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We compute the penetration depth of a light quark moving through a largeNc, strongly coupledN ¼ 4

supersymmetric Yang-Mills plasma using gauge/gravity duality and a combination of analytic and

numerical techniques. We find that the maximum distance a quark with energy E can travel through a

plasma is given by �xmaxðEÞ ¼ ðC=TÞðE=T ffiffiffiffi
�

p Þ1=3 with C � 0:5.
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I. INTRODUCTION

The discovery that the quark-gluon plasma produced at
RHIC behaves as a nearly ideal fluid [1,2] has prompted
much interest into the dynamics of strongly coupled plas-
mas. Hard partons produced in the early stages of heavy
ion collisions can traverse the resulting fireball and deposit
their energy and momentum into the medium. Analysis of
particle correlations in produced jets can provide useful
information about the dynamics of the plasma including
the rates of energy loss and momentum broadening
[3,4], as well as the speed and attenuation length of sound
waves [4].

Gauge/gravity duality [5–8] is a useful tool for the study
of dynamics of strongly coupled non-Abelian plasmas.
Although no gravitational dual to QCD in known, gauge/
gravity duality has provided much insight into the dynam-
ics of various theories which share many qualitative prop-
erties with QCD. The most widely studied example is that
of strongly coupled N ¼ 4 supersymmetric Yang-Mills
theory (SYM). The deconfined plasma phases of QCD and
SYM share many properties. For example, both theories
describe non-Abelian plasmas with Debye screening, finite
spatial correlation lengths, and long distance dynamics
described by neutral fluid hydrodynamics. When both
theories are weakly coupled, appropriate comparisons of
a variety of observables show rather good agreement
[9–11]. This success, combined with the lack of alternative
techniques for studying dynamical properties of QCD at
temperatures where the plasma is strongly coupled, has
motivated much interest in using strongly coupledN ¼ 4
SYM plasma as a model for QCD plasma at temperatures
of a few times �QCD (or 1:5Tc & T & 4Tc). (See, for

example, Refs. [12–25], and references therein.) At least
for some quantities, this is quite successful. In particular,
the value of the shear viscosity to entropy density ratio
[12,26],�=s ¼ 1=4�, in strongly coupled SYM is in rather

good agreement with estimates which emerge from hydro-
dynamic modeling of heavy ion collisions [27].
In the limit of large Nc and large ’t Hooft coupling � �

g2Nc, the gravitational dual to N ¼ 4 SYM is described
by classical supergravity on the ten-dimensional AdS5 �
S5 geometry [5]. Studying the theory at finite temperature
corresponds to adding a black hole (BH) to the geometry
[6]. The corresponding anti–de Sitter (AdS)-Schwarzschild
(AdS-BH) metric is given in Eq. (2.1). Fundamental rep-
resentation quarks added to the N ¼ 4 theory are dual to
open strings moving in the 10d geometry. In the limit of
large �, where the string action and the energy both scale

like
ffiffiffiffi
�

p
, quantum fluctuations in the string world sheet are

suppressed and the dynamics of strings may be described
by the classical equations of motion which follow from the
Nambu-Goto action.
The dynamics of strings corresponding to heavy quarks

have been intensely studied by many authors. The energy
loss rate for heavy quarks moving through a SYM plasma
has been studied in Refs. [13,14,28,29], and the wake
produced by a moving heavy quark was computed in
Refs. [30–33].
Analogous studies for light quarks have yet to be com-

pleted. In Ref. [34] the charge density of massless quarks
moving through a SYM plasma was studied, and it was
shown that there are string states which are dual to long-
lived excitations (i.e., quasiparticles) in the field theory. In
particular, the charge density of highly energetic light
quarks can remain localized for an arbitrarily long time
and can propagate arbitrarily far before spreading out and
thermalizing. In Ref. [35], an attempt was made to estimate
the penetration depth of a gluon moving through a strongly
coupled SYM plasma. The results of Ref. [35] were ob-
tained by assuming that the end point of a (folded) string
follows a lightlike geodesic in the AdS-BH geometry; full
solutions to the string equations of motion were not ob-
tained. The authors of Ref. [35] tried to roughly character-
ize the relationship between the string’s energy and
momentum and the parameters of the geodesic and sug-
gested that the maximum distance a gluon of energy E can

go before thermalizing should scale as �xmax � E1=3. The
same scaling relation has also been discussed for R-current
jets in Ref. [36].
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Although the estimates made in Ref. [35] are generally
plausible, we believe that it is clearly desirable to perform a
quantitative, controlled study of the penetration distance of
light quarks (or gluons) in a strongly coupled plasma. This
is a key aim of this paper.

It should be emphasized that we are concerned with
studying the propagation through the plasma of energetic
excitations which resemble well-collimated quark jets. The
open string configurations we consider may be regarded as
providing a dual description of dressed quarks, with high
energy, moving through a non-Abelian plasma. We are not
studying the result of a local current operator acting di-
rectly on the strongly coupled N ¼ 4 SYM plasma. (See,
however, Ref. [37].) Our motivation is similar to that of
Ref. [17], in which weak-coupling physics in asymptoti-
cally free QCD is envisioned as producing a high energy
excitation, whose propagation through the plasma is then
modeled by studying the behavior of the same type of
excitation in a strongly coupled N ¼ 4 SYM plasma.

The energy loss rate for a heavy quark depends only on
the quark’s velocity, the value of the ’t Hooft coupling �,
and the temperature of the plasma through which the quark
is moving [13]. In other words, for very heavy quarks
which slowly decelerate, the velocity is the only aspect
of their initial conditions which influences the energy loss
rate. This turns out not to be the case for light quarks.
Initial conditions for a classical string involve two free
functions: the initial string profile and its time derivative.
As we discuss in detail below, the instantaneous energy
loss rate of a light quark depends strongly, in general, on
the precise choice of these initial functions. In the dual
field theory, this reflects the fact that any complete speci-
fication of an initial state containing an energetic quark
must also involve a characterization of the gauge field
configuration. In the perturbative regime, one can easily
see that the interactions of heavy particles with a gauge
field are spin independent (up to 1=M corrections), but
interactions of relativistic particles are spin dependent even
at leading order. So it is perhaps not surprising that the
energy loss of a light projectile also depends on the con-
figuration of the gluonic cloud surrounding the projectile in
a nonuniversal fashion.

One quantity which is rather insensitive to the precise
initial conditions of the string is the maximum distance
�xmaxðEÞ which a quark with initial energy E can travel. It
should be emphasized that we are considering effectively
on-shell quarks which can travel a large distance�x before
thermalizing. The maximum penetration depth �xmax

grows without bound as the energy E increases.
We numerically compute the penetration depth �x for

many different sets of string initial conditions and find that
the maximum penetration depth does indeed scale like

E1=3. Our results are illustrated in Fig. 1, where the loga-
rithm of the penetration depth is plotted as a function of the
logarithm of the initial quark energy for many different sets

of initial conditions. As is evident from the figure, the
penetration depth of a light quark is bounded by a curve

�xmax ¼ const� E1=3.

We also demonstrate the scaling relation �xmax � E1=3

analytically. As discussed in Ref. [34], strings which cor-
respond to long-lived massless quarks are approximately
null strings. A strictly null string is one whose world-sheet
metric is everywhere degenerate. The qualitative origin of
this connection is easy to understand. Strings which corre-
spond to light quarks fall into the event horizon. As they
fall they become more and more lightlike and hence closer
and closer to a null configuration as time progresses. The
profile of the null string is almost independent of the initial
conditions used to create the string—for the quasiparticle
excitations studied in this paper, the corresponding null
strings are specified by two numbers only, an initial incli-
nation and radial depth. By analyzing strings correspond-
ing to light quarks as small perturbations away from null
string configurations, we show that the total distance a
quark can travel must be bounded by a maximum distance

�xmax ¼ ðC=TÞðE=T ffiffiffiffi
�

p Þ1=3 for some Oð1Þ constant C. We
numerically confirm that strings corresponding to long-
lived light quarks are, in fact, close to being null, and
obtain an estimate of the constant C.
Although the end-point motion of our string solutions is

well approximated by appropriate lightlike geodesics, con-
sistent with the discussion of Ref. [34], we find that the
relationship between the parameters of the geodesic and
the string profile and energy is more complicated (and
rather different) than the surmises presented in Ref. [35].
This will be discussed further in Sec. V.

FIG. 1 (color online). A log-log plot of the quark stopping
distance �x as a function of total quark energy E for many
falling strings with initial conditions of the form shown in
Eq. (4.53). All data points fall below the solid line given by
�x ¼ ð0:526=TÞðE=T ffiffiffiffi

�
p Þ1=3.
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In addition to studying the penetration depth, we also
examine the instantaneous rate of energy loss, dE=dt. For
light quarks the energy loss rate shows nonuniversal fea-
tures and is sensitive to initial conditions. For the states we
study, we find that it typically increases with time during
the period when the dressed quark is a well-defined quasi-
particle and sharply peaks during the final thermalization
phase. In other words, the thermalization of light quarks in
strongly coupled SYM ends with an explosive burst of
energy. This late-time behavior is universal and indepen-
dent of initial conditions. The fact that the light quark
energy loss rate can increase with time is qualitatively
different from the behavior of heavy particles [13], whose
energy loss rate monotonically decreases.

An outline of our paper is as follows. We define our
conventions in Sec. II. In Sec. III, we discuss some of the
subtleties involved in defining the light quark energy loss
rate and penetration depth, and spell out the relevant
identifications between 5d gravitational and 4d field theory
quantities. In Sec. IV, we discuss the dynamics of strings
both from analytical and numerical perspectives.
Implications of our results, and connections with other
related work, are discussed in Sec. V, which is followed
by a brief conclusion.

II. CONVENTIONS

Five-dimensional AdS coordinates will be denoted by
XM, while four-dimensional Minkowski coordinates are
denoted by x�. World-sheet coordinates will be denoted

as�a with a ¼ 0, 1. The timelike world-sheet coordinate is
� � �0, while the spatial coordinate is � � �1. When
discussing the dynamics of a single string end point, we
will use �� to denote the value of � at the end point.

