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We discuss chiral symmetry breaking in the intersecting brane model of Sakai and Sugimoto at weak

coupling for a generic value of separation L between the flavor D8 and anti-D8-branes. For any finite

value of the radius R of the circle around which the color D4-branes wrap, a nonlocal Nambu–Jona-

Lasinio-type short-range interaction couples the flavor branes and antibranes. We argue that chiral

symmetry is broken in this model only above a certain critical value of the four-dimensional ’t Hooft

coupling and confirm this through numerical calculations of solutions to the gap equation. We also

numerically investigate chiral symmetry breaking in the limit R ! 1 keeping L fixed, but find that simple

ways of implementing this limit do not lead to a consistent picture of chiral symmetry breaking in the

noncompact version of the nonlocal Nambu–Jona-Lasinio model.
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I. INTRODUCTION

The Nambu–Jona-Lasinio (NJL) model [1] provides an
example of dynamical chiral symmetry breaking (�SB)
and fermion mass generation in a simple effective field
theory setting. In the original model, the fermions in the
four-Fermi interaction were taken to be the nucleons.
Interest in the model has endured for two main reasons:
(i) it appears to give a rather accurate description of chiral
symmetry breaking and its consequences for low-energy
hadron phenomenology; (ii) appropriately replacing the
original nucleons by colored quarks, the model can be
argued to describe all of the low-energy physics of QCD,
including the anomaly term [2–4].1

Recently, versions of the NJL model have emerged in a
string theory setting [6,7], involving intersecting brane
configurations. One such configuration is the model of
Sakai and Sugimoto (SS) [8], which involves a system of
intersecting D4, D8, and anti-D8-branes. The SS model
has been very successful in reproducing many of the quali-
tative features of nonabelian chiral symmetry breaking in
QCD. In this model, the ‘‘ color’’ Yang-Mills fields are
provided by the massless open string fluctuations of a stack
of Nc D4-branes, which are extended along the four space-
time directions and in addition wrap a thermal circle of
radius R. At scales much larger than string length, the
theory on the D4-branes is (4þ 1)-dimensional pure
Yang-Mills with coupling g25 ¼ ð2�Þ2gsls of length dimen-

sion. In the strong coupling limit, g25Nc � 2�R, this stack
of D4-branes has a dual description in terms of a classical
gravity theory [9] with the background geometry of a

Euclidean black hole. flavor degrees of freedom [10–12]
are provided by the massless open string fluctuations
between the color branes and the ‘‘flavor’’ D8 and
anti-D8-branes, which intersect the thermal circle at points
separated by a distance L � �R. Various aspects of chiral
symmetry breaking in this model have been discussed in
[6–8,13–31].
It was pointed out in [6] that the brane configuration of

the SS model decouples the scales of chiral symmetry
breaking and confinement.2 The additional parameter in
the SS model (as compared to QCD) which makes this
possible is the ratio L=R. The authors of [6] argued that in
the limit R ! 1 with L kept fixed (noncompact SS
model), the effective low-energy description of the SS
model at weak coupling3 is given by a nonlocal version
of the NJL model, which breaks chiral symmetry sponta-
neously at arbitrarily weak coupling. This result is surpris-
ing in view of our field theoretic intuition, which would
suggest that chiral symmetry is not broken at weak cou-
pling and that there is a transition to the broken phase at
some critical value. One might suspect that this unexpected
result is connected with the absence of a mass gap in the
noncompact SS model, which results in a long-range four-
Fermi interaction. One way to test this hypothesis would be
to work with a finite, but possibly very large, value of R,
which corresponds to a confining theory with possibly a
small, but nonzero, mass gap. From general arguments, one

1These works give an argument based on Wilsonian RG and
the confinement property of QCD for the emergence of the NJL
model for quarks from the underlying microscopic dynamics,
including the correct anomaly term with a coefficient propor-
tional to the number of colors. For a review of applications of
this model to QCD phenomenology, see [5].

2A similar observation was made in [32] in a different context.
3There are several parameters of length dimension in the SS

model, viz. R, L, ls, and g25. As discussed in [6], the weak
coupling limit is defined by the hierarchy of scales g25Nc �
ls � L � R. In this parameter region, stringy effects may be
neglected and, as we shall see, a controlled treatment of the
interaction between left and right-handed flavors, mediated by
Yang-Mills fields, can be given. The condition L � R makes it
possible to have a chiral symmetry breaking (length) scale which
is much smaller than the confinement scale.
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would expect chiral symmetry to be broken in this model at
a length scale of the order of or smaller than the confine-
ment scale.4 However, in the corresponding effective non-
local NJL model which describes the flavor brane-
antibrane interactions, �SB could be associated with
length scales even larger than the confinement scale. This
is because the NJL model does not incorporate confine-
ment. Now, the point is that for solutions which have �SB
scale larger than the confinement scale, an effective local
NJL model should be adequate. But this latter model shows
a critical coupling for �SB. This argument suggests that an
effective nonlocal NJL model for the SS model would
show �SB only beyond a critical value of the coupling.

