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A formula for the two-loop infrared singularities of dimensionally regularized QCD scattering

amplitudes with an arbitrary number of massive and massless legs is derived. The singularities are

obtained from the solution of a renormalization-group equation, and factorization constraints on the

relevant anomalous-dimension matrix are analyzed. The simplicity of the structure of the matrix relevant

for massless partons does not carry over to the case with massive legs, where starting at two-loop order

new color and momentum structures arise, which are not of the color-dipole form. The resulting two-loop

three-parton correlations can be expressed in terms of two functions, for which some general properties

are derived. This explains observations recently made by Mitov et al. in terms of symmetry arguments.
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I. INTRODUCTION

In the past few years, remarkable progress has been
achieved in the understanding of the infrared (IR) singu-
larities of massless scattering amplitudes in non-Abelian
gauge theories, which are characterized by an intricate
interplay of soft and collinear dynamics. While factoriza-
tion proofs guarantee the absence of IR divergences in
inclusive observables [1], an all-order formula for the IR
singularities of QCD amplitudes has been lacking for a
long time. An important step toward this goal was made by
Catani [2], who correctly predicted the singularities of two-
loop scattering amplitudes apart from the 1=� pole term.
An interesting alternative approach to the problem of IR
singularities was developed in [3], where the authors ex-
ploited the factorization properties of scattering amplitudes
along with IR evolution equations to recover Catani’s
result at two-loop order and to relate the coefficient of
the 1=� pole term to a soft anomalous-dimension matrix.
This matrix was later calculated at two-loop order in [4,5].
Its color structure was found to be of the same form as at
one-loop order, and it was shown that the more compli-
cated color structure of the 1=� term in Catani’s formalism
[6] was an artifact of his subtraction scheme.

In recent work [7], we have shown that the IR singular-
ities of on-shell amplitudes in massless QCD are in one-to-
one correspondence to the ultraviolet (UV) poles of opera-
tor matrix elements in soft-collinear effective theory
(SCET) [8–10]. They can be subtracted by means of a
multiplicative renormalization factor, whose structure is
constrained by the renormalization group. We have argued
that the simplicity of the corresponding anomalous-
dimension matrix holds not only at one- and two-loop
order, but is in fact an exact result of perturbation theory.
A first test of this prediction at three-loop order was
performed in [11]. Detailed theoretical arguments support-
ing our conjecture were presented in [12], where we used
constraints derived from soft-collinear factorization, the

non-Abelian exponentiation theorem [13,14], and the be-
havior of scattering amplitudes in two-parton collinear
limits [15] to show that the anomalous-dimension matrix
retains its simple form at least to three-loop order, with the
possible exception of a single color structure multiplying a
function of conformal ratios depending on the momenta of
four external partons, which vanishes in all collinear limits.
Some of these arguments were developed independently in
[16]. We also showed that higher Casimir invariants, which
in particular would lead to a violation of Casimir scaling of
the cusp anomalous dimension [14,17–19], do not appear
at four-loop order.
It is interesting and relevant for many physical applica-

tions to consider generalizations of these results valid in
the case of massive partons. The IR singularities of one-
loop scattering amplitudes containing massive partons
were obtained some time ago in [20]. We will reproduce
their formula as a special case of our analysis. In the limit
where the parton masses are small compared with the
typical momentum transfer among the partons, they serve
as regulators for collinear singularities. In [21–23] facto-
rization theorems for this limit were proposed, which allow
one to derive massive amplitudes from massless ones. This
technique has been used to derive the massive eþe� !
eþe� scattering amplitude [23,24] and the virtual correc-
tions to heavy-quark production in the limit where all
kinematic invariants are larger than the heavy-quark
masses [25,26].
First steps toward solving the problem of finding the IR

divergences of generic two-loop scattering processes with
massive partons, without restricting oneself to the limit of
small masses, have recently been taken by Mitov et al.
[27]. Interestingly, these authors find that the simplicity of
the anomalous-dimension matrix governing the IR poles
does not persist at two-loop order in the massive case.
Specifically, they point out that there exist nonvanishing
singularities in Feynman graphs connecting three different
partons. They evaluate the corresponding contributions
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numerically and point out that they vanish for some special
kinematic configurations.