We choose coordinates such that the metric of the AdS-
Schwarzschild (AdS-BH) geometry is

ds2 ¼ L2

u2

�
�fðuÞdt2 þ dx2 þ du2

fðuÞ
�
; (2.1)

where fðuÞ � 1� ðu=uhÞ4 and L is the AdS curvature
radius. The coordinate u is an inverse radial coordinate;
the boundary of the AdS-BH spacetime is at u ¼ 0 and the
event horizon is located at u ¼ uh, with T � ð�uhÞ�1 the
temperature of the equilibrium SYM plasma.

III. LIGHT QUARKS AND GAUGE/GRAVITY
DUALITY

Energetic quarks moving through a plasma are quasi-
particles—they have a finite lifetime which can be long
compared to the inverse of their energy. Some care is
needed in defining the light quark penetration depth and
the instantaneous energy loss rate. Figure 2 shows some
typical perturbative diagrams contributing to the energy
loss rate of a quark. An energetic quark, scattering off
excitations in the medium, can emit gluons which may
subsequently split into further gluons or quark-antiquark
pairs. The energetic quark may also annihilate with an
antiquark in the medium. A natural question to consider
when looking at Fig. 2 is which quark should one follow
when computing the penetration depth? Once a quark has
emitted a q �q pair, or annihilated with an antiquark, it
becomes ambiguous which quark was the original one.
This issue is cleanly avoided if one focuses attention not
on some (ill-defined) ‘‘bare quark’’, but rather on the
baryon density of the entire dressed excitation.
In QCD, or N ¼ 4 SYM coupled to a fundamental

representationN ¼ 2 hypermultiplet, there is a conserved
current which wewill call J�baryon. Even though q �q pairs can

be produced by an energetic quark traversing the plasma,
conservation of J�baryon implies that the total baryon number

of the excitation will remain constant. The baryon density
of an energetic excitation can remain highly localized for a
long period of time. It is the collective excitation with
localized baryon density which wewill refer to as a dressed
quark, or for the sake of brevity, simply as a quark.
To evaluate the penetration depth of a quark, we will use

the centroid of the baryon density,

�xðtÞ �
R
d3xx�ðt; xÞR
d3x�ðt; xÞ : (3.1)

with � � J0baryon. The centroid �xðtÞ gives a natural measure

of where the quark is located at time t. At late times, when
the quark has lost nearly all its energy and becomes ther-
malized, the dynamics of the baryon density will be gov-
erned by hydrodynamics. In particular, at late times the
baryon density must satisfy the diffusion equation

ð@0 �Dr2Þ� ¼ 0; (3.2)

where D is the baryon number diffusion constant. When

FIG. 2 (color online). Examples of perturbative diagrams contributing to the energy loss of a quark. One may regard time as running
to the right. An energetic quark can scatter, emit gluons (which themselves may radiate or split into q �q pairs), or annihilate with an
antiquark in the medium. However, the total baryon number of the collective excitation remains constant.
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the diffusion equation is applicable, it is easy to see that the
centroid ceases to move, d �x=dt ¼ 0. To define the pene-
tration depth, we imagine measuring �xðtÞ at some early
time t�. We then define the penetration depth �x in the
obvious manner as

�x � j �xð1Þ � �xðt�Þj: (3.3)

On the gravitational side of the gauge/gravity correspon-
dence, the addition of a N ¼ 2 hypermultiplet to the
N ¼ 4 SYM theory is accomplished by adding a D7
brane to the 10d geometry [38]. The D7 brane fills a
volume of the AdS-BH geometry which extends from the
boundary at u ¼ 0 down to maximal radial coordinate um,
and wraps an S3 of the S5. The bare mass M of the hyper-
multiplet is proportional to 1=um [13], so for massless
quarks the D7 brane fills all of the five-dimensional AdS-
BH geometry. Open strings which end on the D7 brane
represent dressed q �q pairs in the field theory. In the 5d
geometry these strings can fall unimpeded toward the event
horizon until their end points reach the radial coordinate
um where theD7 brane ends. (One should bear in mind that
even when the radial position of the string end points lies
closer to the boundary than um, the string end points are
nevertheless attached to theD7 brane, albeit in the full 10d
space. The embedding of the D7 brane is determined
dynamically by minimizing the D7 world volume. In gen-
eral, this means that the D7 brane wraps a 3-sphere inside
the S5 of the AdS-BH� S5 background geometry. This 3-
sphere varies in a nontrivial way as a function of the radial
coordinate of the AdS-BH geometry. For a hypermultiplet
with nonzero mass, the string end points must move on the
internal S5 as they fall down in the AdS-BH geometry, so
that the string end points remain on the D7 brane. But for
massless hypermultiplets, the corresponding D7 embed-
ding is a simple product space, AdS-BH� S3. In this case,
it is consistent to have the entire string sit at a fixed point on
the S5 while it falls in the AdS-BH background. Any
additional motion of the string in the internal space will
only add to the energy of the string without affecting its
stopping distance and so will be of no interest for us—we
want to find strings which carry a minimal amount of
energy for a given stopping distance. In the large Nc limit,
one can ignore the backreaction of the D7 brane on the
background geometry and the backreaction of the string on
the D7, as well as potential instabilities involving string
breaking or dissolving into the D brane. These issues are
discussed further in Sec. V.) For sufficiently light or mass-
less quarks, um > uh and open string end points can fall
into the horizon.1

The end points of strings are charged under aUð1Þ gauge
fieldAM which resides on the D7 brane. The boundary of
the 5d geometry, which is where the field theory lives,
behaves as an ideal electromagnetic conductor [39] and
hence the presence of the string end points, which source
the D7 gauge field AM, induce an image current density
J
�
baryon on the boundary. This is illustrated schematically by

the cartoon in Fig. 3. Via the standard gauge/gravity dic-
tionary [5–8,38], the induced current density correspond-
ing to each string end point has a field theory interpretation
as minus the baryon current density of a dressed quark.
[The fact that the induced mirror current density is minus
the physical baryon current density is easy to understand.
The baryon current density is given by the variation of the
on-shell electromagnetic action with respect to the bound-
ary value of the gauge field AM. The on-shell 5d electro-
magnetic action evaluates to a 4d surface integral,
evaluated at the boundary with an outward pointing nor-
mal. In contrast, the image current density induced on the
boundary can be obtained by integrating the 5d Maxwell
equations over a Gaussian pillbox which encloses the
boundary. The resulting surface integral measuring the
flux involves an inward pointing normal (i.e., into the 5d
bulk).]

FIG. 3 (color online). A cartoon of the bulk-to-boundary prob-
lem at finite temperature. The end points of strings are charged
under a Uð1Þ gauge fieldAM which lives on the D7 brane which
fills the AdS-BH geometry. The boundary of the geometry,
located at radial coordinate u ¼ 0, behaves like a perfect con-
ductor. Consequently, the string end points induce a mirror
current density j� on the boundary. Via gauge/gravity duality,
the induced mirror current density has the interpretation of
minus the baryon current density of a quark. Similarly, the
presence of the string induces a perturbation hMN in the metric
of the bulk geometry. The behavior of the metric perturbation
near the boundary encodes the information contained in the
perturbation to the SYM stress-energy tensor caused by the
presence of the jet.

1Strictly speaking, in the coordinate system we are using no
portion of the string crosses the horizon at any finite value of
time. Because of the gravitational redshift, the rate of fall du=dt
decreases exponentially as one approaches the horizon.
Nevertheless, it is natural to speak of the string end point falling
‘‘into’’ or ‘‘reaching’’ the horizon when u� uh � uh.
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The degree to which the baryon density is localized
depends on how close the string end point is to the bound-
ary of the 5d geometry. The farther the end point is away
from the boundary, the more the field lines of AM can
spread out, and hence the more delocalized will be the
induced image current J�baryon. In the limit where the radial

coordinate U of the string end point is far from the
horizon, U � uh, the baryon density will be localized
with a length scale �U [34]. We note that the appearance
of the length scaleU in the baryon density is natural since,
forU � uh, it takes light an amount of time�U to reach
the boundary.

If at time t� the string’s end point is at radial coordinate
u� � uh, then �xðt�Þ approximately coincides with the spa-
tial position of the string end point xstringðt�Þ [34]. The

string end point can only travel a finite distance before
falling into the black hole. The final spatial coordinate of
the string end point xstringð1Þ will exactly coincide with

�xð1Þ [34]. We therefore have

�x � jxstringð1Þ � xstringðt�Þj: (3.4)

To make the quantity �xmaxðEÞ meaningful, we also
need to measure the quark’s energy at time t�. After all,
we want to know how far a quark with a given initial
energy can travel. If the quark has been moving for some
time prior to t�, it will have deposited energy into the
plasma—we must disentangle the energy deposited in the
plasma from the remaining energy of the quark itself. In the
limit where the quark has an arbitrarily large energy which
is localized in a arbitrarily small region of space, separat-
ing the quark’s energy from the energy transferred to the
plasma will be unambiguous.

Via Einstein’s equations, the presence of the string will
also perturb the 5d geometry. As in the electromagnetic
problem, the perturbation in the geometry will induce a
corresponding perturbation in the 4d stress tensor on the
boundary [40,41]. The string itself has a conserved energy.
For the states we consider in this paper, the end points of
the string are very close to the boundary at time t� and
hence have a very high gravitational potential energy. In
Sec. IVAwe argue that the energy contained near a string
end point scales like 1=u3�. It is this UV sensitive part of the
string energy that we identify with the energy of a quark.
Via the gravitational bulk-to-boundary problem (also illus-
trated in the cartoon of Fig. 3) the high energy density near
the string end point gets mapped onto a region of 4d space
which coincides with the location of the quark’s baryon
density. Therefore, at time t�, we only need to compute the
part of the string’s energy which diverges in the u� ! 0
limit in order to identify the energy of the corresponding
quark.