In this paper we analyze �SB at weak coupling in the
brane configuration of the SS model, with a finite value of
R and a generic value of L. This theory has a mass gap,
which gives the scale over which the four-Fermi coupling
of the flavor branes extends. We obtain the leading order
(in gauge coupling) approximation to the effective fermion
action, including the exact contribution due to the Kaluza-
Klein modes. We expand on the plausibility argument
given above that in the resulting nonlocal NJL model chiral
symmetry is spontaneously broken only above a certain
critical coupling. We then verify this by obtaining numeri-
cal solutions to the gap equation derived from the effective
Fermi theory. The plan of this paper is as follows. In the
next section we first briefly review the argument of [3] for
the emergence of a local NJL model from QCD and then
extend it to a nonlocal model. We use this in Sec. 11 to
derive the nonlocal NJL model as the leading approxima-
tion to the coupling of the flavor branes in the weakly
coupled SS model. In Sec. IV, we discuss �SB in the
nonlocal NJL model. We derive the gap equation in the
large Nc limit and present numerical solutions which show
that chiral symmetry is spontaneously broken only above a
certain critical coupling. A discussion of the noncompact
case is given in Sec. V. We end with a summary in Sec. VI.

II. NJL MODEL FROM QCD

The Yang-Mills action for UðNcÞ gauge group (indices
a, b) and Nf massless quark flavors (indices �, �) is5

S0 ¼ � 1

4g24

Z
d4xðFa

��ðxÞÞ2

þ
Z

d4x �q�ðxÞ��ði@� þ taAa
�ðxÞÞq�ðxÞ: (1)

This theory confines and develops a mass scale �, given
by6

��me�ð1=�0g
2
4
Þ; �0 ¼ 1

24�2
ð11Nc � 2NfÞ: (2)

It is generally believed that at energies below the confining
scale, an effective NJL model for quarks captures the
dynamics of the theory. There is no systematic way of
integrating out the Yang-Mills degrees of freedom from
QCD to get an effective fermion action. A scenario out-
lining how one might think about doing this was presented
in [3]. The basic point is that integration of Yang-Mills
degrees of freedom would lead to effective multiquark
interactions. The range of these interactions must be short,
of the order of 1=�, because of confinement, and so at
energies below � a local approximation would be ade-
quate. The NJL interaction between gauge-invariant quark
bilinears is the leading term compatible with gauge sym-
metry and global symmetries of QCD.

A. Extension to a nonlocal NJL model

In QCD it is generally believed that the mass scale M
associated with �SB coincides with the confinement scale
�. Suppose, however, we can deform QCD in such a way
that the two scales are separated by some new physics (as
in the SS intersecting brane configuration discussed in the
next section). In this case, for studying �SB we need the
effective four-Fermi theory at energies larger than the mass
gap �. If � � M, the energies of quarks involved in the
four-Fermi interaction are much larger than �. Because of
asymptotic freedom, for energies much larger than � we
can present a more precise derivation of the effective
interaction. The leading contribution to the effective inter-
action comes from a one-gluon exchange approximation,
which can be calculated exactly. The result7 is

S0eff ¼ � g24
2

Z
d4xd4y�0ðx� yÞJa�ðxÞJa�ðyÞ; (3)

where

Ja�ðxÞ ¼ ðqyLðxÞ ���taqLðxÞ þ qyRðxÞ��taqRðxÞÞ; (4)

and

4It is generally believed that in a confining gauge-theory the
length scale associated with �SB is of the order of or smaller
than the confinement length scale. QCD is an example where the
�SB scale is of the order of the confinement scale. Recently, it
has been argued in [20,21] that in the strongly coupled SS model
the �SB length scale can be smaller than the confinement length
scale, depending on the value of L.

5We use the following notations and conventions. The space-
time metric is mostly minus. Our Dirac matrices and their Weyl
representation are as given in [33], in particular, the Eqs. (3.41)
and (3.42). We have used the notation x� (� ¼ 0, 1, 2, 3) to label
the four space-time coordinates. Also, ta are Hermitian gener-
ators of UðNcÞ in the fundamental representation. In particular,
we will need the identity ðtaÞijðtaÞkl ¼ 1

2	il	jk.

6This is true for Nf < 11Nc=2, which is easily satisfied in the
large Nc and fixed Nf limit that we will be interested in here.
Also, the mass scalem that enters in this formula should be taken
to be the scale at which the input coupling g24 is measured.

7As usual, to do the calculation one needs to fix a gauge. The
calculation done here and in the next section uses the Feynman
gauge.
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�0ðxÞ ¼
Z d4k

ð2�Þ4
eik:x

�k2
; �k2 � ~k2 � k20 � i
 (5)

is the Feynman propagator for a massless scalar.8 Using the
Fierz identities given in Eqs. (3.77) and (3.80) of [33] and
retaining only interaction terms between left- and right-
handed Weyl components,9 the effective action (3) be-
comes

S0eff ¼ g24

Z
d4xd4y�0ðx� yÞ½qy�L ðxÞq�RðyÞ�

� ½qy�R ðyÞq�LðxÞ�; (6)

The bilocal fermion products in square brackets are sin-
glets of the (global) color UðNcÞ group and transform as
ð �Nf;NfÞ under the flavor UðNfÞ �UðNfÞ group.

The above discussion may be summarized as follows.
The effective four-Fermi theory resulting from integrating
out the gluon degrees of freedom is

S0eff ¼ i
Z

d4xðqy�L ðxÞ ���@�q
�
LðxÞ þ qy�R ðxÞ��@�q

�
RðxÞÞ

þ g24

Z
d4xd4yG0ðx� yÞ½qy�L ðxÞq�RðyÞ�

� ½qy�R ðyÞq�LðxÞ�; (7)

where

G0ðxÞ ¼
Z d4k

ð2�Þ4 e
ik:x ~G0ðkÞ: (8)

~G0ðkÞ satisfies:
(i) For �k � �, ~G0ðkÞ � const. This is ensured by the

property of confinement of the action (1), which
leads to the generation of a mass gap. The constant
has length dimension two and we may take it to be
1=�2. In a sense, this provides a definition of the
mass scale � for us.

