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We use operator product expansion (OPE) techniques to study the spectral functions of currents and

stress tensors at finite temperature, in the high-energy timelike region ! � T. The leading corrections to

these spectral functions are proportional to�T4 expectation values in general, and the leading corrections

�g2T4 are calculated at weak coupling, up to an undetermined coefficient in the shear viscosity channel.

Spectral functions are shown to be infrared safe, in the deeply virtual regime, up to order g8T4. The

convergence of (vacuum subtracted) sum rules in the shear and bulk viscosity channels is established in

QCD to all orders in perturbation theory, though numerically significant tails �T4=ðlog!Þ3 are shown to

exist in the bulk viscosity channel. We argue that the spectral functions of currents and stress tensors in

infinitely coupled N ¼ 4 super Yang-Mills theory do not receive any medium-dependent power

correction.
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I. INTRODUCTION

This paper is devoted to applying operator product ex-
pansion (OPE) [1] techniques to study asymptotics of real-
time spectral functions �ð!; ~qÞ at finite temperature. We
will obtain the leading corrections in an expansion in T=!
at large frequencies !, with T a characteristic energy scale
of the medium, to the spectral functions of currents (J�),
scalar operators (m �c c ) and stress tensors (in the shear and
bulk viscosity channels).

The zero frequency, zero momentum limits of spectral
functions are related in general to hydrodynamical trans-
port coefficients, which, for the quark-gluon plasma as
probed by the Relativistic Heavy Ion Collider [2], have
been the focus of much recent work (for a more ample
discussion we refer the reader to [3] and references
therein). At finite timelike momenta, the vector channel
spectral function is related to the production rate of lepton
pairs by the plasma [4].

The OPE techniques employed in this paper, on the other
hand, give information on the deeply virtual timelike re-
gion, ! � T, j ~qj. Spectral functions in this region probe
the surrounding medium only on short time and length
scales, which is why they are related, by the OPE, to the
expectation values of local operators. The OPE analysis
thus does not cover the region !� T where the thermal
corrections to the shape of � are the most important and
where most of the, e.g., lepton pair emission, occurs.

This paper will cover the following applications. First of
all, the compact expressions obtained in the OPE regime
can be used as simple consistency checks on more com-
plete calculations. For example, we will prove that the
leading thermal corrections to spectral functions in QCD
are proportional in general to T4, as was observed in the
early calculations [4], and we will give their coefficients in
certain instances. Also, infrared divergences can be fully
characterized in the OPE regime: we will show that, begin-

ning at order g8T4, but not before, certain spectral func-
tions cease to be computable perturbatively due to the so-
called Linde problem.
An interesting sum rule was recently proposed by

Kharzeev and Tuchin [5] and by Karsch, Kharzeev, and
Tuchin [6], and used to estimate the QCD bulk viscosity
near the deconfinement phase transition. We will show that
their sum rule is sensitive to a numerically important
ultraviolet tail, ignored in [5,6], which could affect their
analysis away from very close to the phase transition.
In the shear viscosity channel we will demonstrate the

convergence of sum rules in asymptotically free theories.
Furthermore, we will argue that the left-hand side of such
sum rules is saturated by a one-loop calculation, which
however will not be performed here. We will also observe
the possibility that such sum rules could possess, in certain
theories, strong ultraviolet tails making them discontinu-
ous in the free theory limit (g2 ! 0).
Finally, we will briefly study spectral functions in the

strong coupling limit of N ¼ 4 super Yang-Mills theory.
We will argue that power corrections to spectral functions
at large virtuality are restricted to polynomial terms in the
momenta and forbidden for currents and stress tensors,
generalizing observations of Teaney [7].
This paper is organized as follows. After describing our

formalism in Sec. II, we apply it in the weak-coupling
regime to the spectral functions enumerated above, in
Sec. III. The physical implications of these results are
then discussed in Sec. IV. Finally, in the Appendix, we
reproduce a two-loop diagrammatic calculation which con-
firms the OPE prediction in the vector channel.

II. FORMALISM

The physical basis of the (Euclidean) OPE [1] is the
separation of scales between that of a short-sized probe �x
and that of a typical wavelength �T�1 in a medium,
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leading to useful asymptotic expansions in ðT�xÞ. In
Fourier space for the expectation value of a two-point
function of operators O1;2 this gives rise to asymptotic

expansions at high momenta, suppressing arguments other
than the frequency:

GE12ð!EÞ �
X
n

hOni c
n
12

!dn
E

: (2.1)

The locality of the operators On (which we will assume to
be Hermitian, without loss of generality) follows from
T � !E. The powers dn are determined by renormaliza-
tion group equations (RGE), to be reviewed shortly.

Naively taking twice the imaginary part of the analytic
continuation of Eq. (2.1) to Minkowski frequencies !
would yield asymptotics for the spectral function,

�12ð!Þ �X
n

hOni2 Im
�

cn12
ð�i!Þdn

�
; (2.2)

with �ð!Þ the commutator function h½Oð!Þ;Oðx ¼ 0Þ�i.
Equation (2.2) is ‘‘naive’’ in that the asymptotics of an
analytic function in one complex direction do not, in
general, determine its asymptotics along other directions.
It is nevertheless correct, because of dispersion relations,
whenever �ð!Þ does admit an asymptotic expansion in
inverse powers of ! (or logarithms), as will be proved
shortly.

Equation (2.2) is the main result of this section. We read
it as a Minkowski-space version of the OPE: heuristically,
the locality of its operators is a consequence of the small
time during which a pair of high-energy particles, created
by a high-frequency operator, can travel before it is reab-
sorbed by its complex conjugate. Because of this picture,
once its coefficients are determined we expect it to remain
valid even in out-of-equilibrium situations, where an
Euclidean formulation is not available.