IV. FALLING STRINGS

The dynamics of a classical string are governed by the
Nambu-Goto action

SNG ¼ �T0

Z
d�d�

ffiffiffiffiffiffiffiffi��
p

; (4.1)

where T0 ¼
ffiffiffiffi
�

p
=ð2�L2Þ is the string tension, � and � are

world-sheet coordinates, and � � det�ab with �ab the
induced world-sheet metric. The string profile is deter-
mined by a set of embedding functions XMð�; �Þ. In terms
of these functions

�ab ¼ @aX � @bX; (4.2)

and

� � ¼ ð _X � X0Þ2 � _X2X02; (4.3)

where _XM � @�X
M and X0M � @�X

M.
The equations of motion for the embedding functions, as

well as the requisite open string boundary conditions,
follow from demanding vanishing variation of the
Nambu-Goto action. Explicit forms of the resulting equa-
tions of motion, for the class of configurations we will
consider, are shown in Sec. IVA. The boundary conditions
for the open string require that its end points move at the
local speed of light and that their motion is transverse to the
string.
We will limit attention to configurations for which the

string embedding only has nonzero components along a
single Minkowski spatial direction which we will denote as
x̂. We also restrict attention to initial conditions such that at
world-sheet time � ¼ 0, the string is mapped into a single
point in spacetime. Explicitly,

tð0; �Þ ¼ tc; xð0; �Þ ¼ xc; uð0; �Þ ¼ uc; (4.4)

where the numbers tc, xc, and uc specify the 5d spacetime
location of the string creation event. The remaining initial
data are the velocity profiles at � ¼ 0, namely _t, _x, and _u as
functions of �. One of these three velocity functions may
be eliminated via gauge fixing. For example, one may
choose the gauge � ¼ t.
We are interested in choosing initial data such that the

subsequent evolution leads to configurations in which the
two string end points propagate away from each other and
become well separated before falling into the horizon.
Choosing a frame in which the total spatial momentum
of the string vanishes, this implies that one-half of the
string will carry a large positive spatial momentum in the
x̂ direction, while the other half carries a large negative
spatial momentum. We also require that the velocity pro-
files are smooth near the string end points. A sufficient
condition is that the Fourier series of the velocity profiles
be rapidly convergent (pointwise). For brevity, we refer to
string configurations satisfying these conditions as ‘‘rea-
sonable.’’ We postpone more detailed discussion of our
specific choices of velocity profiles used for numerical
studies to Sec. IVB.
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A. Approximate solutions

Consider a string created in the distant past. In particu-
lar, take the radial coordinate of the creation event to be
arbitrarily small, uc ! 0. As time progresses, the string
evolves from a point into an extended object and the end
points of the string fall toward the horizon. An example of
such string evolution (numerically computed) is shown in
Fig. 4. As we discuss in detail below, in the limit uc ! 0,
the string end points can be made to travel arbitrarily far in
the spatial x̂ direction before falling into the black hole.
Our strategy in this section is to construct an approximate
solution to the string equations of motion which will
provide a good description for times sufficiently long after
the initial creation event but well before the string end
points reach the horizon. This will be possible because, as
we will discuss, at times well after the creation event but
long before the final ‘‘plunge,’’ typical string configura-
tions approach near-universal forms which are character-
ized by only a few parameters. This observation will allow
us to prepare states illustrating universal features and
understand the resulting physics of quark energy loss,
without requiring a detailed description of the early-time
dynamics responsible for the production of the quark-
antiquark pair.

For reasonable falling string solutions, we will see that
the end-point motion is well approximated by the trajec-
tory of a lightlike geodesic. Equations for null geodesics in
the AdS-BH geometry are easy to work out. For motion in
the x-u plane, one finds

�
dxgeo

dt

�
2 ¼ f2

	2
; (4.5a)

�
dugeo
dt

�
2 ¼ f2ð	2 � fÞ

	2
; (4.5b)

where 	 is a constant which determines the initial inclina-

tion of the geodesic in the x-u plane and, more fundamen-
tally, specifies the conserved spatial momentum associated
with the geodesic, fðuÞ�1dxgeo=dt ¼ 	�1. Moreover, we

have

�
dxgeo

du

�
2 ¼ 1

	2 � f
: (4.6)

From this equation, one sees that geodesics which start
close to the boundary, at u ¼ u� ! 0, can travel very far in
the x̂ direction provided 	2 � fðu�Þ ! 1. In particular, the
total spatial distance such geodesics travel before falling
into the horizon scales like u2h=u�.
We will be interested in string configurations where the

spatial velocity of the string end point is close to the local
speed of light for an arbitrarily long period of time (since
this will maximize the penetration distance). Because open
string end points must always travel at the speed of light,
the velocity in the radial direction must be small and
correspondingly, the radial coordinate of the string end
points will be approximately constant for an arbitrarily
long period of time. As the string end points become
more and more widely separated, the string must stretch
and expand. For reasonable string profiles, this implies that
short wavelength perturbations in the initial structure of the
string will be stretched to progressively longer wave-
lengths, resulting in a smooth string profile at late times.
(‘‘Unreasonable’’ string profiles can have structure on ar-
bitrarily short wavelengths. While the initial structure will
be inflated as time progresses, because the string end points
can only travel a distance of order u2h=uc before reaching

the horizon, one can always cook up initial conditions such
that fluctuations in the string profile never become small
during this time interval. We will avoid such unreasonable
initial conditions in this paper.) Moreover, as the string end
points separate, the middle of the string must fall toward
the event horizon. This occurs on a time scale �t of order

FIG. 4 (color online). A typical falling string studied in this paper, at four different instants in time. The string is created at a point
and, as time passes, evolves into an increasingly extended object. Well after the creation event, but long before the plunge into the
horizon, the string profile approaches a universal null string configuration which is largely insensitive to the initial conditions.
Consequently, the string end-point trajectories approach null geodesics.
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uh. This scale sets the infall time of a particle released at
rest at the boundary, or of a null geodesic with 	 > 1.

The origin of this behavior can also be understood as
follows. Consider the string at some time t shortly after the
creation event. It will have expanded to a size �t. By
construction, one-half of the string will have a positive
large momentum in the spatial x̂ direction, while the other
half has negative x̂ momentum. The spatial momentum
density must be highly inhomogeneous so that the two
end points move off in opposite directions. As time pro-
gresses, the parts of the string with the highest momentum
density will remain close to a string end point. Portions of
the string with low spatial momentum density will lag
behind the end points (in terms of motion in the x̂ direction)
and fall relatively unimpeded toward the horizon.
Thereafter, the outer parts of the string will continue mov-
ing in the 	x̂ direction while the end points slowly fall.
This general behavior is clearly seen in Fig. 4.

With the above qualitative picture in mind, we now turn
to the explicit analysis. To simplify the discussion, focus
attention on one-half of the string. We may choose world-
sheet coordinates � ¼ t and � ¼ u, so that the embedding
functions are determined by a single function xðt; uÞ. The
domain in the ðt; uÞ plane in which xðt; uÞ is defined is
bounded by a curve UðtÞ which defines the trajectory of
the string end point. The location of this curve is fixed by
the open string boundary conditions. With our choice of
world-sheet coordinates, these boundary conditions are
simply

GMN

dXM

dt

dXN

dt
¼ 0; (4.7a)

GMN

dXM

dt

@XN

@u
¼ 0; (4.7b)

where the total time derivatives denote derivatives eval-
uated along the curve UðtÞ. As noted earlier, these con-
ditions just express the constraints that the speed of the
string end point equals the local speed of light with a
velocity which is transverse to the string.

With our choice of world-sheet coordinates, the deter-
minant of the world-sheet metric is

� ¼ L4

u4f
ðf2x02 � _x2 þ fÞ: (4.8)

Substituting this into the Nambu-Goto action (4.1), one
finds the following equation of motion for the embedding
function xðt; uÞ:
0 ¼ 2uð1þ fx02Þ €x� 2ufðf� _x2Þx00 � 4ufx0 _x _x0

þ 4f½2� fð1� x02Þ
x0 � 4ð3� 2fÞx0 _x2: (4.9)

We want to construct an approximate solution for con-
figurations where the string end point reaches the event
horizon after traveling an arbitrarily large spatial distance.
We imagine first matching our approximate solution onto

an exact string solution at a time t�. At time t�, suppose that
one end point of the string has fallen to the radial coor-
dinate u�. Because we are considering uc ! 0, we can
always take

uc � u� � uh: (4.10)

For reasonable initial conditions, we can take t� suffi-
ciently large so that the string will be close to a quasista-
tionary configuration in which the string profile uniformly
translates while the string end point slowly falls. In other
words, we seek a perturbative solution to Eq. (4.9) of the
form

xðt; uÞ ¼ xsteadyðt; uÞ þ 
xðt; uÞ þOðð
xÞ2Þ; (4.11)

where

xsteadyðt; uÞ ¼ 	tþ x0ðuÞ (4.12)

is a stationary solution to the equations of motion (4.9) and

xðt; uÞ is a first order perturbation satisfying

j
 _xðt; uÞj � 	; j
xðt; uÞj � jx0ðuÞj; (4.13)

for all t > t� and all u >UðtÞ.
At this point, the constant 	 appearing in the stationary

solution xsteady is logically independent from the parameter

	 characterizing null geodesics [cf. Eq. (4.5)], but we will
shortly see that the end-point trajectory of the stationary
solution xsteady is in fact directly related to the null geo-

desics discussed above.
The end-point trajectory may similarly be represented as

a zeroth order curve plus a first order correction,

U ðtÞ ¼ U0ðtÞ þ 
UðtÞ; (4.14)

whereU0ðtÞ is the end-point trajectory when 
xðt; uÞ ¼ 0.
The function 
xðt; uÞ characterizes the perturbations in

the string which have inflated to long wavelengths. Our
basic strategy is to linearize the equations of motion and
boundary conditions in both 
xðt; uÞ and 
UðtÞ. From
Eq. (4.9), the equation of motion for x0ðuÞ is

0 ¼ 2ufð	2 � fÞx000 þ 4f2x030
þ 4½ð2� fÞf� 	2ð3� 2fÞ
x00: (4.15)

The general solution to this equation is given by functions
which satisfy

�
@x0
@u

�
2 ¼ u4ð	2 � fÞ

u4hf
2ð1� CfÞ ; (4.16)

where C is an integration constant.
Neglecting the perturbations 
x and 
U, the boundary

conditions (4.7) lead to the two end-point equations
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�
@x0
@u

�
2 ¼ 	2 � f

f2
; (4.17a)