(ii) For � � �k � M, ~G0ðkÞ � 1= �k2. This follows from
the asymptotic freedom property of the action (1)
and the added new physics which separates the �SB
scale from the mass gap of (1).

A simple example of a function ~G0ðkÞ which satisfies these
two properties is

~G 0ðkÞ ¼ 1
�k2 þ�2

: (9)

A cutoff scale of order M on (9) is understood. A more
complicated function could be devised to take into account
the running of the coupling. In any case, the process of
integrating out gluon degrees of freedom in a confining
theory is expected to give rise to a far more complicated
effective fermion action than in the model given by (7)–(9).
However, one might hope that the essential features for
studying qualitative questions about �SB are present in
this model. In the next section, we will see that a very
similar nonlocal NJL interaction between the flavor branes
emerges as the leading approximation to the weakly
coupled SS model.

III. NJL MODEL FROM WEAKLY COUPLED
SS MODEL

At scales much smaller than the string length, the dy-
namics of the weakly coupled SS model is governed by the
action10

S ¼ � 1

4g25

Z
d4x

Z 2�R

0
dx4ðFa

MNðx; x4ÞÞ2

þ
Z

d4xq�yL ðxÞ ���ði@� þ taAa
�ðx;�L=2ÞÞq�LðxÞ

þ
Z

d4xq�yR ðxÞ��ði@� þ taAa
�ðx; L=2ÞÞq�RðxÞ:

(10)

Only the space-time components A�ðx;	L=2Þ11 of the

(4þ 1)-dimensional UðNcÞ gauge field AMðx; x4Þ interact
with the massless Weyl fermions q�L;RðxÞ. Substituting the

Kaluza-Klein expansion

Aa
Mðx; x4Þ ¼ Aað0Þ

M ðxÞ þ X1
n¼1

ðAaðnÞ
M ðxÞeinx4=R

þ AaðnÞ

M ðxÞe�inx4=RÞ (11)

in this action, we get

S ¼ S0 þ S1 þ � � � : (12)

S0 becomes identical to the action (1), after identifying the

8This rather unfamiliar way of writing the Feynman propa-
gator is convenient since on making a Wick rotation to Euclidean
signature and setting 
 to zero, �k becomes just the magnitude of
the Euclidean 4-momenta k�.

9The four-Fermi terms involving Weyl components of a single
handedness are not relevant to the discussion of chiral symmetry
breaking vacuum. Hence, these terms are not taken into account
here.

10There are several possible corrections to this low energy
action. For g25N � ls corrections from string modes are small
and may be neglected. Corrections from the string winding
modes around the thermal circle may be neglected for R � ls.
We will assume this to be the case in the rest of this paper. The
low energy effective action also has possible terms that couple
the fermions to the transverse scalars. However, since the scalars
come with a derivative, their effect may be neglected at low
energies.
11In addition to the notations and conventions listed in
Footnote 5, we use the following conventions. We use x4 to
label the coordinate along the circle which the D4-branes wrap.
We choose the midpoint between the locations of the D8- and
anti-D8-branes on the circle, which are a distance L apart, as the
origin in x4. The values x4 ¼ 	L=2 are then the locations of the
D8 and anti-D8-branes on the circle.
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gauge potential Aa
�ðxÞ of the latter with the zero mode

Aað0Þ
� ðxÞ and setting

g24 ¼ g25=2�R: (13)

Also, it is now natural to identify the mass scale m in (2)
with 1=�R since the four-dimensional description breaks
down beyond this scale. S1 is given by

S1 ¼ 1

g24

X1
n¼1

Z
d4x

�
� 1

2
j@�AaðnÞ

� ðxÞ � @�A
aðnÞ
� ðxÞj2

þ n2

R2
jAaðnÞ

� ðxÞj2
�

þ X1
n¼1

Z
d4xðJa�


n ðxÞAaðnÞ
� ðxÞ þ Ja�n ðxÞAaðnÞ


� ðxÞÞ;

(14)

where we have used the notation

Ja�n ðxÞ ¼ ðqyLðxÞ ���taqLðxÞeinL=2R
þ qyRðxÞ��taqRðxÞe�inL=2RÞ: (15)

The dots in (12) represent cubic and quartic interactions of
the gauge fields. These will not be relevant to the leading
order analysis in the weak coupling limit discussed below.

We have already discussed the integration of the mass-
less gluon degrees of freedom from the action S0.
Integrating out the massive Kaluza-Klein modes from the
action (14) is a much simpler task. To leading order in the
gauge coupling, the effective four-Fermi interaction due to
the exchange of these modes is given by

S1eff ¼ �g24
X1
n¼1

Z
d4xd4y�nðx� yÞJan�
ðxÞJa�n ðyÞ; (16)

where

�nðx� yÞ ¼
Z d4k

ð2�Þ4
eik:ðx�yÞ

ð �k2 þ n2

R2Þ
; �k2 � ~k2 � k20 � i


(17)

is the Feynman propagator for a scalar of mass n
R . Using the

Fierz identities (3.77) and (3.80) of [33] and, as before,
retaining only interaction terms between left- and right-
handed Weyl components, the effective action (16) be-
comes