A. Dispersion relations

Here we justify the passage from Eq. (2.1) to Eq. (2.2),
assuming that �ð!Þ admits an asymptotic expansion in
inverse powers of! and logarithms. The argument is based
on the dispersive representation of the Euclidean correla-
tor,1

GEð!EÞ ¼ Pnð!EÞ þ
Z 1

�1
d!0

2�ð!0 � i!EÞ�ð!
0Þ: (2.3)

Note that � is always real (or a Hermitian matrix), � ¼
2 ImG.Pnð!EÞ is a polynomial in!E that is not determined
by the spectral density. In general, Eq. (2.3) is ultraviolet

divergent and a subtracted integral must be used, but this
does not interfere with the present argument.
The basic point is that, if an upper cutoff j!0j<� were

imposed on the frequency integration in Eq. (2.3), the
resulting GEð!Þ would admit an expansion in purely in-
tegral powers of 1=! at large !. Specifically, for �ð!Þ
bounded by j!j�k�� (� > 0) at large !, the kth derivative
of Eq. (2.3) with respect to 1=! is shown to vanish at ! ¼
1. This shows that the asymptotic expansion of � directly
translates into one for GE modulo integral terms (e.g.,
terms that are killed by taking derivatives).
Thus it suffices to match the asymptotic expansions of

Eq. (2.1) and (2.2) termwise. Two cases must be distin-
guished: nonintegral power terms (or powers times loga-
rithms), and purely integral powers.
The former case is handled with the dispersive transform

of a power law tail �ð!Þ / !��,

Z 1

!0

d!0

2�ð!0 � i!EÞ
1

!� � 1

2 sin��

1

ð�i!EÞ�

þX
n

Dn�
n��

!n ; (2.4)

where �0 is some infrared cutoff and the sum is an asymp-
totic series with n integers. The coefficients Dn in this sum
depend on the details of infrared data (here on !0) but the
nonanalytic term is a clean reflection of the large ! be-
havior of �, as expected. Its imaginary part at real !
produces the right asymptotics. In particular, the asymp-
totics at positive and negative ! can be reconstructed
independently since their contributions are out of phase
at real!E. Taking derivatives of Eq. (2.4) with respect to �
gives identities for integrals with logarithms, for which the
same argument applies.
The case of purely integral powers in �, dn integer, is

special because the Euclidean nonanalyticity is a single
logarithm: it could cancel out between the contributions of
positive and negative �. Such cancellations would occur
when dn is even and its contribution to �ð!Þ is even in !,
or when dn is odd and its contribution is also odd. In these
cases, the Euclidean function would be proportional to
1=ð�i!EÞn with an imaginary coefficient, e.g., it has a
‘‘wrong’’ phase. On the other hand, integral terms coming
from small frequencies in Eq. (2.3), are proportional to
1=ð�i!EÞn with a real coefficient. Thus the two are cleanly
separated by their phases, and we conclude that in all cases
the asymptotics of � can be recovered from those of GE.
In perturbation theory, we do not expect such ‘‘wrong

phase’’ contributions to the Euclidean OPE, and in any
case certainly none appears at the relatively low orders to
which we will be working in this paper. Our corrections to
spectral functions will come solely from nonanalytic terms
in GE.
We now comment on the assumption that �ð!Þ admits

an expansion in inverse powers of !, which we have
assumed in proving Eq. (2.2). Possible violations of it at

1At finite temperature, this gives a distinguished analytic
continuation of GE from the discrete set of Matsubara frequen-
cies at which it is strictly defined [8]. Substituting !E ¼ �i!
with ! in the upper-half plane, Eq. (2.3) always coincides with
the retarded function GRð!Þ.
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the nonperturbative level (due, for instance, to oscillating
terms) are discussed in [9]. However, in perturbation the-
ory we find it hard to see how it could fail, for instance
because there is no scale to provide an oscillation rate.
Thus this assumption will be made throughout this paper.

B. Renormalization group equations

The OPE is based on a systematic separation of infrared
and ultraviolet contributions (an interesting discussion may
be found in [10]). A factorization scale � (for us, T &
� � !) is introduced, and all vacuum fluctuations from
above this scale are integrated over, leaving more infrared
and state-dependent fluctuations to be accounted for by the
expectation values of operators. Since � � ! these op-
erators can be taken to be local, in a systematic gradient
expansion. The restriction to vacuum fluctuations ensures
that this yields operator relations, that is, the OPE holds in
any quantum state.

Omitting Lorentz and internal indices, this yields ex-
pansions of the form

Oð�Þ
1 ðpÞOð�Þ

2 ðx¼ 0Þ�X
i

Ci
12ðp;�;�MS; g;mÞOð�Þ

i ðx¼ 0Þ;

(2.5)

withm and g standing for various intrinsic mass scales and
couplings of the theory and �MS its renormalization scale.

The renormalized operators Oð�Þ
i obey the RGE, with � a

matrix of anomalous dimensions,

0 ¼ ½�@� þ ��Oð�Þ
i ; (2.6)

from which we deduce, in the case that Oð�Þ
1;2 are indepen-

dent of � (as for currents, which we will exclusively study
in this paper), the RGE for the OPE coefficients:

½�@� � �T�Ci
12 ¼ 0: (2.7)

Assuming the absence of microscopic scales between
the factorization scale � and p, the coefficient functions
can depend only on three scales: the momentum p, the
factorization scale � and the renormalization scale �MS of

the theory. The �MS dependence is determined by a RGE
�
�MS

@

@�
MS

þ �ðgÞ @

@g
þ . . .

�
O1ðpÞO2 ¼

X
i

Di
12ðpÞOi:

(2.8)

The important point for us will be that the coefficients Di
12

can only be polynomials in the momenta p. This is because
correlators at unequal positions are RGE-invariant and
Fourier transforms can always be made insensitive to the
coincidence limit by taking sufficiently many derivatives
with respect to momenta.

Were there no right-hand side to Eq. (2.8) we would
conclude, on dimensional grounds, that all logarithms in

the coefficient functions have to be of the form
logðp2=!2Þ. Equation (2.8) shows that terms which are
polynomial in p can also contain logarithms of �MS.