�
dU0

dt

�
2 ¼ f2ð	2 � fÞ

	2
; (4.17b)

where all quantities are evaluated at the string end point.
Comparing Eq. (4.17a) with Eq. (4.16), we see that the two
conditions agree provided C ¼ 1. In other words, the
boundary condition forces the integration constant C to
equal unity. Furthermore, comparing Eq. (4.17b) with
Eq. (4.5b), we see that the radial motion of the string end
point in the stationary solution coincides with that of a
lightlike geodesic (when 	 of the stationary solution is
identified with 	 of the geodesic). Since the speed of the
string end point necessarily equals the local speed of light,
this implies that the zeroth order end-point trajectory, given
by u ¼ U0ðtÞ and x ¼ X0ðtÞ � xsteadyðt;U0ðtÞÞ, is pre-

cisely a null geodesic.
With C ¼ 1, the (negative root of the) differential equa-

tion (4.16) for x0ðuÞ becomes

@x0
@u

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � f

p
f

: (4.18)

(Taking the negative square root gives a solution which, for
	 > 0, trails the end point.) Substituting the steady state
solution xsteady into Eq. (4.8) and using the above differen-

tial equation for x0ðuÞ reveals that the steady state string
solution is one whose world-sheet metric is everywhere
degenerate, � ¼ 0. That is, xsteady represents a null string

which is everywhere expanding at the local speed of light.
In the special case 	 ¼ 1 (which will be of particular

interest below), Eq. (4.18) may be integrated analytically.
One finds

x0ðuÞ ¼ uh
2

�
tan�1

�
u

uh

�
þ 1

2
log

�
uh � u

uh þ u

��
: (4.19)

This is the well-known trailing string profile of Ref. [13].
Similarly, when 	 ¼ 1 the boundary condition (4.17b) may
be integrated to findU0ðtÞ. The solution is given implicitly
by the equation

t� t� ¼ �x0ðU0Þ � u2h
U0

þ x0ðu�Þ þ u2h
u�

: (4.20)

But in much of what follows it will be useful to keep 	
arbitrary.

Having found the zeroth order solution, we now turn to
the first order correction which describes perturbations to a
stationary null string. Linearizing Eq. (4.9) in 
xðt; uÞ
yields the equation of motion

0 ¼ 	2
 €xþ f2ð	2 � fÞ
x00 þ 2	f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � f

q

 _x0

þ 4	ð	2 � 2fþ f2Þ
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � f

p 
 _x� 2f2ð1� 2	2 þ fÞ
u


x0:

(4.21)

A general solution to this equation can be constructed
explicitly and has the form


xðt; uÞ ¼ uh½’ðzðt; uÞÞ þ gðuÞc ðzðt; uÞÞ
; (4.22)

where ’ðzÞ and c ðzÞ are arbitrary functions, gðuÞ satisfies

g0 ¼ u3h
u4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � f

q
; (4.23)

and the function zðu; tÞ is given by [the overall factors of
uh, u

3
h=u

4, and u�=u2h in Eqs. (4.22), (4.23), and (4.24) are

inserted for dimensional consistency and later conve-
nience]

zðt; uÞ � u�
u2h

½xsteadyðt; uÞ � xgeoðuÞ
 þ z0; (4.24)

with z0 an arbitrary constant. For the special case of 	 ¼ 1,
one has gðuÞ ¼ �uh=u. [Note that any constant of integra-
tion appearing in gðuÞ can be absorbed into the definition
of ’ðzÞ.]
Using Eqs. (4.6) and (4.18), one easily finds that zðt; uÞ is

constant along null geodesics with the constant of motion
	. Moreover, we may choose the constant z0 such that z
vanishes on the end-point trajectory U0ðtÞ.
The fact that the perturbative solution to the string

equations of motion contains two arbitrary functions ’ðzÞ
and c ðzÞ is to be expected. As discussed in the previous
section, the required initial data for the evolution of an
initially pointlike string consist of two arbitrary velocity
profiles. Evidently, the information contained in the initial
data gets mapped via the equations of motion onto the two
functions ’ðzÞ and c ðzÞ.
It is easy to understand the physical nature of the per-

turbations on top of the null string profile. The null string is
everywhere expanding at the local speed of light. This
expansion is analogous to cosmological inflation—pertur-
bations defined on top of the null string at different points
are causally disconnected and are transported along light-
like geodesics. As illustrated in Fig. 5, neighboring geo-
desics increasingly deviate from each other. Therefore, as
time progresses, the perturbations defined on top of the null
string inflate to long wavelengths.
To finish the first order analysis, we need to find the

correction to the end-point trajectory. At linear order in 
U
and 
x, the boundary conditions (4.7) yield the constraints

c ð0Þ ¼ 0; (4.25)

and
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 _U ¼ 1

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � f

p
�
ð’0

0 þ gc 0
0Þf2 þ

2U3
0
U
u4h

ð3f� 2	Þ
�
;

(4.26)

where ’0
0 � ’0ð0Þ, c 0

0 � c 0ð0Þ, and f and g are evaluated

at U0ðtÞ.
If the sizes of the perturbations on top of the null string

solution are small, then it is easy to compute the stopping
distance—the total distance �x traveled by the string end
point after time t�. As the end-point trajectories of null
strings are lightlike geodesics, �x is simply given by the
total spatial distance a geodesic travels. Equation (4.6)
gives the result for lightlike geodesics,

dxgeo
du

¼ 	 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � fðuÞp : (4.27)

The 	 sign reflects the fact that lightlike geodesics can
both fall toward the horizon and shoot upward toward the
boundary. Integrating this equation will yield the total
stopping distance.

The reality of Eq. (4.27) implies that 	2 � fðuminÞ,
where umin is the minimal radial coordinate achieved along
the geodesic trajectory. We are interested in trajectories for
which umin � u�, so we require 	2 � fðuminÞ ! 1.
Physically, this corresponds to geodesics which only fall
in the vicinity of t� and thereafter. This is sensible in the
limit where the string creation point uc ! 0, since for
reasonable initial conditions any portion of the motion in
which the string end point is moving upward toward the
boundary must occur during the initial transients shortly
after the creation event and well before t�.

For geodesics which only fall, Eq. (4.27) implies that

�x ¼
Z uh

u�

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � fðuÞp : (4.28)

With the restriction that 	 � 1, �x is maximized at 	 ¼ 1.
To leading order in u�=uh � 1, evaluating the integral
(4.28) gives

�xmax ¼ u2h
u�

: (4.29)

We must now relate the stopping distance to the quark
energy at time t�. To make this meaningful, we want to
estimate the minimum amount of energy required for a
quark to travel a distance �x before thermalizing. This
requires determining how the string energy scales with u�.
The canonical momentum densities of the string are

given by

�0
M ¼ �T0

GMNffiffiffiffiffiffiffiffi��
p ½ð _X � X0ÞX0N � ðX02Þ _XN
; (4.30a)

�1
M ¼ �T0

GMNffiffiffiffiffiffiffiffi��
p ½ð _X � X0Þ _XN � ð _X2ÞX0N
; (4.30b)

where�� ¼ ð _X � X0Þ2 � _X2X02. The energy of the string at
time t� is then given by

E� ¼ �
Z uh

u�
du�0

t : (4.31)

The zeroth order approximation to the string solution is a
null string, for which � vanishes. Hence, to describe a finite
energy configuration, it is essential to include the pertur-
bations to the null string profile. The determinant of the
world-sheet metric will necessarily be proportional to the
size of these perturbations. At linear order, and for 	 ¼ 1,
we have

� ¼ 2L4

u4
c ðzÞ: (4.32)

[To linear order in the size of perturbations away from the
null string, the function ’ðzÞ appearing in Eq. (4.22) does
not enter into the determinant of the world-sheet metric. In
other words, perturbations in the steady state profile xsteady
induced by ’ðzÞ alone preserve (to first order) the every-
where null character of the string world sheet.] For a
timelike world sheet � must be negative, and hence we
must have c ðzÞ< 0. Evaluating the string energy (4.31) to
linear order in perturbations, one finds

E� ¼
ffiffiffiffi
�

p
2�

Z uh

u�

du

u2f
½�2c ðzðt�; uÞÞ
�1=2: (4.33)

This expression contains an infrared divergence near the
horizon. This divergence reflects the unboundedly large
amount of energy transferred to the plasma from the quark
before time t�. [More precisely, the upper limit of the
integrals (4.31) and (4.33) should not be uh, it should be

FIG. 5 (color online). The inflation of a perturbation on an
expanding string at many instances of time. The uppermost curve
shows the end-point trajectory. The perturbation to the stationary
profile is the bump initially located close to the string end point.
For clarity, we greatly exaggerate the size of the perturbation.
The two infalling curves are lightlike geodesics which enclose
the perturbation at all times. Even though the perturbation is
initially highly localized, the two geodesics which bound the
perturbation rapidly separate, and correspondingly the size of the
perturbation rapidly inflates as it falls into the horizon.
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the maximal radial coordinate of any point on the string at
time t�, which rapidly approaches uh. The contribution to
the energy from the region u � u� reflects energy trans-
ferred to the plasma at times t � t�.] To extract a mean-
ingful energy which can be associated with the quark at
time t�, we focus on the UV sensitive part of the integral
(4.33). Neglecting the IR region is tantamount to cutting
off the radial integral at a radial coordinate uIR < uh. The
UV sensitive part of the string energy is the leftover part of
the integral that diverges as u� ! 0. This is the portion of
the string energy that should be identified with the energy
of a localized quark jet at time t�.

To minimize the energy (4.33) for a given value of u�,
one wants to maximize the magnitude of the function c ðzÞ
which characterizes the fluctuation profile. However, it is
necessary to ensure that the perturbative treatment remains
valid near the string endpoint—one cannot arbitrarily
crank up the size of c ðzÞ as one must ensure that the
relations (4.13) are satisfied. More physically, we demand
a well-behaved solution, which is approximately a steady
state solution, in the u� ! 0 limit. We remind the reader
that, as discussed previously in Sec. IVA, solutions which
are approximately steady state solutions are dual to long-
lived quarks.