S1eff ¼ 2g24

Z
d4xd4y

�X1
n¼1

cos

�
nL

R

�
�nðx� yÞ

�

�½qy�L ðxÞq�RðyÞ�½qy�R ðyÞq�LðxÞ�: (18)

Now, using the identity 1.445.2 of [34],

X1
n¼1

cosns

n2 þ a2
¼ �

2a

coshað�� sÞ
sinh�a

� 1

2a2
;

we get

S1eff ¼ g24

Z
d4xd4yG1ðx� yÞ½qy�L ðxÞq�RðyÞ�

� ½qy�R ðyÞq�LðxÞ�; (19)

where

G1ðxÞ ¼
Z d4k

ð2�Þ4 e
ik:x ~G1ðkÞ;

~G1ðkÞ ¼ �R cosh �kð�R� LÞ
�k sinh �k�R

� 1
�k2
:

(20)

A few comments are in order:
(i) The interaction in (19) and (20) is exact for all values

of L and R, since we have summed over the ex-
change of all the Kaluza-Klein modes. In particular,
in the limit R ! 1, keeping L fixed, we get

~G 1ðkÞ ! �R
�k
e� �kL: (21)

(ii) For finite R, howsoever large, the second term in
~G1ðkÞ cancels the singularity in the first term in the
limit �k � 1=�R. This is consistent with our expec-
tation that the range of the effective interaction (19)
should be of order the Kaluza-Klein radius R. In
fact, for fermion momenta much smaller than 1=R,
one can approximate this nonlocal interaction by a
local NJL term, with small derivative corrections.

(iii) For �k � 1=L, the second term on the right-hand-
side in (20) dominates, giving rise to a potentially
problematic short-distance interaction with a
‘‘wrong’’ sign. However, this term is cancelled by
the large �k contribution to the total effective action
coming from the zero mode action, (5) and (6). The
net result is that for �k � 1=L, G1ðkÞ has the be-
havior given in (21).

A. Nonlocal NJL from SS model

Combining (19) with (7), we get the total effective
fermion action

Seff ¼ i
Z

d4xðqy�L ðxÞ ���@�q
�
LðxÞ þ qy�R ðxÞ��@�q

�
RðxÞÞ

þ g24

Z
d4xd4yGðx� yÞ½qy�L ðxÞq�RðyÞ�

� ½qy�R ðyÞq�LðxÞ�; (22)

where

GðxÞ ¼
Z d4k

ð2�Þ4 e
ik:x ~GðkÞ; (23)

and ~GðkÞ ¼ ~G0ðkÞ þ ~G1ðkÞ. Although a precise derivation

of ~G0ðkÞ does not exist, it must satisfy certain conditions
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which we discussed in the previous section. As a result of

these, ~GðkÞ must satisfy:

(i) For �k��, ~GðkÞ � 1=ðk2 þ�2Þ. This follows from
the hierarchy of scales � � 1=�R � 1=L and the
fact that the range of the nonlocal quartic fermion
interaction in (22) is set by the mass gap dynamically
generated in the four-dimensional Yang-Mills action
(1), which is of order the glueball mass ��.

(ii) For � � �k � 1=�R, ~GðkÞ � 1= �k2. This is because
for these values of �k, the four-dimensional descrip-
tion continues to be valid and we are in the asymp-
totically free regime.

(iii) For �k � 1=�R, ~GðkÞ � �Re� �kL= �k. Here we have
assumed L � �R (which is automatically satisfied
in the limit of large R, keeping L fixed). In this
regime, the four-dimensional description is inade-
quate since the Kaluza-Klein states can be easily
excited. We must now use the full five-dimensional
description. The exponential falloff implies that the
quartic fermion interaction in (22) has a short-
distance cutoff as well. The effective scale here is
of order L, the separation between flavor D8- and
anti-D8-branes.

A simple function that contains all three scales and seems
to capture all the essential features discussed above is

~GðkÞ ¼
�
1þ �R �k
�k2 þ�2

�
e� �kL: (24)

This differs from (9) in that 1=L enters as a smooth
ultraviolet scale, as opposed to the hard cutoff M that
came with (9). Moreover, it contains the additional scale
R, which has to do with the underlying five-dimensional
origin of the model. Wewill use this simpler function in the
analysis that follows. Also, throughout the following we
will assume L � �R.

IV. �SB IN NONLOCAL NJL MODEL

As usual, we first introduce scalars to rewrite (22) in the
equivalent form

Seff ¼ i
Z

d4xðqy�L ðxÞ ���@�q
�
LðxÞÞ þ qy�R ðxÞ��@�q

�
RðxÞÞ

þ
Z

d4x
Z

d4y

�
�T��
ðx; yÞT��ðx; yÞ

g24Gðx� yÞ
þ T��
ðx; yÞqy�R ðyÞq�LðxÞ þ T��ðx; yÞqy�L ðxÞq�RðyÞ

�
:

(25)

It is easy to verify the equivalence of this action to (22) by
using the equations of motion of the scalars,

T��ðx; yÞ ¼ g24Gðx� yÞqy�R ðyÞq�LðxÞ: (26)

The next step is to integrate out the fermions to get an

effective action for the scalars. In the large-Nc limit, a
classical treatment is adequate. Since we are only inter-
ested in the solution corresponding to the ground state,
which is Poincare invariant and invariant under diagonal
(vector) flavor group, we may use the ansatz T��ðx; yÞ ¼
	��Tðjx� yjÞ. This simplifies calculation of the effective
action. Making a Wick rotation to the Euclidean signature,
we get