2

C. RGE in Minkowski signature

Since we interpret Eq. (2.2) as a Minkowski-space ver-
sion of the OPE, it is worth specifying how we mean the
RGE of operators directly in Minkowski space: we mean it
to be exactly what it is in the Euclidean OPE, namely,
vacuum fluctuations should be integrated over but not
state-dependent ones. Provided equivalent regulators are
used, this will reproduce the standard running of the op-
erators in Euclidean space.3

Variations on this procedure can easily lead to difficul-
ties due to transport phenomena (e.g., nonlocal phe-
nomena), as may be illustrated by a concrete example:
that of computing the contribution of a fluctuation at scale
�gT (with g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4��sT
p

) to the expectation value of a
local operator in a weakly coupled quark-gluon plasma. In
this case, it would be natural to fully integrate out the scale
T, which produces, at the one-loop level, the hard thermal
loop effective theory [11]. It is nonlocal with support on the
classical trajectories of plasma particles. The conclusion is
that, employing any reasonable procedure, fully integrat-
ing out the scales gT & � & T in real time must convert
local operators at the scale T to nonlocal operators at the
scale gT. This does not happen, however, when only
vacuum fluctuations are integrated over,4 as was assumed
in the preceding subsection.

III. ASYMPTOTICS OF SPECTRAL FUNCTIONS

At weak coupling, the OPE coefficients for spectral
functions, Eq. (2.2), are products of Euclidean OPE coef-
ficients and anomalous dimensions, which we now com-
pute in turn.

A. Conventions

For concreteness and simplicity we study the Euclidean
Yang-Mills theory coupled to nF Dirac fermions of the

same mass m, SE ¼ F��F��

4g2
þP

i
�c iðp6 � imÞc i, with p�

the covariant momentum. Some important operators (in
Euclidean notation) will be

2Examples of such terms are the logarithms in the Green’s
functions of free theories. Since they originate from ultraviolet
divergences they do not depend on �, and their nonanalytic
behaviors � logðp2=�2

MS
Þ produce the free theory power tails in

the spectral functions.
3Examples of equivalent regulators include a sharp momentum

cutoff on ~p and dimensional regularization.
4A heuristic way to understand this fact is by analogy to the

situation in the band theory of metals, in which completely filled
bands do not conduct but only partially filled bands do: the field-
theoretic vacuum is akin to a completely filled band.
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T
��
g ¼ 1

g2

�
G��G�

� � 	��

4
G2

�
; (3.1a)

T
��
f ¼ X

i

�c i

�iD
$�

�� þ�iD
$�

��

4
c i � ½trace part�;

(3.1b)

Om ¼ �im
X
i

�c ic i: (3.1c)

T��
g þ T��

f is the traceless part of the full stress tensor. We

will also consider the trace of the stress tensor,

T�
� ¼ b0G

2

32�2
þ ½fermion terms�; (3.2)

where b0 ¼ ð113 CA � 4
3 nFTFÞ is the leading coefficient of

the � function (�ð�sÞ � �b0�
2
s=2�).

B. Euclidean OPE coefficients

At the leading order in perturbation theory the OPE of
currents J� ¼ P

i
�c i�

�c i is given by the first diagram of
Fig. 1. A pedagogical introduction to this sort of calcula-
tion can be found in [12]. Up to dimension-four operators
we find

J�ðqÞJ� �X
i

�c i

�
�� 1

q6 � i 6D� im
��

��� 1

q6 þ i 6Dþ im
��

�
c i

� 2�����q�

q2
X
i

�c i�
��5c i �

2ð	�� � q�q�

q2
Þ

q2
Om

þ 4

q4
T��
f ½	��	��q2 �	��q�q� �	��q�q�

þ	��q�q��; (3.3)

with �5 ¼ �1�2�3�4 and the covariant derivative acting to
its right on c . We will drop the first term (involving the
axial current �c i�

��5c i) since it does not contribute to
spectral functions, being scale invariant.

In isotropic media we decompose the current correlator
into transverse and longitudinal components: we let q ¼
ðq4; 0; 0; j ~qjÞ, set GT ¼ hJ1J1i, GL ¼ q2

ðq0Þ2 hJ3J3i and em-

ploy Tij
f;g ¼ � 1

3	
ijT44

f;g for the traceless operators.

Equation (3.3) then gives

GTðqÞ � 8

3q4
ðq24 � ~q2ÞT44

f � 2

q2
Om; (3.4a)

GLðqÞ � 8

3q2
T44
f � 2

q2
Om: (3.4b)

Similarly, the OPE of Om (scalar channel) is,

GSðqÞ � 3m2

q2
Om þ 4m2

q4
q�q�T

��
f þ . . . ; (3.4c)

that of the trace anomaly T
�
� (bulk viscosity channel) is

G
 ðqÞ � b20�
2
s

�
4
q�q�

q2
T��
g þG2

g2

�
; (3.4d)

and that of the shear mode T12 of the stress tensor, assum-
ing isotropy, is

G�ðqÞ � 2

3q2
ðq24 � ~q2ÞT44

g þ 1

6

G2

g2
: (3.4e)

The fermion contributions to Eqs. (3.4d) and (3.4e) begin at
dimension-six and have been dropped. However, we must
keep in mind that the OPE, like any two-point function, is
really defined only modulo contact terms (terms purely
polynomial in momenta).