At time t�, the UV sensitive part of the string energy
comes from contributions near the string end point. Hence,
we focus our attention on the region in which u ¼ wu�
with w ¼ Oð1Þ. Within this region we have

x0ðwu�Þ ¼ �w3u3�
3u2h

þOðu7�Þ: (4.34)

Then from (4.22) we see that 
x will scale with the same
power of u� if

�ðzÞ ¼
�
u�
uh

�
3
~�ðzÞ; (4.35a)

c ðzÞ ¼
�
u�
uh

�
4
~c ðzÞ; (4.35b)

with ~�ðzÞ and ~c ðzÞ functions which remain bounded as
u� ! 0. With these scalings, a small 
x relative to x0 can
always be obtained by adjusting the overall normalization
of 
x with a numerical factor which is independent of u�.
Similar conclusions can also be reached regarding the
scaling of 
U relative to that of U. [From the differential
equation (4.26), the scalings of ’ and c imply 
U scales
like u�. Therefore, in the u� ! 0 limit the smallness of 
U
relative toU, which is at most u�, can always be achieved
by adjusting the size of 
U with a constant independent of
u�.]

With the above scaling of c , we see that the UV sensi-
tive part of the energy (4.33) can be written

E� ¼ u2h
ffiffiffiffi
�

p
�4u3�

1

C3
; (4.36)

where

1

C3
� �3

2

Z wIR

1

dw

w2
½�2 ~c ðzðt�; u�wÞÞ
�1=2; (4.37)

and wIR ¼ uIR=u�. By the scaling relations (4.35), the
constant C is finite and independent of u� in the u� ! 0
limit.
After using the result (4.36) to express u� in terms of E�,

Eq. (4.29) yields

�xmaxðE�Þ ¼ C
T

�
E�
T

ffiffiffiffi
�

p
�
1=3

: (4.38)

We reiterate that the E1=3
� scaling is the maximum possible

power of energy consistent with the perturbative solution
we have derived. In particular, it is the maximum power
consistent with a string profile which is approximately a
steady state profile.

B. Numerical string solutions

It is instructive to complement the above analytic analy-
sis with explicit examination of numerically computed
string solutions. We wish to verify explicitly that
(i) strings whose end points travel far in the Minkowski
spatial are well approximated by null strings, (ii) the end-
point trajectories of such strings are well approximated by
lightlike geodesics with 	 ¼ 1, and (iii) the maximum
distance �x that a string end point can travel scales like

E1=3. The first two points have already been demonstrated
numerically in Ref. [34], but we have extended that earlier
analysis by exploring a larger sample of initial conditions.
This larger sample size is what allows us to address
point (iii). As we are using the same numerical methods
as in Ref. [34], this section closely parallels the analogous
discussion there.

To gain insight into the predicted E1=3 scaling of �x, we
solve the string equations of motion numerically for a
variety of initial conditions, and plot the penetration depth
as a function of energy. As discussed below, we indeed find
that the scaling relation (4.38) represents an upper bound
on how far a string end point can travel for a given initial
energy. Moreover, the numerical solutions provide a direct
estimate of the constant C in the bound (4.38).
For reasons discussed below (and earlier in Ref. [13]), in

our numerical analysis we have found it convenient to use
the Polyakov string action. The Nambu-Goto action is
classically equivalent to the Polyakov action

SP ¼ �T0

2

Z
d2�

ffiffiffiffiffiffiffiffi��
p

�ab@aX
M@bX

NGMN; (4.39)

where one has introduced additional degrees of freedom in
�ab, the world-sheet metric. Varying the Polyakov action
with respect to �ab generates the constraint equation

�ab ¼ 1
2�ab�

cd�cd: (4.40)
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This implies that ffiffiffiffiffiffiffiffi��
p

�ab ¼ ffiffiffiffiffiffiffiffi��
p

�ab; (4.41)

so that the world-sheet metric differs from the induced
metric only by a Weyl transformation,

�abð�; �Þ ¼ e2!ð�;�Þ�abð�; �Þ: (4.42)

When Eq. (4.41) is substituted back into the Polyakov
action, one recovers the Nambu-Goto action.

The equations of motion for the embedding functions
XM as well as the open string boundary conditions follow
from variation of the Polyakov action with respect to the
XM. Specifically, one finds

@a½ ffiffiffiffiffiffiffiffi��
p

�abGMN@bX
N
 ¼ 1

2

ffiffiffiffiffiffiffiffi��
p

�ab @GNP

@XM @aX
N@bX

P;

(4.43)

together with the boundary conditions

��
Mð�; ��Þ ¼ 0: (4.44)

Here � ¼ �� denotes a string end point and ��
M is the

canonical momentum flux on the world sheet,

��
Mð�; �Þ �


SP

X0Mð�; �Þ ¼ �T0

ffiffiffiffiffiffiffiffi��
p

��aGMN@aX
N:

(4.45)

We can fix the coordinate parametrization ð�; �Þ by
choosing the world-sheet metric �ab. As in Refs. [13,34],
we have found it convenient to choose �ab to be of the
form

k�abk ¼ ��ðx; uÞ 0
0 �ðx; uÞ�1

� �
: (4.46)

We refer to � as the stretching function, which we take to
be a function of xð�; �Þ and uð�; �Þ only. The choice of the
stretching function � is a choice of gauge. Changes in �
lead to different embedding functions XMð�; �Þ, but do not
affect the geometry of the target world sheet. With a world-
sheet metric of the form (4.46), the constraint equation
Eq. (4.40) reads

_X � X0 ¼ 0; (4.47a)

_X2 þ�2X02 ¼ 0: (4.47b)

Since we choose to study strings with pointlike initial
conditions, the � derivatives X0M are initially zero.
Hence, we must choose initial time derivatives _XM which
are consistent with the constraint (4.47b) and the boundary
condition (4.44). We may satisfy the constraint (4.47b) by
fixing _t in terms of _x and _u via

f _t2 ¼ _x2 þ _u2

f
: (4.48)

To satisfy the open string boundary condition (4.44) at
world-sheet time � ¼ 0, we choose _x and _u so that

_x 0ð0; ��Þ ¼ _u0ð0; ��Þ ¼ 0: (4.49)

The set of pointlike initial conditions then reduce to the
choice of two functions _x and _u obeying Eq. (4.49), to-
gether with the initial radial coordinate uc.
To understand why it is preferable to start from the

Polyakov action instead of the Nambu-Goto action when
solving numerically for the string dynamics, note that the
equation of motion (4.43) contains relative factors of
ð��Þ�1 between different terms. Consequently, the string
equations become singular whenever

ffiffiffiffiffiffiffiffi��
p ! 0. If we

choose the world-sheet metric to be the induced metric,
which is equivalent to starting from the Nambu-Goto ac-
tion, then the equations of motion become singular as any
part of the string approaches a lightlike configuration. This
always happens at late times as the string accelerates
toward the black brane. By using the Polyakov form of
the string action, and exploiting the freedom to choose a
world-sheet metric of the form (4.46), we may rescale the
world-sheet metric so that the equations of motion remain
well behaved everywhere on the world sheet.
The energy of the string is a conserved quantity and can

be computed from the data defining the initial conditions.
With

��
t ð�; �Þ ¼ 
SP


 _tð�; �Þ (4.50)

denoting the conserved canonical energy density, the total
string energy is given by

Estring ¼ �
Z �

0
d���

t ð0; �Þ: (4.51)

Expressing this more explicitly in terms of the initial data,
one finds that

Estring ¼
ffiffiffiffi
�

p
2�

fðucÞ
�ðxc; ucÞu2c

Z �

0
d� _tð0; �Þ: (4.52)

1. Initial conditions and numerical results

We consider a two-parameter family of initial condi-
tions. Inspired by the strings studied in Ref. [34], we
choose

_xð0; �Þ ¼ Auc cos�; (4.53a)

_uð0; �Þ ¼ uc

ffiffiffiffiffiffiffiffiffiffiffi
fðucÞ

q
ð1� cos2�Þ; (4.53b)

and also take xc ¼ 0. As uc ! 0 and Auc ! 1, these
initial conditions generate strings whose end points travel
arbitrarily far in the Minkowski spatial directions before
falling into the black hole. Moreover, since _xð0; �Þ is
antisymmetric about � ¼ �=2 while _uð0; �Þ is symmetric,
these strings are symmetric about x ¼ 0 at all times. These
states therefore have zero total spatial momentum, but each
half of the string has an energy and momentum that scale
linearly with A for large A.
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As in Refs. [13,34], we choose a stretching function so
that gradients of the embedding functions are small at all
times during the string’s evolution. We found by trial and
error that stretching functions of the form

�ðx; uÞ ¼
�
1þ

�
x

�T

�
2
�
m
�
1� u=uh
1� uc=uh

��
uc
u

�
2

(4.54)

were adequate to generate long-lived strings with a variety
of initial conditions. In this work, the free parametermwas
usually chosen to be 0.02.

In terms of the initial conditions (4.53) and the stretching
function (4.54), the string’s energy evaluates to

Estring ¼
ffiffiffiffi
�

p
2�

ffiffiffiffiffiffiffiffiffiffiffi
fðucÞ

p
uc

Z �

0
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2cos2�þ ð1� cos2�Þ2

q
:

(4.55)

Because the string corresponds to a quark-antiquark pair in
the dual field theory, Estring should be regarded as twice the

initial energy of a single quark. We emphasize that our
strings are symmetric about x ¼ 0 so that each half-string
is approximately dual to a single dressed quark. In the
following we therefore use

E � 1
2Estring; (4.56)

when discussing the dynamics of a single string end point.
As in Refs. [13,34], we used the Mathematica routine

NDSOLVE to integrate the string equation of motion (4.43)

numerically. We chose the parameters A and uc in our
initial conditions (4.53) from the intervals

A 2 ½1000; 9000
; (4.57a)

uc
uh

2 ½0:008 67; 0:019
: (4.57b)

This generates half-strings with energies in the interval

Effiffiffiffi
�

p
T

2 ½26 316; 519 031
; (4.58)

allowing us to study states with energies much larger than

the characteristic scale
ffiffiffiffi
�

p
T (while simultaneously achiev-

ing high numerical precision).
Our data runs stepped through this parameter space by

fixing uc and then generating strings for many values of A.
As a result, we were able to generate over 1000 string
world sheets and measure the associated stopping distances
and energies. Our data are summarized in Fig. 1. Each
distinct line of data points in the plot comes from a single
choice for uc.