SEeff
VNcNf

¼ 1

g24Nc

Z
d4x

jTðxÞj2
GEðxÞ �

Z d4k

ð2�Þ4 ln

�
1þ j ~TðkÞj2

k2

�
;

(27)

where V is the four-volume and ~TðkÞ is related to TðxÞ by a
Fourier transform, which we define by the relation (8) for
any function. Also, GEðxÞ is the Euclidean version of GðxÞ.
Taking the Fourier transform of (24), we get

GEðxÞ ¼ 1

4�2jxj
Z 1

0
dkk2J1ðkjxjÞ

�
1þ �Rk

k2 þ�2

�
e�kL; (28)

where k is the magnitude of the Euclidean four-momenta
and J1ðkjxjÞ is a standard Bessel function. The k integral
can be done using the identity

1þ �Rk

k2 þ�2
¼ 1þ i�R�

2i�

Z 1

0
dseis�e�sk þ c:c:; (29)

and the identity 6.623.2 of [34]. After some simplification,
the final expression takes the form

GEðxÞ ¼ �2

4�2
gðjxj�Þ; (30)

where

gðrÞ ¼ R�

ðL2
� þ r2Þ3=2 þ ðcosL� þ R� sinL�ÞI1ðrÞ

þ ðsinL� � R� cosL�ÞI2ðrÞ: (31)

In the above, we have introduced the dimensionless quan-
tities

R� ¼ �R�; L� ¼ L�: (32)

Moreover,

I1ðrÞ ¼
Z 1

L�

ds
coss

ðs2 þ r2Þ3=2

¼ K1ðrÞ
r

�
Z L�

0
ds

coss

ðs2 þ r2Þ3=2 ;

I2ðrÞ ¼
Z 1

L�

ds
sins

ðs2 þ r2Þ3=2

¼ 1

r
� �

2r
ðI1ðrÞ �L1ðrÞÞ �

Z L�

0
ds

sins

ðs2 þ r2Þ3=2 ;

(33)

where K1ðrÞ and I1ðrÞ are standard Bessel functions and
L1ðrÞ is a Struve function. It turns out that numerical
calculations are done faster with the second form of
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I1;2ðrÞ. Note that in the region r � R�, all five dimensions

must come into play. Indeed, in this region we get

gðrÞ �
�
R�=L

3
� for r � L�

R�=r
3 for L� � r � R�

(34)

For r � R�, the system becomes effectively four-
dimensional. Here we find

gðrÞ �
�
1=r2 for 1 � r � R�ffiffiffi
�
2

p
e�r=r3=2 for r � 1

(35)

In Fig. 1 we have plotted the function gðrÞ as a function of
r. We see that it approaches a constant for r � L�. For r *
L�, it decreases very rapidly and eventually for r > 1 (far
beyond the region shown in the figure) it decays
exponentially.12

A. Gap equation and order parameter of �SB

The equation of motion for TðxÞ following from the
effective action (27) is

1

g24Nc

Z
d4x

TðxÞ
GEðxÞ e

�ik:x ¼ ~TðkÞ
k2 þ j ~TðkÞj2 (36)

This nonlinear equation for the order parameter is the
analogue of the gap equation for the present case. TðxÞ ¼
0 is the trivial solution which preserves chiral symmetry.
However, this is not the solution which minimizes the
effective action (27). To see this [6], multiply (36) on

both sides by ~T
ðkÞ and integrate over k. This gives

1

g24Nc

Z
d4x

jTðxÞj2
GEðxÞ ¼

Z d4k

ð2�Þ4
j ~TðkÞj2

k2 þ j ~TðkÞj2 : (37)

Using this in (27), we get

SEeff
VNcNf

¼
Z d4k

ð2�Þ4
� j ~TðkÞj2
k2 þ j ~TðkÞj2 � ln

�
1þ j ~TðkÞj2

k2

��
;

(38)

It is easy to see that the integrand on the right-hand side
above is a decreasing function of j ~TðkÞj=k and that it
vanishes for ~TðkÞ ¼ 0. It follows that ~TðkÞ ¼ 0 is not the
solution which minimizes the effective action (27). We also
note that a potential divergence from the large k end gets
cancelled between the two terms in the integrand and the
net result of the integration over k is finite, provided ~TðkÞ is
a decreasing function for large k. If such a solution exists,
then the chiral symmetry is spontaneously broken.
The order parameter of chiral symmetry breaking is the

condensate

�ðxÞ ¼ 1

Nc

hqy�L ðxÞq�Rð0Þi: (39)

The field TðxÞ is related to it by (26), i.e.

TðxÞ ¼ 4�2�GEðxÞ�ðxÞ; � � g24Nc=4�
2: (40)

The gap Eq. (36) can be rewritten in terms of �ðxÞ as

~�ðkÞ ¼ ~TðkÞ
k2 þ j ~TðkÞj2 : (41)

We will look for solutions of this equation with �ðxÞ, and
hence TðxÞ, real. Since these are spherically symmetric

functions of jxj, their Fourier transforms, ~�ðkÞ and ~TðkÞ,
are also real functions of k. Furthermore, we see from (41)

that for large k, ~�ðkÞ � 1=k. This is because ~TðkÞ must be
a decreasing function for large k, for reasons explained

above. Now, solving (41) for ~TðkÞ as a function of ~�ðkÞ, we
get

~T ðkÞ ¼ 1

2 ~�ðkÞ ½1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2 ~�2ðkÞ

q
�: (42)

This has real solutions only for ~�ðkÞ � 1=2k. For large k,

with ~�ðkÞ � 1=k, we get ~TþðkÞ � k and ~T�ðkÞ � k. So,
the desired solution ~TðkÞ must coincide with ~T�ðkÞ for
large k. For small enough k, the solution ~TðkÞ must go to
a constant (the mass gap) and so it must coincide with
~TþðkÞ for small k. The transition from one to the other
occurs at some scale k ¼ �, where the two solutions
coincide, i.e. ~Tþð�Þ ¼ ~T�ð�Þ. From (42) we see that �

satisfies the equation ~�ð�Þ ¼ 1=2�.