C. Contact terms

The OPE coefficients of G2 in Eqs. (3.4d) and (3.4e) are
purely polynomial in q. According to the discussion at the
end of Sec. II B, this means we have to decide whether the
operators get evaluated at the scale�MS or!; alternatively,

contact terms depending only on �MS could be freely

shifted in and out of the OPE as just mentioned.
In the shear channel Eq. (3.4e) it turns out that, had we

computed the OPE for the general product T��T��, we
would have found that the coefficient of G2 is purely
polynomial and nontransverse (e.g., leading to
q�T

��T�� � 0). Evaluating this operator at the scale !

would lead to a nontransverse spectral function, which is
impossible. Therefore, the G2 term in Eq. (3.4e) must be a
pure contact term that runs with the scale�MS and does not

contribute to spectral functions. This issue is discussed in
[13].
A similar ambiguity makes it possible to shift the co-

efficients of T44
g and T44

f in Eq. (3.4e) by p-independent

constants. Although we believe that this could, in principle,
be settled by studying the Ward identities obeyed by the
full OPE of T��T��, as in the above paragraph, this will
not be done in this paper. This will translate in an indeter-
minacy for our shear channel spectral function.
The Ward identities are much harder to exploit in the

bulk channel because the trace T�
� is subleading at weak

coupling. Thus it seems hard to determine, without an
explicit calculation of running coupling effects, at which
scale g2G2 is to be evaluated in this channel. Such a
calculation will not be attempted in this work, so we will
only be able to determine the asymptotics in this channel
modulo g2G2. The term proportional to q�q�T

��
g =q2 in

Eq. (3.4d) is unambigous, however, since the Lorentz
covariance of the OPE forbids the addition of spin-2 con-
tact terms to spin-0 operator products.

FIG. 1. Feynman diagrams giving the leading order OPE co-
efficients for currents and stress tensors.
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D. Anomalous dimensions

The anomalous dimensions matrix of dimension-four,
spin-two operators reads [14], acting on the basis
ðT��

g ; T
��
f ÞT ,

� ¼ �s

3�

2nFTF �4CF

�2nFTF 4CF

� �
þOð�2

s Þ; (3.5)

giving, e.g., the � dependence of T
��
f in Eq. (3.4):

T��
f ð�Þ � T��

f ð�0Þ þ
�s log

�2
0

�2

3�
½2CFT

��
f � nFTFT

��
g �
(3.6)

up to terms of order �2
s .

The combinationOm does not run in perturbation theory,
but the bare mass m has � dependence given by �m ¼
3�sCF=2�þOð�2

s Þ, which must be included wherever it
appears explicitly.

In theories with massless quarks,G2 does not run at one-
loop (at this order G2 � T�

�, which does not run to any

order), though explicit powers of �s do run according to
��s

¼ ��ð�sÞ=�s ¼ b0�s=2�.

E. Spectral functions

Frequency-dependent logarithms in GE are determined
by the RGE of the operators entering the right-hand side of
the OPE, Eqs. (3.4), logð1=�2Þ ! logð1=!2

EÞ. To obtain �
we take twice the imaginary part at real ! [or employ
Eq. (2.2)], logð1=!2

EÞ ! 2�. To help clarify our conven-
tions we recall the leading order, massless, zero-

temperature results, with q2 ¼ q20 � ~q2: �TðqÞjvac ¼
�LðqÞjvac ¼ nFdFq

2

6� , �SðqÞ
m2 jvac ¼ nFdFq

2

4� , �
 ðqÞjvac ¼
b20�

2
sdAq

4

128�3 , ��ðqÞjvac ¼ q4

80� ½dA þ 1
2nFdF� [7]. This way we

find the leading (dimension-four) thermal corrections:

	�TðqÞ � 16�s

9q2
q20 þ ~q2

q2
½2CFT

00
f � nFTFT

00
g �; (3.7a)

	�LðqÞ � 16�s

9q2
½2CFT

00
f � nFTFT

00
g �; (3.7b)

	�SðqÞ � 8�sm
2

3q2
q�q�

q2

�
13

2
CFT

��
f � nFTFT

��
g

�

� 9�sm
2CF

q2
Om; (3.7c)

	�
 ðqÞ � b20�
3
s

6�2

q�q�

q2

�
2CFT

��
f �

�
nFTF þ 3

2
b0

�
T
��
g

�

� C
b20�

2
s

4�
T�

�; (3.7d)

	��ðqÞ � 4�s

9

�
Dþ 2 ~q2

q2

�
½2CFT

00
f � nFTFT

00
g �: (3.7e)

The presently undetermined coefficients C and D are due
to the ambiguities discussed in Sec. III C, with C ¼ D ¼ 1

corresponding to choosing the renormalization scale ! in
Eqs. (3.4d) and (3.4e). C and D are in principle both
computable by more accurate calculations. For simplicity,
Eq. (3.7d) accounts for the running of G2 only for massless
fermions, in general this operator can mix with Om.
Equations (3.7c) and (3.7d) do not assume isotropy and
the anisotropic case of Eqs. (3.7a) and (3.7b) may be
obtained starting from Eq. (3.3). We note that 	�� ¼ 0
when nF ¼ 0.
The operators in Eq. (3.7) are all Minkowski-signature

operators, with the energy density being E ¼ T00 ¼ �T44.
Please also note that Eqs. (3.7) are written in ðþ ���Þ
metric convention, so both q2 and T�

� have opposite sign

relative to there Euclidean cousins [e.g., T�
� ¼ E � 3P in

Eq. (3.7)]. In Minkowski space with fermionic actionP
i
�c iðp6 �mÞc i, Om ¼ m

P
i
�c ic i.

At the Stefan-Boltzmann (free) level,

hT00
g i ¼ �2T4

15
dA; (3.8a)

hT00
f i ¼ 7�2T4

60
nFdF; (3.8b)

hOmi ¼ m2T2

3
nFdF þOðm4Þ: (3.8c)

Equations (3.7), together with (3.8), constitute the main
results of this paper.