2. Comparison to the approximate string solution

Figure 6 displays a typical numerically generated string
at three different coordinate times. On top of the numerical
string profiles, we also plot the null string (4.12) with 	 ¼
1. Also shown in the figure are the end-point trajectories
overlain with the corresponding null geodesic with 	 ¼ 1.
As is evident from the figure, the null string provides an
excellent approximation to the numerical string profiles for
times t which are a few uh or larger, and the difference
between the actual end-point trajectory and the null geo-
desic approximation is imperceptible.
To further elucidate the quality of the geodesic approxi-

mation to the end-point trajectory, we have computed the
quantity

�ðtÞ � fðUðtÞÞðdX=dtÞ�1; (4.59)

whereXðtÞ is the x̂ coordinate of the string end point. From
Eq. (4.5a), one sees that for a geodesic � is constant and

FIG. 6 (color online). A plot of a numerically computed string at three different times, overlain with the analytic null string
approximation (4.12). The string was created at a point at time t ¼ 0with the initial conditions (4.53), for uc ¼ 0:014uh and A ¼ 2400.
The corresponding energy E ¼ Estring=2 ’ 85 700

ffiffiffiffi
�

p
T. The numerical string, shown as the solid curve, is plotted at successive times

t1 ¼ 1:6=T, t2 ¼ 11:4=T, and t3 ¼ 22:8=T, and the corresponding null string, shown as the dashed curve, is plotted at the same times.
The uppermost solid curves represent the numerically computed end-point trajectories, and the overlain uppermost dashed curve shows
the geodesic fit to the end-point trajectory with geodesic parameter 	 ¼ 1. The null string approximation agrees very well with the
numeric string configuration at times t * a few uh, and the null geodesic curve likewise tracks the end-point trajectory very accurately.
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equal to 	. Over the course of the trajectory of the numeri-
cal string shown in Fig. 6, � equals 1 to within one part in
106, which is the limit of our numerical precision.
Therefore, the end-point path for this string is very well
approximated by a 	 ¼ 1 geodesic. We have verified simi-
lar results for many different sets of initial conditions
which correspond to long-lived quarks.

3. Maximum penetration depth

Our exploration of a wide range of initial conditions
produced the data for penetration depths shown in Fig. 1.
All our data are consistent with the bound

�xmaxðEÞ ¼ 0:526

T

�
E

T
ffiffiffiffi
�

p
�
1=3

; (4.60)

which explicitly confirms the E1=3 scaling of the penetra-
tion depth derived in Sec. IVA. More generally, our nu-
merical results clearly confirm the validity of the
asymptotic analysis leading to the approximate string so-
lution presented in Sec. IVA.

It is instructive to estimate the maximum value of C
based on the perturbative analysis presented in Sec. IVA.
Clearly, from Eq. (4.37) one sees that C is maximized when

the quantity ~c ðzÞ is maximized. However, the validity of
the null string approximation presented in Sec. IVA re-

quired j ~c ðzÞj � 1. For ~c ðzÞ � 1 the integration appearing
in Eq. (4.37) is of order 1. Furthermore, the value of C only
depends on the cube root of the integral, so C is rather
insensitive to its precise value. Therefore, in order to get a
crude estimate on the value of C we set the integral appear-
ing in Eq. (4.37) equal to 1. We therefore arrive at the
estimate

C �
ffiffiffi
2

p
�

� 0:45: (4.61)

This is remarkably close to the numerically determined
value of 0.526.

In addition to the sampling of pointlike initial conditions
yielding the data shown in Fig. 1, we have also studied
more complicated initial conditions describing strings
which are not pointlike at t ¼ 0. The results obtained for

these initial conditions also demonstrated the E1=3 scaling
relation of Eq. (4.38), but generally yielded a slightly
smaller value of C. All of our numerical results are con-
sistent with the value for C determined from the data shown
in Fig. 1, namely C ¼ 0:526. However, we emphasize that
this value, extracted from a finite sampling of initial con-
ditions, is a lower bound on the true value of C. It is
possible that a wider set of initial conditions will yield a
larger value for C, although because of the close agreement
with the estimate obtained in Eq. (4.61), we doubt that the
true value is significantly greater than 0.526.

V. DISCUSSION

A. Energy loss rate

As Fig. 1 makes apparent, propagating light quarks in
strongly coupled N ¼ 4 plasma do not have a unique
stopping distance for a given energy. This result should
not be surprising. Knowledge of the total energy (and
momentum) of a quark-antiquark state is far from a com-
plete specification of the initial state. The form of the
disturbance in the gauge field (and other N ¼ 4 SYM
fields) will affect the subsequent dynamics. In the dual
description, this additional information is encoded in the
profile of the string connecting the quark and antiquark.
Nevertheless, there is a rather simple characterization of
the maximum penetration distance of a quark, scaling with

energy as E1=3.
An interesting quantity to consider is the instantaneous

energy loss rate of a light quark. From the �x� E1=3

scaling of the penetration depth, one might expect that
for light quarks the rate of energy loss per distance trav-
eled, dE=dx (which essentially coincides with dE=dtwhile
the excitation is a good quasiparticle), would scale like

E2=3. This expectation turns out to be incorrect, as we now
discuss.
Let f�dragðtÞ ¼ dp�=dt denote the 4-momentum lost by

the quark per unit time. The long distance hydrodynamic
perturbation in the SYM stress tensor T��

hydro is determined

by the hydrodynamic constituent relations together with
the energy-momentum conservation relation [31],

@�T
��
hydro ¼ F�; (5.1)

with F�ðt; xÞ ¼ �f�dragðtÞ
ð3Þðx� xquarkðtÞÞ the force den-

sity (acting on the plasma) and xquarkðtÞ the quark’s

trajectory.
As long as the quark’s baryon density is well localized in

space, the energy loss rate may be determined by comput-
ing the energy flux through a sphere SR of radius R which
encloses (nearly) all of the quark’s baryon density. It is this
energy flux which enters in the force density of Eq. (5.1).
As 1=T sets the length scale on which a hydrodynamic
description of the stress-tensor perturbation becomes valid
[31], it is natural to take R� 1=T. The precise value
chosen for R is irrelevant—during times in which the quark
is a well-defined quasiparticle, its baryon density is local-
ized over a scale� 1=T while the distance traveled by the
localized baryon density distribution is � 1=T.
Using the dual gravitational description, one may com-

pute the energy flux through SR by solving the gravitational
bulk-to-boundary problem. Specifically, one solves
Einstein’s equations for the perturbation in the 5d geome-
try due to the presence of the string and then, by analyzing
the near boundary behavior of the metric perturbation
[31,41,42], extracts the change in the SYM stress tensor
and uses this result to evaluate the energy flux through SR.
This procedure was carried out for heavy quarks moving at
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constant velocity in Refs. [30–33]. Carrying out the corre-
sponding analysis for our nonstationary light quark world
sheets is computationally demanding and will be left for
future work. However, there is a simple way of extracting
the energy loss rate from the string profile itself. The
energy of a string is a conserved quantity. The high energy
density near the string end point should, as discussed in
Sec. III, be regarded as the energy of the quark. This energy
is transported down the string by an energy flux �1

t [cf.
Eq. (4.30b)] toward the event horizon. This energy flux
corresponds to energy transferred from the quark to the
plasma. Via the holographic bulk-to-boundary mapping,
this conserved flux is mapped onto the energy flux through
SR in the dual field theory. Without solving the bulk-to-
boundary problem explicitly, one does not know a priori
precisely how to relate the bulk position ðu; tÞ at which one
evaluates the energy flux down the string to a correspond-
ing time and radius R of an energy flux measurement in the
field theory. However, as long as the quark energy loss rate
is changing sufficiently slowly, retardation effects in the
gravitational bulk-to-boundary problem can be neglected
and the energy flux through SR should be well approxi-
mated by evaluating the energy flux down the string at a
spatial distance �R from the string end point.

In Fig. 7, we plot the energy flux flowing down the
numerically generated string shown in Fig. 6, evaluated
at a distance of 1:75=ð�TÞ from the string end point. For
this particular string, the string end point approaches the
event horizon at a time t� 24=T, which should be re-
garded as the thermalization time ttherm of the light quark.
As the string end point approaches the event horizon, the
baryon density induced on the boundary rapidly spreads
out and diffuses [34]. In the gravitational description, this
is due to the strong gravitational redshift incurred on the

electric field sourced by the string end points as they
approach the horizon. (More precisely, as the string end
points approach the horizon, the strong gravitational field
of the black hole pulls the electric field lines, which are
sourced by the string end points, toward the horizon. This
results in the spreading out of the electric field lines and
hence a spreading out of the induced baryon density on the
boundary.) As is evident from Fig. 7, the energy flux down
the string does not decrease in a power-law fashion as a

naive E2=3 scaling of dE=dt would suggest, but rather
increases monotonically until the thermalization time.
We stress that the precise form of the energy flux down

the string is sensitive to the initial conditions used to create
the string. This is easy to understand from the approximate
analytic string solutions discussed in Sec. IVA. These
approximate solutions, which correspond to long-lived
quarks, are perturbations of null strings. The energy flux
diverges for a null string. The finite flux of the complete
solution is determined by the function c ðzðt; uÞÞ [defined
in Eq. (4.22)] which characterizes the perturbation 
xðt; uÞ
on the null string. This function is not universal and
depends on the initial conditions used to create the string.
However, the late-time behavior of the instantaneous

energy flux is universal. As is evident from Fig. 7, near
the thermalization time the energy flux down the string
dramatically increases. This may be understood from our
approximate string solutions. The energy flux down the

string scales like ð��Þ�1=2 where � is the determinant of
the world-sheet metric. For strings which are small pertur-
bations of null strings, Eq. (4.32) shows that � is propor-
tional to the function c ðzðt; uÞÞ characterizing the
perturbations. Near the thermalization time ttherm ¼
u2h=u� and at a radial coordinate u corresponding to a fixed

distance �1=T from the string end point, the function
zðt; uÞ behaves like

zðt; uÞ ¼ t� ttherm
u�

þOðu�=uhÞ; (5.2)

and hence becomes very small as t ! ttherm. By the open
string boundary conditions (4.7) and (4.25), the function
c ðzÞ must vanish at the string end point which, as dis-
cussed in Sec. IVA corresponds to z ¼ 0. Finiteness of the
string energy (4.33) requires that c 0ð0Þ be nonzero.
Consequently, near the end point one may approximate
c ðzÞ � c 0ð0Þz. Neglecting the Oðu�=uhÞ corrections in
Eq. (5.2), one finds

�1
t � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ttherm � t
p : (5.3)

We have numerically confirmed the above scaling in the
data shown in Fig. 7.
The late-time behavior (5.3) implies that after traveling

substantial distances through the plasma, the thermaliza-
tion of light quarks ends with an ‘‘explosive’’ transfer of
energy to the plasma. This behavior is qualitatively similar

FIG. 7 (color online). The instantaneous energy loss rate,
dE=dt, of a highly energetic quark, normalized by its initial
energy E0. Instead of decreasing with time, as might have been
expected, the light quark energy loss rate actually increases. At
times near the thermalization time, which for this particular
example is ttherm � 24=T, the instantaneous energy loss rate
grows like dE=dt� 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ttherm � t

p
.
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to the energy loss rate of a fast charged particle moving
through ordinary matter, where the energy loss rate has a
pronounced peak (known as a ‘‘Bragg peak’’) near the
stopping point. This peak in the energy loss rate has its
origin in the energy dependence of cross sections, which
increase with decreasing energy due to the conformal
nature of Coulomb interactions.