0.02 0.04 0.06 0.08

50 000

100 000

150 000

200 000

FIG. 1 (color online). gðrÞ as a function of r for the parameter
values L� ¼ 0:01 and R� ¼ 0:2.

12This behavior actually holds only for intermediate values of r
which satisfy r7=2e�r > R�. If R� is small, this inequality can
allow rather large values of r. At much larger values of r, gðrÞ
decays only as 1=r5. This is presumably an artifact of the choice
of the ~GðkÞ function we have made in (24). For practical reasons,
in the numerical calculations done in the next section, we have
simply set gðrÞ to zero beyond a sufficiently large value of r.
This is consistent with the expectation that the interactions
should decay exponentially beyond the confinement scale,
r ¼ 1.
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B. Solutions of the gap equation

We parametrize the condensate as follows:

�ðxÞ ¼ �0

4�2l3
’ðjxj=lÞ: (43)

Here l is the �SB scale. The normalization has been chosen
to explicitly display the dimensions of the order parameter
and to have ’ð0Þ ¼ 1. Now, using (40), the Fourier trans-

forms, ~�ðkÞ and ~TðkÞ, can be written as

~�ðkÞ ¼ l�0fðklÞ;
fðpÞ � 1

p

Z 1

0
dyy2J1ðpyÞ’ðyÞ;

~TðkÞ ¼ �l���0tðklÞ;
tðpÞ � 1

p

Z 1

0
dyy2J1ðpyÞgðl�yÞ’ðyÞ;

(44)

where l� � l� and J1 is a standard Bessel function. Using
these, we can rewrite the gap Eq. (41) as

fðpÞ ¼
��tðpÞ

p2 þ ��2�2
0t

2ðpÞ ;
�� � �l�: (45)

This is a nonlinear equation which we are unable to solve
analytically. However, there are some general observations
we can make.

(i) Equation (45) cannot have a solution with the �SB
scale l arbitrarily smaller than L. On physical
grounds, we expect ’ðjxj=lÞ to be substantially dif-
ferent from zero only in the region 0 � jxj & l,
vanishing rapidly for jxj � l. As a result, most of
the contribution to the integral in the definition of
tðpÞ in (44) comes from a region in which the argu-
ment of the function gðrÞ varies over the range
½0; l��. For l � L, gðrÞ is roughly a constant

( ¼ R�

L3
�

) over this range of r, as can be seen from

(31). So, for l � L, tðpÞ � R�

L3
�

fðpÞ. But this is not a
solution to (45), as can be easily checked. This argu-
ment works even better for large p, because then the
contribution to the integral from y > 1 region is even
more suppressed, beyond that due to a rapidly falling
’ðyÞ. But, for large p a solution to (45) must satisfy
tðpÞ / p2fðpÞ. Thus, the gap Eq. (45) has no solu-
tions for l � L.

(ii) In principle, �SB solutions to the gap equation
should exist for all l � L. This is because our non-
local NJL model does not incorporate confinement.
However, for solutions which have l >��1, i.e.
l� > 1, it should be possible to replace the nonlocal
model by an effective local NJL model with� as the
ultraviolet cutoff. This is because of the exponential
decay of the four-Fermi interaction gðrÞ for r > 1.
Since the local NJL model has no �SB solutions
below a critical coupling, we expect a critical cou-

pling to show up for values of order l� * 1 in the
present nonlocal NJL model as well. One way this
can happen is that as l� increases beyond L�, the
value of �which gives rise to this solution decreases
until it hits a critical value at around l� � 1. This
argument cannot be made for the noncompact SS
model considered in [6] because of the absence of
the mass scale � and the consequent absence of the
exponential decay of gðrÞ for r > 1.

Numerical calculations reported below bear out both the
above expectations.

C. Numerical solutions

In the following, we will report on some solutions to the
gap Eq. (45) obtained numerically using MATHEMATICA.
This numerical work is based on the following strategy.
From the expected physical properties of the order parame-
ter �ðxÞ, we first make an ansatz for it:

’ðxÞ ¼ e�x

ðc2x2 þ 1Þ� : (46)

The power � and the constant c are adjustable parameters.
With the �SB scale l and the normalization constant �0,
there are altogether four adjustable parameters. Given (46),
the two sides of (45) can be computed and compared, and
the difference can be minimized by varying these parame-
ters. The numerical computations were done as follows.
For the left-hand side of (45), we need to calculate fðpÞ.
This can be done once we choose some values for � and c.
After some experience with the calculations, it was not
hard to make a good guess for the right values. For the
right-hand side of (45), we need tðpÞ for which one first
needs to calculate the function gðrÞ. This requires choosing
values for R� and L�. In Fig. 1 we have shown an example
of gðrÞ for R� ¼ 0:2 and L� ¼ 0:01. With gðrÞ at hand,
one can now calculate tðpÞ, after making a choice for l�.
The right-hand side of (45), which we denote as ftðpÞ,

��tðpÞ
p2 þ ��2�2

0t
2ðpÞ � ftðpÞ; (47)

can then be computed. This requires making a choice for
the parameters �� and �0, which are adjusted such that the
deviation

R
dpðfðpÞ � ftðpÞÞ2 is minimized. In principle,

in the calculation of the deviation, the range of the integral
over p should extend to infinity. In practice, we have found
a value of about 10 to be good enough for the upper limit
(for the values of the parameters L� and R� we have used
in our calculations), in the sense that the value of the
integral remains essentially unchanged if the upper limit
is increased beyond this value. The whole procedure was
then repeated with slightly different values of �, c, ��, and
�0 until the deviation was minimized for the chosen values
of R�, L�, and l�. The value of � relevant to these values
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of the parameters was obtained from its relation to �� given
in (45).