IV. DISCUSSION

A. The photon spectral function

One motivation for doing the present calculations was to
resolve, in a logically independent way, a discrepancy in
the literature regarding the asymptotics of 	�TðEÞ. This (in
fact the complete spectral function for ! � gT at zero
spatial momentum) was computed a long time ago [4,15]
to order �s (two-loop order), and it was observed that the
correction was proportional to g2T4=!2 at large energies
!. In contrast, a more recent calculation [16] instead
observed a g2T2 behavior.
The OPE analysis presented in this paper makes it clear

that the dominant thermal effects must scale like g2T4=!2,
since the lowest dimension of a (gauge-invariant) local
operator with a nontrivial anomalous dimensions in QCD
is 4. In particular, a g2T2 asymptotic behavior is forbidden
by the absence of local dimension-two operators. Thus we
can confirm (at least qualitatively) the early findings [4,15].
It is difficult here, however, because of the different tech-
niques employed, to comment explicitly on the careful
calculation of [16].5

5We do nevertheless agree with the main conclusion of [16],
which was to rule out the infrared divergences claimed in [17]
(see also the reply [18]).
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In the Appendix, we reproduce the OPE result Eq. (4.1)
by means of a more standard diagrammatic calculation in
real-time perturbation theory.

For �T at ~q ¼ 0 we find (upon reinstating the well-
known T ¼ 0 result, not computed here):

�Tð!Þ � nFdF!
2

6�

�
1þ 3�sCF

4�
þ 16�3�sCF

9

T4

!4

þOð�2
s ; T

6Þ
�
: (4.1)

Interestingly, the correction, though parametrically small
�T4=!4 at high energies, has a large numerical prefactor,
suggesting that it could be useful down to not-so-large
frequencies ! * T. Comparison with the complete two-
loop calculation [4,15] should allow a precise determina-
tion of the regime of applicability of the OPE, which will
not be pursued here.

B. Massive fermions (m � T)

Spectral functions of massive particles (with m � T) at
~q ¼ 0 have been considered in [19]. In this case the
fermionic condensates T��

f and Om do not contribute,

and our results Eqs. (3.7) for the thermal corrections
[e.g., ignoring Oð�sÞ vacuum corrections] become

�TðqÞ � dFq
2

6� ½1� 32�3�sCF

45
T4

q4
þ . . .� and �SðqÞ � dFm

2q2

4� �
½1� 32�3�sCF

45
T4

q4
þ . . .�, in complete agreement with the

findings6 of [19].

C. Infrared divergences

The OPE analysis completely determines the cancella-
tion pattern of infrared divergences at high energies: the
OPE coefficients contain only, by definition, infrared safe
zero-temperature physics. Infrared sensitivity can enter
only through the expectation values of the local operators.

The leading order corrections to spectral functions � are
proportional to g2 anomalous dimensions times tree-level
expectation values of dimension-four operators. The per-
turbative series for such expectation values should be
similar to that for the thermodynamic pressure [20]. This
implies that sensitivity of � to the gT scale (and the
necessity for hard thermal loop resummation) will first
enter at order g5T4=!2, and that nonperturbative physics
associated with the g2T scale (the so-called Linde problem
[21]) will begin to contribute at order g8T4=!2.

This situation should be contrasted with that for the
shape of the spectral function at ! & T, for which infrared
sensitivity shows up much earlier. At !� T, gT-scale
physics appears at order g3 [22], whereas at !� gT it is

important already at the Oð1Þ level [23]. Various integrals
over the spectral functions, in the spirit of the famous T ¼
0 sum rules [24], however, are still governed by the
Euclidean OPE, which becomes sensitive to the gT scale
only at order g3 and to the g2T scale at order g6. This seems
to constrain, to a large extent, the corrections to the shape
of � to only move things around in frequency space.

D. Bulk viscosity sum rules

A priori, the Oð1Þ power tails in G
 , Eq. (3.7d), might
appear sufficiently strong to make even the difference

	G

E ¼ G


E �G
vac
E , between the thermal Euclidean corre-

lator of T�
� and its vacuum limit, require a subtracted

dispersive representation. However, for asymptotically free
theories, the RGE invariance ofG
 forces us to evaluate the
factors of g2 in Eq. (3.7d) at the scale !, in which case
�ð!Þ � 1=log2! at worse and an unsubtracted dispersion
relation for 	GEð0Þ converges:

	G

Eð0Þ ¼

Z 1

�1
d!0

2�!0 	�

 ð!0Þ: (4.2)

Higher order corrections to OPE coefficients will be sup-
pressed by powers of g2ð!0Þ � 1= log!0 and will not affect
convergence. We are not making any assumption here
about the value of the coupling constant at the scale T,
only the scale !0 is important to the OPE coefficients.
On the other hand, in [25] the Euclidean correlator

	 ~G

Eð0Þ ¼ limq!0 lim!!0 	GRð!; qÞ is evaluated, by

means of broken scale invariance Ward identities (‘‘low
energy theorems’’) [25],

	 ~G

Eð0Þ ¼

�
T

@

@T
� 4

�
ðE � 3P Þ

¼ ðE þ P Þ
�
1

c2s
� 3

�
� 4ðE � 3P Þ; (4.3)

with E ¼ T00 and P ¼ T11.
Equation (4.3) together with the exact sum rule Eq. (4.2)

were used recently in [5,6] to obtain information on the
bulk viscosity 
 ¼ 1

18 lim!!0�ð!Þ=! near the QCD phase

transition.
It is not our goal here to discuss the equality of the left-

hand sides of Eqs. (4.2) and (4.3) nor possible contact terms
to be added to the right-hand side of Eq. (4.2); this is
discussed further by Romatschke and Son [26]. However,
since the results of [5,6] were based on the assumption that
Eq. (4.2) is saturated by low! (together with an Ansatz for
the shape of the spectral function) which is clearly in
tension with the existence of the tail Eq. (3.7d), we would
like to investigate the importance of this tail.
Let us thus try to estimate the contribution from the

ultraviolet region ! * !min in the pure glue theory.
Setting �sð!Þ ¼ 2�=b0 logð!=�QCDÞ in Eq. (3.7d) yields

6To extract the complete asymptotics of [19] we observe that
the mass subtraction (4.3) must be undone from their final results
(4.7) and (C.11). In their notation, at order 1=!2 this means

adding g2dFCFM
2T2

2�!2 to (4.7) and g2dFCFM
2

8� ð�T2 þ 2M2T2=!2Þ to
(C.11).
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	G

Eð0ÞUV �

Z 1

!min

d!