In the gravitational description, the scaling (5.3) be-
comes valid when the string end point starts to fall toward
the horizon (i.e., when dU=dX ceases to be small com-
pared to 1). As shown in Fig. 6, this happens relatively
abruptly, so we expect the creation of large amounts of
gravitational radiation to propagate to the boundary and
induce a large perturbation in the SYM stress tensor cor-
responding to this final burst of energy. However, we
emphasize that because the energy flux flowing down the
string is changing rapidly at late times, retardation effects
in the gravitational bulk-to-boundary problem cannot be
neglected, implying that the result (5.3) for the energy flux
down the string cannot be directly equated with the field
theory energy flux through a sphere SR. It would, of course,
be interesting to compute directly the energy flux in the
plasma produced by the light quark jet as it thermalizes.
Evaluation of the required bulk-to-boundary problem is
currently in progress.

It is interesting to speculate on the implications of our
results for heavy ion collisions. Hard partons produced in
the early stages of heavy ion collisions can traverse the
resulting fireball and deposit energy and momentum into
the medium. If the partons are moving supersonically, their
hydrodynamic wake will contain a Mach cone whose
propagation can influence the distribution of particles as-
sociated with a jet. If the hard parton under consideration is
a very massive quark with mass m, the results of Ref. [13]
predict an energy loss rate of the form dE=dx ¼ dp=dt ¼
��p where, for strongly coupled SYM, � ¼ �

2

ffiffiffiffi
�

p
T2=m.

Therefore, the energy loss rate falls exponentially with
time—heavy quarks in strongly coupled SYM lose the
bulk of their energy in the early portions of their trajecto-
ries. The resulting sound waves, whose amplitudes will be
largest at early times, may traverse much of the fireball
before freeze-out occurs. Consequently, sound waves pro-
duced by heavy quarks may be quite sensitive to medium
effects and may experience substantial attenuation before
freeze-out.

At least for strongly coupled SYM, the situation for light
quarks is qualitatively different. As we have demonstrated
in Fig. 7, light quarks lose the bulk of their energy in the
latter stages of their trajectories. The resulting hydrody-
namic wake will therefore have less time to attenuate and
diffuse than is the case for heavy quarks. Moreover, be-
cause the light quark energy loss rate increases with time,
we expect the amplitude of the corresponding wake to also
increase with time. Because of this, we expect the spectrum
and distribution of particles produced by light quark jets to

be qualitatively different from the behavior of heavy quark
jets.

B. Fluctuations

Throughout our analysis, we have treated the string
dynamics classically. This approximation is valid in the
limit of large ’t Hooft coupling �. More precisely, a clas-
sical treatment is valid in the limit that � ! 1 with

E=
ffiffiffiffi
�

p
T finite and fixed. (Recall that the string energy

automatically scales like
ffiffiffiffi
�

p
.) However, one would also

like to understand when the classical analysis can be
trusted if � is large but fixed. To determine this, one should
compute the size of quantum fluctuations around the clas-
sical string profile and compare the size of the fluctuations
to the classical result. Natural specific quantities to con-
sider are the fluctuations �p in the quark momentum p.
These fluctuations are defined by the variances

ð�piðtÞÞ2 ¼ hpiðtÞ2i � hpiðtÞi2: (5.4)

If �p is not small compared to p, then the reliability of the
classical calculation is questionable.
Formally, the mean momentum p and the connected

correlator defining ð�pÞ2 are both Oð ffiffiffiffi
�

p Þ. Consequently
j�p=pj ¼ Oð��1=4Þ and vanishes as � ! 1. However, for
large but fixed � the energy (and time) dependence of
j�p=pj can be important. To see this, consider the case
of fluctuations in the momentum of a heavy quark. Mean
square fluctuations in the longitudinal and transverse com-
ponents of the quark’s momentum grow with time t as
[15,20]

ð�pLÞ2 �
ffiffiffiffi
�

p
�5=2T3t; (5.5a)

and

ð�pTÞ2 �
ffiffiffiffi
�

p
�1=2T3t; (5.5b)

respectively, where � � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
and v is the heavy

quark velocity. Therefore, with large but fixed �, the
relative size of fluctuations, �p=p, becomes arbitrarily
large both at sufficiently late times and (for longitudinal
fluctuations) in the ultrarelativistic limit.
To estimate the size of quantum fluctuations in the light

quark’s momentum, we will use the above results for heavy
quarks as a rough guide. This is not unreasonable as the
trailing string profile used to compute the above momen-
tum fluctuations coincides, in the v ! 1 limit, with the
(	 ¼ 1) null string derived in Sec. IVA. However, care
must be taken—quantum fluctuations on top of the null
string, which is a degenerate solution to the classical
equations of motion, diverge. This is immediately apparent
in the formulas (5.5) which blow up as v ! 1. To estimate
the momentum fluctuations for light quarks using these
results, we must be able to associate the heavy quark
velocity v (which is always less than 1) with the size of
the classical perturbations 
x [defined in Eq. (4.11)] to the
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null string profile. To do so, we simply note that the trailing
string profile for a heavy quark with velocity v coincides
with the null string profile (which is the v ! 1 limit) up to
Oð1� v2Þ corrections. Therefore, for the purpose of a
rough estimate, we identify 1� v2 with the size of classi-
cal perturbations on top of the null string. As discussed in
Sec. IVA, if at time t� the radial coordinate of the string is
u�, then the largest2 the perturbations to the null string can
be is Oðu3�=u3hÞ. With the identification 1� v2 ,
Oðu3�=u3hÞ, we have

ð�pLÞ2 �
�
uh
u�

�
15=4 ffiffiffiffi

�
p

T3t: (5.6)

During the portion of the quark’s trajectory when it is a
well-defined quasiparticle its momentum, by construction,

is large and scales as p� ffiffiffiffi
�

p
u2h=u

3�. We therefore arrive at

the estimate

�p

p
�

�
u�
uh

�
9=8

ffiffiffiffiffi
Tt

p

�1=4
: (5.7)

In the limit u�=uh � 1 (i.e. the high energy limit) we see
that the sizes of quantum fluctuations are small relative to
the classical prediction for the momentum. But for fixed
values of u� and �, the

ffiffi
t

p
growth of the result (5.7)

suggests there will be a time when quantum fluctuations
become large. However, for the light quarks discussed in
this paper, the quarks only exist as well-defined quasipar-
ticles up until the thermalization time ttherm. As discussed
in Sec. IVA, in terms of u� the thermalization time is
simply ttherm ¼ u2h=u�. Evaluated at this time, Eq. (5.7)

implies that quantum fluctuations are suppressed by a

relative factor of ðu�=uhÞ5=8=�1=4. This is reassuring.

C. Pair creation, string fragmentation, and finite Nc

In addition to large �, we have also assumed from the
outset that Nc has been sent to infinity. This limit is what
justifies the neglect of quantum fluctuations in the back-
ground AdS-BH geometry. At finite Nc, string fragmenta-
tion, backreaction of the string on both the geometry and
the D7 brane embedding, and backreaction of the brane on
the geometry also have to be addressed.

Energetically, our string is unstable, breaking into many
tiny pieces. This corresponds to quark-antiquark pair cre-
ation in the dual field theory. The small string coupling
gs � 1=Nc suppresses the amplitude for a string to break.
Correspondingly, the rate of the string decay process is
suppressed by 1=N2

c , and hence the time scale for string

fragmentation is, at large Nc, parametrically larger than
any of the time scales considered in this work.
Alternatively, the process of string fragmentation can

also be described from the point of view of the D7 brane
world volume as the spreading of a narrow flux tube, the
original fundamental string, into more and more widely
dispersed flux on the brane. In terms of the underlying
string theory, the quanta of the world-volume gauge field
are little pieces of open string, so a uniform flux on the
world volume is the same as a coherent cloud of little string
pieces. Thinking of the dynamical instability of our string
as a result of breaking into many pieces, or due to spread-
ing into dispersed flux on the brane, are just two different
descriptions of one and the same process which is sup-
pressed at large Nc.
Large Nc is also what justifies the neglect of backreac-

tion of the D7 brane on the background geometry, as well
as the backreaction of the string on the D7 brane embed-
ding and on the geometry. Note that, as far as large Nc

counting is concerned, the gravitational action scales as
N2

c , the action for the brane embedding and the world-
volume gauge field scales as Nc, and the Nambu-Goto
action describing the world sheet of the string is of order 1.
(In addition the three actions scale with the ’t Hooft cou-

pling as 1, �, and
ffiffiffiffi
�

p
, but for now it is sufficient to focus on

the Nc counting.) The brane is very heavy compared to the
string, but still has a small tension in Planck units.
Consequently, it is consistent to embed the brane in a fixed
background geometry and then consider a string ending on
the brane, without computing the Oð1=NcÞ suppressed
deformation of the brane which will be induced by the
string.
The issue of backreaction becomes more subtle when

one solves for the linearized response of the metric in
response to the string in order to determine the boundary
stress tensor. The order N0

c stress energy of the string
generates an order 1=N2

c correction to the metric (since
the 5d gravitational constant scales as 1=N2

c ). Con-
sequently, when evaluating the variation of the on-shell
gravitational action, the perturbation in the geometry due
to the presence of the string produces an order one con-
tribution to the expectation value of the stress tensor.
In addition to the string itself, another potential source

for the stress tensor is the gauge field living on the brane
which is sourced by the string end point. The Oð1Þ charge
from the string end point gives rise to an order 1=Nc gauge
field on the brane [as the gauge coupling on the brane is
Oð1=NcÞ]. Combining this with the overall Nc of the brane
action would appear to give another order one source in the
bulk, and hence another order one contribution to the
expectation value of the stress tensor out on the boundary.
However, it is important to note that the leading AM

dependent term in the brane stress tensor is quadratic in the
world-volume gauge field, so that the order 1=Nc gauge
field on the brane only produces a stress-tensor contribu-

2Strictly speaking, in Sec. IVA we argued that 
x can be no
larger than u3�=u3h only in the vicinity of the string end point.
However, via the inflationary behavior of perturbations defined
on top of the null string (as shown in Fig. 5), when t� t� ¼
Oð1=TÞ the perturbation in the string profile will be determined
by the near end-point perturbations at time t ¼ t�.
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tion of order 1=Nc. This conclusion is altered if there is an
order one background electric field on the world volume
(as in the original dragging string solution of Ref. [13]). In
this case there are contributions to the brane stress tensor
linear in the gauge field sourced by the string, which
consequently give rise to an order one contribution to the
stress tensor. Similar terms also arise if one studies finite,
nonzero mass quarks where an order one background
embedding scalar is turned on. Both of these contributions
would need to be included if one wanted to generalize the
stress-energy wake calculations of Refs. [30–33] to finite
mass quarks.