In Fig. 2 we have given two examples of the quality of
solutions obtained in this way for two different sets of
values of fR�; L�g, with l� � L�. The agreement between
fðpÞ and ftðpÞ is excellent. In fact, the deviationR
dpðfðpÞ � ftðpÞÞ2 is less than a thousandth of a percent

of the quantity
R
dpðfðpÞÞ2. Surprisingly, in all the solu-

tions that we have obtained, the value of the parameter c
which minimizes the deviation turns out to be exactly l=L.
This may provide a hint for analytical solutions of the gap
equation.

Note that both cases in Fig. 2 have l� � L�. As argued
in the previous subsection, we do not expect any solution
for l� � L�. In fact, our numerical calculations indicate
that there is no solution for l� & L�. This can be seen from
the example given in Fig. 3 where we have taken l� ¼

L�=5. There is no agreement, which is the best we have
been able to do with the ansatz (46). The seeming agree-
ment at large p is misleading because the values of both
fðpÞ and ftðpÞ are so small that the figure cannot distin-
guish them from zero at the scale used. A better measure
for the behavior at large p is the ratio tðpÞ=fðpÞ, which is
expected to approach a constant at large p for l� � L�. In
the first of Fig. 4 we have plotted this ratio. It behaves as
predicted at large p. The value of the constant also turns
out to be close to the expected one, namely, R�=L

3
�. For

comparison, in Fig. 4(a) we have plotted the ratio
p2fðpÞ=tðpÞ for Fig. 2(a), which is expected to approach
a constant at large p since this provides a solution to the
gap equation. The figure verifies this, implying that in this
case tðpÞ � p2fðpÞ at large p.
In Fig. 5 we have plotted l� as a function of �. Figures

for two different sets of values of fR�; L�g have been
given. Starting with l� ¼ L�, we see that at first � de-
creases with increasing l�, until it reaches a minimum at
around l� ¼ 1. Beyond this point, increasing l� seems to
be accompanied by an unchanged or perhaps even an
increasing �.13 We have verified the behavior shown in
the two parts of Fig. 5 for several other values of the set
fR�; L�g and believe that this is the general behavior.
These data provide fairly convincing evidence for the
existence of a critical value of � below which no solutions
to the gap equation exist.

V. THE NONCOMPACT LIMIT

It is of interest to ask what happens in the noncompact
limit, R ! 1 keeping L fixed. In our model, taking this
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200
ft p
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FIG. 3 (color online). The two sides of the gap equation for
l� ¼ L�=5.
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FIG. 2 (color online). The functions fðpÞ and ftðpÞ shown in these figures are the two sides of the gap equation. The two figures
correspond to two different sets of values of fR�; L�g, as indicated.

13This point is difficult to clarify with much accuracy beyond
the range of values of l� shown in the figure. This is because
calculations for such large values of l� require a greater preci-
sion in calculating gðrÞ and hence take much longer time.
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limit is somewhat subtle, because the hierarchy of scales
L � �R � ��1 must be maintained as the limit is taken.
Furthermore, even though the nonlocal NJL model does
not incorporate confinement, to connect with the under-
lying weakly coupled gauge theory we may wish to impose
on this model the relations between the confinement scale
��1, R, and the coupling g25, given by (2) and (13) (with

m� 1=�R). Under the scaling R ! RðÞ ¼ R, the fol-
lowing scaling properties can be deduced from these rela-
tions:

R�ðÞ ¼ ðR�Þ; L�ðÞ ¼ L�

ðR�Þ�1


; (48)

where L� and R� are the values for  ¼ 1. The non-
compact limit corresponds to taking  ! 1. Since R� �

1, this means that both R�ðÞ and L�ðÞ vanish in this
limit.
Let us denote by �c the value of � for l� ¼ 1. �c is close

to the minimum value of � (see Fig. 5) and so may be
considered to be the value of the critical coupling. How
does �c change as a function of ? To find this, we have
numerically calculated �cðÞ for the set fR�ðÞ; L�ðÞg
for different values of . The numerical data have been
plotted in Fig. 6 as a function of 1=. Calculations were
done for two different sets of values of fR�; L�g to check
dependence on initial conditions. Numerical data in the
two graphs of Fig. 6 show a similar pattern, indicating no
dependence of the general behavior on initial conditions.
The data show that at first, as  grows away from the initial
value  ¼ 1, �c decreases linearly with 1=, as one might
expect from the relation between the four-dimensional
’t Hooft coupling and its five-dimensional counterpart,
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FIG. 4 (color online). The first figure shows tðpÞ=fðpÞ for l� <L� and the second figure shows p2fðpÞ=tðpÞ for l� � L� as a
function of p.
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FIG. 5 (color online). l� as a function of � for two different sets of values of fR�; L�g.
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� � �5=2�R, which was used in deriving the scaling
relations (48). However, at some point, � stops falling
and seems to bottom out and start increasing or perhaps
go to a constant.14 This is not consistent with the relation
between the couplings, so it seems that the noncompact
limit cannot be reached by the one-parameter scaling given
by (48).