�!

��C�T�
�

log2 !
�QCD

� 2�T00

log3 !
�QCD

�

¼ C
ð3P � EÞ
log!min

�QCD

� E
log2 !min

�QCD

: (4.4)

The logarithms in Eq. (4.4) are never particularly large:
setting !min ¼ 2�T we estimate 1= logð!min=�QCDÞ �
b0�sð2�TÞ=2� � 0:4 with b0 ¼ 9 in nF ¼ 3 QCD and
�s ¼ 0:3. Thus we conclude that, at least in the pure glue
theory, whenever Eq. (4.3) is not parametrically large (e.g.,
1=c2s large) compared to 0:4E, the sum rule Eq. (4.2) is very
much sensitive to the ultraviolet tail and is not a clean
probe of the ! & !min region. It seems that this could
affect the analysis of [5,6], at least away from very close to
the phase transition.

The weak-coupling limit of Eq. (4.2) is particularly
interesting: its left-hand side is of order g6T4 (g being
evaluated at the scale T from now on) whereas its right-
hand side receives a contribution of order g4T4 from the
!� T region [27],

Z
!�T

d!

�!
	�ð!Þ �

Z 1

0

d!

�!

dAb
2
0�

2
s!

4

64�3
nB

�
!

2

�

¼ dAb
2
0�

2
sT

4

60
: (4.5)

At order g4T4 there is another contribution: from the
�g6T4 ultraviolet tail integrated over a�1=g2 logarithmic
range. In the weak-coupling limit this contribution is well
separated and is given by Eq. (4.4) evaluated at !min � T.
The dominant term is the second term, �Eb20�

2
s=4�

2,

which, remarkably, using Eq. (3.8a) for E, is seen to exactly
cancel Eq. (4.5). The presently undetermined coefficient C
would only become important at order g6T4. Thus, the sum
rule Eq. (4.2) is obeyed at order g4T4 but only when the
ultraviolet tail is included. This resolves a puzzle raised in
[27].

E. Shear viscosity channel and discontinuity at g2 ! 0

From Eq. (3.7e), the asymptotics of the thermal correc-
tion 	�� are proportional to g2 times an operator of strictly
positive anomalous dimension �. Upon resummation of
logarithms its behavior will be proportional to ðlog!Þ�1�a

(the 1 coming from the running of g2 in an asymptotically
free theory and a > 0 coming from the anomalous dimen-
sion): thus the unsubtracted dispersive integral Eq. (2.3)
converges. As in the preceding subsection, higher order
corrections will not modify this result because the theory is
asymptotically free. The integrals should also converge in
conformal theories such as the N ¼ 4 super Yang-Mills
theory, because in this case all tails are associated with
operators of strictly positive anomalous dimensions �, and
decay like !��.

Since the dispersive integral vanishes at!E ! 1we can
write, in general,

	G�
E ð!EÞ ¼ 	G�

Eð1Þ þ
Z 1

�1
d!0

2�ð!0 � i!EÞ	�
�ð!0Þ:

(4.6)

Note that convergence of the integral implies that 	G�
E

approaches a constant at infinity, so that 	G
�
Eð1Þ is well

defined. According to [26], the left-hand side at !E ¼ 0 is
determined by hydrodynamical considerations. In asymp-
totically free theories we believe that the OPE coefficients
of 	G

�
Eð1Þ are saturated by a one-loop computation.7

Knowledge of both of these ingredients should yield inter-
esting exact sum rules, involving, at most, the pressure,
energy density and chiral condensates of QCD. We hope to
return to this question in the future.
Here we wish only to discuss a possible discontinuity in

the free theory limit g2 ! 0 of individual terms on the
right-hand side of Eq. (4.6), if the undetermined coefficient
D in Eq. (3.7e) turns out to be nonzero. Consider the term
T00
g on the right-hand side of the Euclidean OPE Eq. (3.4e).

At g ¼ 0 and ! ¼ 1 it contributes a finite amount T00
g to

	GEð1Þ, which discontinuously changes to ðT00
g þ

T00
f Þ=ð1þ nFTF=2CFÞ at any small but finite coupling

due to running, Eq. (3.5). On the other hand, at any finite
but small coupling one has the Oðg2Þ tail Eq. (3.7e) in the
spectral function, which is to be integrated over a Oð1=g2Þ
logarithmic range similarly to the preceding subsection. Its
contribution is thusOð1Þ. It is easy to convince oneself that
it exactly compensates for the discontinuity in GEð1Þ.
Thus it might happen that equations such as Eq. (4.6) are

only continuous at g2 ¼ 0 when both terms on the right-
hand side are included. We hope to return in future work to
shear channel sum rules in QCD and in other theories, and
to the question of whether they actually contain strong
ultraviolet tails. In pure Yang-Mills theory, the coefficient
D is irrelevant and at the leading order such tails are absent.

F. Strongly coupled N ¼ 4 super Yang-Mills theory

The operator spectrum of strongly coupled multicolor
N ¼ 4 super Yang-Mills (SYM) theory has the very
peculiar property, that the only operators which do not

develop large anomalous dimensions ��1=4 are protected
by supersymmetry and have strictly vanishing anomalous
dimensions [28], where � ¼ g2Nc is the ’t Hooft coupling.

7Because other twist-two operators acquire positive anoma-
lous dimensions, only three operators can appear in 	G

�
E ð1Þ: the

traceless and trace part of the full stress tensor T��, andOm. The
coefficient of T�

�=g
2 vanishes at tree level [13] but a one-loop

computation is needed to find that of T�
�. The coefficients of

twist-two operators and of Om are determined at the tree level,
but we believe a one-loop anomalous dimension matrix is
necessary to carefully separate the total T�� from other twist-
two operators, and Om from the trace T�

�.
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There are no small nontrivial anomalous dimensions in this
theory, even at finite �.

