þ�L ¼ mR; (48)

½@z � ��eAFð�;�Þ�R ¼ �mL: (49)

By performing the following rescaling:

z ¼ ��; @z ¼ ��1@�; (50)

with ½�� ¼ M�1, the Eqs. (48) and (49) are rewritten as

½@� þ �eAFð ��; ��Þ�L ¼ �mR; (51)

½@� � �eAFð ��; ��Þ�R ¼ � �mL; (52)

where �� ¼ �=Z, �� ¼ �=Z are dimensionless fields. We
have set

��1 ¼ �Z2; (53)

and �m ¼ m� is a dimensionless constant, this way, the
parameter ��1 gives our mass or energy scale.
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The choosing of the coupling constant � is a fine-tuning
procedure so that the model has the chance of providing a
phenomenology in agreement with LHC energy scale.

Thus, setting � ¼ �Gð5Þ, the mass scale results

��1 ¼ �; (54)

therefore the mass scale is related to the brane width and it

is independent of the relation between Gð5Þ and the four-
dimensional G constant.

From the kink Eqs. (44), we define the effective brane
width as

�L ¼ 1

4a�
: (55)

In order for resonances to appear, our model imposes the
condition a & 0:17, this gives �L * 1:47��1. By consid-
ering �� 1 TeV, we obtain that the brane width is
* 10�18 cm. It is easy to note that if � > 1 TeV we get
better lower limit for the brane width.

V. CONCLUSIONS

In this work we considered branes constructed with two
scalar fields. We considered a simple Yukawa coupling
between the two scalars and the spinor field. Depending
on the amount of the coupling parameter a between the
scalars, the energy momentum density of the branes can be
characterized by a two-peak or by a single peak. After [22]
we consider this two-peak distribution as characterizing a
brane with internal structure. For these more complex
branes, the coupling parameter a is small. We investigated
the occurrence of massive modes with both chiralities
solving numerically the Schrödinger equation and looking

for zero modes and possible resonances. For branes with
internal structure, we found left- and right-handed reso-
nances together with zero-mode left-handed solutions. The
absence of zero-mode solutions for right-handed fermions
together with their findings for left-handed ones agrees
with the well-known fact that massless fermions must be
single-handed in a brane model [32]. With respect to
resonances for left-handed fermions, we can resume our
conclusions with the following points: (i) Larger values of
a correspond to larger peaks of resonance, with corre-
sponding smaller lifetimes. (ii) Above a threshold value
of the parameter a, the resonances become too unstable
and cease to appear. This coincides with the qualitative
change of the energy momentum density of the brane.
(iii) Branes with internal structure are more effective in
trapping left-fermions. (iv) The lower is the parameter a,
the higher is the mass of the resonant mode. This means
that branes with internal structure tend to trap matter with
larger mass more efficiently in comparison to branes with-
out internal structure. A further investigation on this sub-
ject could consider other classes of Yukawa interaction in
order to look for possible effects on the massive fermionic
resonances.
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