An alternative way of taking the noncompact limit is as
follows. The scaling rule (48) used in the above analysis
was derived from relations between �, R, �, and �5 which
follow from confinement in the underlying low-energy
gauge theory. Since the nonlocal NJL model does not
incorporate confinement, we may wish to relax these con-
ditions among the parameters. However, we must still
maintain the hierarchy of scales L � �R � ��1. One
simple way to do this is to keep R� fixed (and � 1) as R
is scaled. Under the scaling R ! R, then, we must have
� ! �=. This implies that L� scales to L�=.

In Fig. 7 we have shown data for �cðÞ obtained
as a function of 1= by computing the critical coupling
for the set fR�; L�ðÞg for different values of . The
data fit almost perfectly to a power law, �c ¼
0:271339=0:817788. Since this fit implies that �cðÞ
blows up in the limit  ! 1, the noncompact limit cannot
be reached by this scaling either.

Our tentative conclusion is that possible �SB solutions
in the noncompact version of the nonlocal NJL model
cannot be obtained by taking any simple R ! 1 limit of

the �SB solutions of the compact model. Clearly this issue
deserves to be investigated further.

VI. SUMMARY

The study of �SB in QCD is made complicated by the
fact that the scale at which chiral symmetry is broken is of
the order of the confinement scale. If QCD could be
deformed to enable ‘‘tuning’’ of the �SB scale to be
much smaller than the confinement scale, then one would
have separated the complications of the dynamics of con-
finement from a study of �SB, which could then be
handled by perturbative methods. The intersecting brane
configuration of Sakai and Sugimoto, which gives rise to a
QCD-like theory at low energies, admits just such a pos-
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FIG. 6 (color online). �c as a function of 1=. The data in the two figures correspond to the scaling rule (48) for two different initial
values of the set fR�; L�g, f1=2; 1=100g for the first figure and f1=2; 1=30g for the second. The solid lines are drawn to indicate the
region in which linear behavior with 1= is seen. The general behavior is similar in the two cases.
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FIG. 7 (color online). �c as a function of 1=. These data have
been obtained for L�ðÞ ¼ L�=, with L� ¼ 3=200 and keep-
ing R� fixed as  is increased from 1. The solid line is a power-
law fit to the data.

14More detailed calculations are needed to settle between these
two possibilities. Calculations at higher values of  involve fine-
tuning of various parameters of the solution to the gap equation
and so they are harder to determine. For this reason we have
restricted ourselves to a maximum of  ¼ 5:5. It should be
possible to go to larger values with some more effort.
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sibility; it has an additional parameter, the flavor brane-
antibrane separation, which can be tuned. In the strong
coupling limit, by tuning this parameter one can indeed
raise the chiral symmetry restoration temperature above
the deconfinement temperature [20,21]. However, as we
have seen in the present work, for a consistent description
of �SB in the weakly coupled SS model, it is essential to
incorporate the physics of confinement. The interaction
between flavor branes and antibranes of the SS model is
captured by a nonlocal NJL model. For any finite radius R
of the circle which the color D4-branes wrap, there is
confinement and a mass gap in the low-energy theory.
The NJL model reflects this dynamically generated mass
scale, �, in the length scale over which the nonlocal four-
Fermi interaction extends. This fact turns out to be crucial
in getting consistent �SB solutions. In the large Nc limit,
the question of �SB amounts to finding appropriate solu-
tions to the nonlinear gap equation. For solutions with �SB
length scale l much larger than the confinement scale ��1,
it is reasonable to replace the nonlocal NJL model by the
local NJL model. Hence these solutions must reveal the
existence of a critical coupling, which is known to deter-
mine �SB in the local NJL model. In this paper we have
numerically solved the nonlinear gap equation and verified
the existence of a critical coupling below which chiral
symmetry is unbroken. Roughly speaking, only solutions
with �SB scale greater than the brane-antibrane separation
L exist. The �SB scale l increases as the ’t Hooft coupling

is decreased, until a critical coupling is reached for l�
��1. Solutions with l >��1 do not lead to any further
decrease in the coupling.
Our analysis is valid for any finite value of the radius R,

which may be large. We have briefly addressed the ques-
tion of what happens when R ! 1. Two different ways of
taking this limit, each one obtained from a well-motivated
one-parameter scaling of the parameters of the SS model,
were discussed. We found from our numerical data that
neither of them leads to a sensible limit. The tentative
conclusion is that simple ways of implementing this limit
do not lead to a consistent picture of �SB in the non-
compact version of the nonlocal NJL model. This seems
to reinforce the critical role that the confinement scale
plays in the compact model; the infrared cutoff provided
by it enables the existence of consistent solutions to the gap
equation. However, more work needs to be done to clarify
this issue further.
Finally, most of the calculations reported in this paper

were done numerically because the gap equation is non-
linear and we could not solve it analytically. It would,
however, be useful to have some analytic handle on the
calculations, especially in the parameter region near the
critical coupling. This could be important for a better
understanding of the noncompact limit. A possible hint
in this respect is the fact that excellent numerical solutions
were obtained using the ansatz (46), with the constant c
turning out to be almost exactly equal to l=L in all cases.
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