One way to find power corrections in spectral functions
is, as discussed in Sec. II A, if the Euclidean OPE coef-
ficients have wrong phases. This would certainly seem
peculiar but we have no general argument against this
possibility. However, the results of [29] suggest that the
OPE coefficients of protected operators in N ¼ 4 SYM
theory are identical to those of the free theory, for which
this definitely does not happen.

Thus we will assume that power corrections to spectral
functions at high frequencies are associated with nonana-
lytic terms in Euclidean correlators. Without anomalous
dimensions the only sort of nonanalyticity allowed by the
RGE (see Sec. II B) are polynomial terms in momenta,
times single logarithms logðp2=�2

MS
Þ. They lead to strictly

polynomial terms in spectral functions.
By dimensional analysis and transversality these are

strictly forbidden in the spectral functions of currents and
stress tensors (except if they multiply the unit operator).
Thus these spectral functions are strictly protected against
medium-dependent power corrections. It would be inter-
esting to see whether polynomial corrections actually oc-
cur in other spectral functions. At finite but large �, we

expect power tails �!�n with n� �1=4.
Thermal corrections to the spectral functions of R cur-

rents and stress tensors at strong coupling have been
studied by Teaney [7] and observed, remarkably, to decay
exponentially fast at high energies. This section general-
izes his observation.
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APPENDIX: DIAGRAMMATIC EVALUATION
OF �

�
�

This Appendix reproduces a calculation of the trace
�
�
�ðpÞ of the current spectral function, using real-time

Feynman diagrams. We work in the high-energy limit
where � ¼ �> and drop all terms suppressed by
Boltzmann factors / expð�p0=2TÞ, but keep all power
corrections. The aim is to confirm the OPE result,
Eq. (3.7), for ��>�

� ¼ 2�T þ �L. For notational sim-

plicity in this section we assume nF ¼ 1.

1. Outline of calculation

The two-loop diagrams contributing to the Wightman
self-energy �>ðqÞ are shown in Figs. 2 and 3. The use the
cutting rule of Weldon [30], which expresses the

Wightman self-energy as a product of two retarded ampli-
tudes separated by Wightman (on shell) propagators (de-
picted as the main cut in the figures). Its physical
interpretation is as follows: the main cut sums over inter-
mediate states, as is expected for aWightman function, and
the amplitudes are retarded because intermediate states are
expanded in a basis of ‘‘in’’ states (e.g., free theory states
defined at t ! �1).
To evaluate the retarded amplitudes on each side of the

cut we use the so-called Schwinger-Keldysh ðraÞ formal-
ism, as described in [31].8 The resulting expressions are
summarized graphically in the figures: the arrowed propa-
gators are retarded propagators and the propagators with
the double cut are the fluctuation functions of this formal-
ism (Grr propagators); vertices are as in ordinary zero-
temperature perturbation theory (e.g., no complex conju-
gation appears).
Following the OPE philosophy we look for propagators

which can become soft, q� T � p. Visual inspection
reveals that no more than one propagator can ever become
soft simultaneously: at least two hard particles must tra-
verse the main cut, and to channel their hard momenta to
the external legs in all cases requires at least two other hard
propagators. Thus we will organize the calculation around
the propagator which becomes soft.
At order �s there is no need for HTL resummation and

the retarded propagators are temperature-independent. The
temperature dependence is due to the statistical factors
entering the Wightman and rr propagators,

G��
R ðpÞ ¼ �i	��

p2 þ i�p0
; SRðpÞ ¼ ip6

p2 þ i�p0
;

(A1a)

	G��
>;<;rrðpÞ ¼ �	�� ~GBðpÞ; 	S<;>;rrðpÞ ¼ �p6 ~GFðpÞ;

(A1b)

with the vacuum cuts obeying G>ðpÞ ¼ 2ReGRðpÞðp0Þ.
We will not use the explicit forms ~GB;FðpÞ ¼
2�	ðp2ÞnB;Fðjp0jÞ until the end of the calculation; up to

then the sole purpose of the Ansatzes Eqs. (A1b) is
to simplify polarization sums. Our metric signature is
ðþ ���Þ.

2. Gluon condensate

First we allow the gluon propagator in diagrams (a) and
(b) of Fig. 2 to become soft. Upon evaluating the Dirac
trace this contribution may be written

8Alternatively, these amplitudes are the analytic continuation
of the Euclidean ones [32]. Either way their evaluation at n loop
involves no more than n statistical factors. This may be con-
trasted with the rules (of Kobes and Semenoff) employed in the
second of Refs. [4,15], in which terms in which all propagators
carry statistical factors appear at intermediate steps (only to
cancel out in the end).
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��>�
�ðpÞ

g2CFdF
� 32

Z
k
½ ~GBðkÞ þ ~GBð�kÞ�

�
Z
l
4�2

�
	ðl2Þ	ðl2pÞ

l2kl
2
pk

þ 	ðl2Þ	ðl2pkÞ
l2kl

2
p

�
l

	 lpklp 	 lk; (A2)

where we have introduced the abbreviations
R
l ¼

R
d4l

ð2�Þ4 ,
lk ¼ l� k, lp ¼ l� p and lpk ¼ l� p� k, to be used in

all what follows, and k � l� p is the soft momentum. It is
kinematically impossible for two denominators in Eq. (A2)
to vanish simultaneously and only the real part (e.g., prin-
cipal value) of the propagators contributes. The l integra-
tion is Lorentz-covariant and becomes elementary in the
rest frame that is singled out by the 	 functions. Thus
Eq. (A2) yields

1

�

Z
k

~GBðkÞ
�
2þ ðp2 þ k2Þ2

2p 	 k� ln

�1� ðp	kþ�
p2 Þ2

1� ðp	k��
p2 Þ2

�

þ p2 þ k2

�
ln

�1þ p	kþ�
p2

1þ p	k��
p2

1þ �p	kþ�
p2

1þ �p	k��
p2

��
; (A3)

with � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp 	 kÞ2 � p2k2
p

.
To evaluate the diagrams of the second topology, Fig. 3,

without having to deal with ill-defined expressions such as
	ðl2Þ=l2 [which would appear in too literal an interpreta-
tion of diagrams (b)-(c)], we write their sum as a disconti-
nuity,