In this paper we extend our analysis in [12] to the
general case of gauge-theory amplitudes with arbitrary
numbers of massive and massless partons. We show that
the structure of the terms found in [27] follows from simple
symmetry arguments, such as soft-collinear factorization
in SCET and non-Abelian exponentiation. The fact that in
the presence of massive partons the low-energy effective
theory knows about the four-velocities of heavy particles in
addition to the lightlike directions of massless partons
gives rise to additional color and kinematical structures,
which are absent in the case of massless partons. As a
result, the structure of IR poles becomes increasingly more
complicated in higher orders of perturbation theory. We
present, for the first time, a general formula for the IR
singularities of dimensionally regularized two-loop scat-
tering amplitudes with arbitrary numbers of massive and
massless partons and arbitrary values of the parton masses.
It generalizes the one-loop result of [20]. For amplitudes
with n � 4 partons, our result contains two new functions
with certain symmetry properties, for which at present no
analytical expressions are available.

We begin by considering the case where the parton
masses are of the same magnitude as the typical momen-
tum transfer between the partons. In this case the appro-
priate low-energy effective theory is a combination of
SCET and heavy-quark effective theory (HQET) [28],
which is applicable since the relative velocities of the
heavy partons are of Oð1Þ in this case. With the general
result at hand, we then explore the limit where the parton
masses are taken to be much smaller than the hard mo-
mentum transfers between the partons. We conclude that if
the two new functions did not vanish in this limit, then the
QCD factorization formula of [22,23] would need to be
modified.

II. SOFT-COLLINEAR FACTORIZATION

We denote by jMnð�; fpg; fmgÞi, with fpg �
fp1; . . . ; png and fmg � fm1; . . . ; mng, a UV-renormalized,
on-shell n-parton scattering amplitude with IR singularities
regularized in d ¼ 4� 2� dimensions. This quantity is a
function of the Lorentz invariants sij � 2�ijpi � pj þ i0

and p2
i ¼ m2

i , where the sign factor �ij ¼ þ1 if the mo-

menta pi and pj are both incoming or outgoing, and �ij ¼
�1 otherwise. We assume that all of these invariants are of
the same order and refer to them as hard scales. For
massive partons (mi � 0), we define four-velocities vi ¼
pi=mi, whose components are of Oð1Þ. We have v2

i ¼ 1
and define the abbreviations wij � ��ijvi � vj � i0. We

use the color-space formalism of [29,30], in which
n-particle amplitudes are treated as n-dimensional vectors
in color space. Ti is the color generator associated with the
ith parton and acts as a matrix on its color index. The
product Ti � Tj � Ta

i T
a
j is summed over a. Generators

associated with different particles trivially commute,
Ti � Tj ¼ Tj � Ti for i � j, while T2

i ¼ Ci is given in terms

of the quadratic Casimir operator of the corresponding
color representation, i.e., Cq ¼ C �q ¼ CF for quarks and

Cg ¼ CA for gluons.

We have shown in [7,12] that the IR poles of such
amplitudes can be removed by a multiplicative renormal-
ization factor Z�1ð�; fpg; fmg; �Þ, which acts as a matrix on

the color indices of the partons. This quantity obeys the
renormalization-group equation

Z�1 d

d ln�
Zð�; fpg; fmg; �Þ ¼ ��ðfpg; fmg; �Þ; (1)

where � is the anomalous-dimension matrix of effective-
theory operators built out of collinear SCET fields for the
massless partons and soft HQET fields for the massive
ones. The formal solution of this equation is

Z ð�; fpg; fmg; �Þ ¼ P exp

�Z 1

�

d�0

�0 �ðfpg; fmg; �0Þ
�
;

(2)

where the path-ordering symbol P means that matrices are
ordered from left to right according to decreasing values of
�0. The Z factor appearing in the renormalization of
effective-theory operators describes the IR behavior of
on-shell amplitudes, because these amplitudes are closely
related to the bare Wilson coefficients of the corresponding
operators. This connection is discussed in detail in [12].
Compared to the massless case studied there, we encounter
one complication: Since virtual corrections due to heavy
quarks are integrated out in the effective theory, the strong
coupling constant entering the Z factor in the low-energy
theory is defined in a theory with massless quark flavors
only, while the massive amplitudes in QCD also receive
contributions from heavy-quark loops. The Z factor we
obtain from the effective theory describes the IR singular-
ities of massive QCD amplitudes after the coupling con-
stant is matched onto the effective theory with massless
flavors. The corresponding matching relation will be given
below.
The interactions between collinear and soft fields can be

decoupled by means of a field redefinition [9], after which
soft interactions manifest themselves as interactions be-
tween a set of lightlike and timelike soft Wilson lines
representing the massless and massive particles, respec-
tively. Generalizing the discussion of [12], the relevant soft
operator in the present case is