D. Weak versus strong coupling

It is natural to ask how the E1=3 scaling of the penetration
depth in the strongly coupled limit compares with the
analogous result for weakly coupled plasmas. When the
’t Hooft coupling � (at scales ranging from the temperature
T to the projectile energy E) is small, the energy loss of a
high energy parton moving through the plasma is domi-
nated by near-collinear bremsstrahlung processes. The rate
for an energetic parton (with energy E � T) to radiate a
gluon which carries away an Oð1Þ fraction of its energy,
while interacting with a typical gauge field fluctuation in

the plasma, scales as �2T=
ffiffiffiffiffiffiffiffiffiffi
E=T

p
[43–47], up to factors

depending logarithmically on the energy, which we ignore
throughout this discussion. Therefore, the average distance
an energetic parton travels between emission events is

�xradðEÞ �
ffiffiffiffiffiffiffiffiffiffi
E=T

p
=ð�2TÞ. The square root dependence on

energy is due to Landau-Pomeranchuk-Migdal suppres-
sion, which is a consequence of multiple scattering during
the formation time of a radiated gluon.

Imagine creating a very energetic quark in a localized
wave packet with mean momentum p, and then measuring,
at some later time, the total energy or baryon number
contained in a comoving sphere of size R� 1=T �
1=jpj surrounding the wave packet. The opening angle in
near-collinear bremsstrahlung emission is parametrically

small, �� ffiffiffiffi
�

p ðT=EÞ3=4. Therefore, the direction of the
leading parton is almost unchanged by these bremsstrah-
lung emissions. Since the speeds of ultrarelativistic exci-
tations differ negligibly from the speed of light, this
implies that all the partons produced by a cascade of
near-collinear emissions have almost identical velocities.
Consequently, near-collinear bremsstrahlung emissions do
not significantly degrade the energy, or baryon number,
contained in the comoving sphere. As far as gauge-
invariant measurements of energy or momentum are con-
cerned, the entire collection of near-collinear partons be-
haves like a single collective excitation whose energy and
momentum is nearly constant.

This effective ‘‘quasiparticle’’ picture remains valid un-
til the typical energy of the partons produced by the
cascade ceases to be large compared to T. The typical
penetration depth will equal the radiation length �xradðEÞ

summed over the number of levels of showering which are
required to degrade the typical parton energy from E down
to � T. Since every emission transfers an Oð1Þ fraction of
energy to the emitted gluon, and every produced parton
continues to shower, the typical energy of partons pro-
duced by a cascade with k levels of showering will be of
order E=ck for some c � 2. Therefore, the number of
showerings required to thermalize an extremely energetic
parton grows only logarithmically with energy, and the
total penetration depth differs from the radiation length
for the first emission only by an Oð1Þ factor. The net result
is that the penetration depth �xðEÞ in a weakly coupled

non-Abelian plasma behaves as
ffiffiffiffiffiffiffiffiffiffi
E=T

p
=ð�2TÞ times factors

depending only logarithmically on E=T.
Presumably, there is a smooth interpolation from weak

to strong coupling in N ¼ 4 SYM. At intermediate cou-
plings, the maximum penetration depth may be propor-

tional to E�ð�Þ, with an exponent �ð�Þ which varies
smoothly from 1=2 as � ! 0 to 1=3 as � ! 1.
Alternatively, the correct form might be a sum of two

distinct contributions, T�x ¼ Að�ÞðE=TÞ1=2 þ Bð�Þ�
ðE=TÞ1=3, with Að�Þ ¼ Oð��2Þ and Bð�Þ ¼ oð�Þ as � !
0, and Bð�Þ ¼ Oð��1=6Þ and Að�Þ ¼ oð��1=6Þ as � ! 1.
Subleading corrections to the weak-coupling energy loss
rate which are suppressed by powers of the ’t Hooft cou-
pling are not known and would be challenging to calculate.
And subleading strong-coupling corrections, suppressed
by inverse powers of �, are also unknown. Consequently,
there is no way, at present, to determine a preferred inter-
polating form.

E. Relation to other work

In Ref. [35], where the E1=3 scaling was first proposed,
various guesses for the analog of C were given based on
different assumptions. The authors of this work were in-
terested in calculating the penetration depth of a gluon,
whose dual description was conjectured to be a folded
string. The relevant string configuration was assumed to
be given by a portion of the stationary trailing string profile
of Ref. [13], with the string (at any instant of time) coming
up from the horizon, reaching a sharp hairpin at some
radial coordinate u�ðtÞ, and then retracing the same path
back down to the horizon.
The authors of Ref. [35] estimated the penetration depth

of a gluon by assuming that the hairpin in the string falls
into the horizon along a lightlike geodesic. Without solving
the string equations of motion, the parameters of the geo-
desic were estimated in terms of u� and v. By relating these
parameters to the string’s energy, the authors of Ref. [35]
argued that the maximum penetration depth should scale
like

�xGGPR ¼ CGGPR
T

�
E�

2T
ffiffiffiffi
�

p
�
1=3

: (5.8)
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The constant CGGPR was estimated to be between 0.35 and
0.41.

While we have found that the end-point trajectories of
strings corresponding to long-lived quarks do follow light-
like geodesics (to quite high accuracy), the relationship
between the parameters of the geodesic and the energy of
string is rather different from that presented in Ref. [35]. In
contrast to the treatment of Ref. [35], where the string

energy was assumed to be well described by EGGPR �ffiffiffiffi
�

p
=ðu�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
Þ, the energy of the strings considered in

this paper scale as
ffiffiffiffi
�

p
u2h=u

3� and the strings themselves are

approximately null—this latter fact completely fixes the
corresponding geodesic parameter 	 in terms of the initial
string profile via the equations of motion.

Despite these differences, it may be of interest to com-
pare the penetration depth of a gluon estimated in Ref. [35]
with the result for a light quark found in this paper. In doing
so, it is natural to replace E�=2 ! E�, in Eq. (5.8) when
converting from a folded string modeling a gluon to an
open string describing a quark. With this change, one may
simply compare CGGPR to our measured value of C ¼
0:526. Our result is larger than the estimates of Ref. [35]
by 30%–50%.

The E1=3 scaling of the penetration depth has also ap-
peared in Ref. [36], which discussed the dynamics of jet-
like configurations in the bulk gauge field dual to the
R current in strongly coupled SYM. The coefficient of
the scaling relation was not calculated in this work.
However, the coefficient characterizing R-current jets nec-
essarily differs from our result in Eq. (4.60), since the
gravitational interactions of the 5d gauge field dual to the
boundary R current are independent of � (at leading order
in the strong-coupling limit).

We conclude our discussion by summarizing the physics
which distinguishes light quark energy loss from that of
heavy quarks. A comprehensive numerical study of heavy
quark evolution has been performed in Ref. [29]. Let us
compare and contrast the behavior of heavy and light
quarks. The penetration distance in both cases is nonun-
iversal for the same reason: the quark’s evolution depends
upon the initial gauge field. After several units of inverse
temperature, the dual string in either case becomes well
approximated by small fluctuations on top of an analytic
solution. As long as the quark is ultrarelativistic (regardless
of its mass), the appropriate analytic string solutions are
null strings, and the energy flux flowing down the string is

entirely determined by the nonuniversal small fluctuations.
However, when a heavy quark has lost a sufficient amount
of energy, its dual string profile will be well approximated
by the non-null v < c solutions obtained in Ref. [13].
Thereafter, the heavy quark energy loss rate will be insen-
sitive to fluctuations away from the analytic string profile,
and the energy loss rate will simply be proportional to the
quark’s momentum. In contrast, the light quark energy loss
rate remains sensitively dependent on fluctuations during
its entire trajectory. This is a consequence of the fact
massless quarks are always ultrarelativistic, so their dual
string profile is nearly null at all times. Consequently, the
energy loss rate profile of a light quark remains sensitive to
the initial conditions for an arbitrarily long period until
thermalization.

VI. CONCLUSIONS

Using gauge/gravity duality, we have studied the pene-
tration depth of an energetic light quark moving through a
strongly coupled N ¼ 4 SYM plasma. An analytic
asymptotic analysis shows that, for quarks which travel
long distances through the plasma, the world sheet of the
dual string description nearly coincides with that of the null
string. Both the analytic analysis, and explicit numerical
computations, show that for a given quark energy E, the

maximum penetration depth �xmaxðEÞ scales as E1=3.
Based on numerical results from a wide sampling of initial

conditions, we find �xmaxðEÞ ¼ ðC=TÞðE=T ffiffiffiffi
�

p Þ1=3 with
C � 0:5. We also find that the instantaneous energy loss
rate of a light quark is not universal. However, independent
of initial conditions, we find that the energy loss rate grows
rapidly as the thermalization time is approached.
Consequently, the thermalization of light quarks in
strongly coupled N ¼ 4 super Yang-Mills ends with an
explosive burst of energy transfer to the plasma.
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