��>�
�ðpÞ

g2CFdF
� 16

Z
k
½ ~GBðkÞ þ ~GBð�kÞ�

Z
l
2�	ðl2pÞ

� 2 Im
2l 	 lpl 	 lk � l2lp 	 lk
ðl2 þ i�l0Þ2ðl2k þ i�l0kÞ

; (A4)

where we have also included the contribution with the self-

energy inserted on the lower propagator. In our kinematic
regime the poles of the denominators are disjoint and occur
at positive energies, l0 > 0, l0k > 0. The discontinuity

across the squared propagator 1=ðl2Þ2 may be conveniently
evaluated by integration by parts along l�p@p� , yielding the

formula9:

2Im
Z
l

	ðl2pÞFðlÞ
ðl2 þ i�l0Þ2 ¼

1

p2

Z
l
	ðl2pÞ2�	ðl2Þ

�
1þ l�p

@

@l�

�
FðlÞ;

(A5)

for FðlÞ any function of l regular at l2 ¼ 0.
The total imaginary part in Eq. (A4) is the sum of that

from Eq. (A5) and from that across the 1=l2k propagator,

2 Im1=ðl2k þ i�l0kÞ ¼ �2�	ðl2kÞ. Upon performing the l in-
tegration we obtain

1

�

Z
k

~GBðkÞ
�
�4þ p 	 k

�
ln

�1� ðp	kþ�
p2 Þ2

1� ðp	k��
p2 Þ2

��
: (A6)

Our final result for the sensitivity to the gluon distribu-
tion in the medium is the sum of Eqs. (A3) and (A6).

3. Fermion condensate

Letting the lower fermion propagator become soft in
Fig. 2(a) and in its left-right flip, or the rr propagators
with similar positions in 2(c) and its conjugate, gives a
contribution:

��>�
�ðpÞ

g2CFdF
� �64

Z
k

~GFðkÞ
Z
l
4�2

�	ðl2Þ	ðl2pkÞ
l2p

þ 	ðl2Þ	ðl2pÞ
l2pk

�
� lp 	 ðpþ kÞl 	 k

ðpþ kÞ2

¼ 1

�

Z
k

~GFðkÞ
�

2p 	 k
ðpþ kÞ2

� ðp2 � k2Þð2k 	 pþ k2Þ
ðpþ kÞ2� ln

1þ p	kþ�
p2

1þ p	k��
p2

�
;

(A7)

where our notation and techniques are as in the previous

(a) (b) (c)

FIG. 3. Real-time diagrams of second topology contributing to
�>, in the notation of Fig. 2. Not shown, the complex conjugates
to (b) and (c).

(c) (d)(a) (b)

FIG. 2. Real-time diagrams of first topology contributing to �> (with the complex conjugate diagrams omitted). The arrows show
the time flow along retarded propagators, not the charge flow; the doubly-dashed propagator is the fluctuation function Grr.

9An alternative way of deriving this result is to treat the self-
energy insertion as a correction to the external states, in which
case at this order one gets thermal mass shifts and wave function
renormalization factors. See, for instance, [15].
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subsection. Contributions in which the upper fermion
propagators are allowed to become soft are similar, but
with k replaced by�k; these will have to be included at the
end.

The diagram of Fig. 3 receives a contribution from when
the upper fermion propagator becomes soft,

��>�
�ðpÞ

g2CFdF
� �32 Im

Z
k

~GFðkÞ

�
Z
l

2�	ðl2pÞðl2lp 	 k� 2l 	 kl 	 lpÞ
ðl2 þ i�l0Þ2ðl2k þ i�l0kÞ

¼ 1

�

Z
k

~GFðkÞ
�
�1þ� 1

2p
2 þ p 	 k
�

� ln

�1� p	kþ�
p2

1� p	k��
p2

��
; (A8)

and from when the lower fermion propagator becomes soft,

��>�
�ðpÞ

g2CFdF
� 16

Z
k

~GFðkÞ
Z
l
	ðl2Þ	ðl2pkÞ

� k 	 ðpþ kÞ � l 	 k
ðpþ kÞ2

¼ 1

�

Z
k

~GFðkÞ
�
k 	 ðpþ kÞ
ðpþ kÞ2

�
: (A9)

The total sensitivity of�>�
� to fermions moving in the

medium is the sum of Eqs. (A7)–(A9) and the same objects
with ðk ! �kÞ.

4. Expansion in 1=p

Each of the contributions, Eqs. (A3) and (A6)–(A9), is
free of infrared divergences and is moreover local in k.
That is, each admits a Taylor expansion in positive powers
of p 	 k=p2 and �2, as is readily verified from their parity
under � ! ��.
This is the main point of this analysis: divergences and

nonlocalities have canceled out in the sum over cuts, for
each individual diagram. A Minkowski-space OPE thus
works for each diagram. Furthermore, upon summing the
diagrams, we find that the term of order ðp2Þ0 cancels in the
1=p2 expansion of the sum of Eqs. (A3) and (A6) as
required by gauge invariance, since this would correspond
to a noninvariant A�A

� condensate: gauge invariance is

restored upon summing diagrams.
The leading nontrivial term in the expansion arise at

order 1=p2,

��>�
�ðpÞ

g2CFdF
� 1

�p2

Z
k

�
~GFðkÞ

8ðp 	 kÞ2 þ 8
3 �

2

p2

� ~GBðkÞ
2ðp 	 kÞ2 þ 2

3 �
2

p2
þO

�
k4

p2

��

’ 4p�p�

3�p4

�
2

dF
hT��

f i � 1

dA
hT��

g i
�
; (A10)

in complete agreement with the OPE result for ð2�T þ
�LÞðpÞ when nF ¼ 1, Eqs. (3.7).
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