S ðfng; fvg; �Þ ¼ h0jSn1 � � �SnkSvkþ1
� � �Svn

j0i; (3)

where partons 1; . . . ; k are massless, and the remaining n�
k partons are massive.
From now on, we label the massive partons by capital

indices I; J; . . . , and the massless ones by lowercase in-
dices i; j; . . . . The anomalous-dimension matrix of the
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effective-theory operators can be written as a sum over soft
and collinear contributions [12],

� ðfpg; fmg; �Þ ¼ �sðf�g; �Þ þX
i

�i
cðLi; �Þ; (4)

where �s is the soft anomalous-dimension matrix govern-
ing the UV poles of the Wilson-line operator in (3). The
collinear contributions �i

c arise only for massless partons
and are diagonal in color space. Note that color conserva-
tion implies the relation

X
i

Ti þ
X
I

TI ¼ 0 (5)

when acting on color-singlet states such as color-
conserving scattering amplitudes. In intermediate steps in
the calculation of the anomalous-dimension matrix, one
needs to regularize IR divergences in the effective theory,
for instance by taking the massless partons slightly off their
mass shell, ð�p2

i Þ> 0. Following [12], we introduce the
notation Li ¼ ln½�2=ð�p2

i Þ� for the associated collinear
logarithms, which need to cancel in the final result (4). The
soft anomalous-dimension matrix�s is, in the most general
case, a function of the cusp angles �ij,�Ij, and �IJ formed

by the Wilson lines belonging to different pairs of massless
or massive partons. With the IR regulator as specified
above, the relations expressing these cusp angles in terms
of the hard momentum transfers and particle masses read1

�ij ¼ ln
�2�ijpi � pj�

2

ð�p2
i Þð�p2

j Þ
¼ Li þ Lj � ln

�2

�sij
;

�Ij ¼ ln
�2�IjvI � pj�

ð�p2
j Þ

¼ Lj � ln
mI�

�sIj
;

�IJ ¼ arccoshðwIJÞ ¼ arccosh

� �sIJ
2mImJ

�
:

(6)

The anomalous dimensions appearing on the right-hand
side of (4) are functions of the cusp angles �ij and the

collinear logarithms Li, while that on the left-hand side
depends only on the hard scales sij and mi.

III. TWO-PARTON CORRELATIONS

We begin by considering the one- and two-particle terms
in the anomalous-dimension matrix (4). They can be writ-
ten as [31]

�i
cðLi; �Þ ¼ �Ci�cuspð�sÞLi þ �i

cð�sÞ; (7)

and

�sðf�g; �Þj2-parton ¼ �X
ði;jÞ

Ti � Tj

2
�cuspð�sÞ�ij

� X
ðI;JÞ

TI � TJ

2
�cuspð�IJ; �sÞ

�X
I;j

TI � Tj�cuspð�sÞ�Ij

þX
i

�i
sð�sÞ þ

X
I

�Ið�sÞ; (8)

where the notation ði1; . . . ; ikÞ refers to unordered tuples of
distinct parton indices. The various coefficients are func-
tions of the renormalized coupling �s � �sð�Þ and, in the
case of �cuspð�;�sÞ, of a cusp angle �. The fact that only a
linear dependence on the cusp angles is allowed in cases
where at least one massless parton is involved has been
explained in [12,16].
It is instructive to see how the dependence on the IR

regulators disappears in (4), when we combine the expres-
sions in (7) and (8) and express the cusp angles in terms of
hard momentum transfers and masses as well as collinear
logarithms. We note that (after the cusp angles have been
eliminated)

@�sj2-parton
@Lj

¼ �
�X
i�j

Ti � Tj þ
X
I

TI � Tj

�
�cuspð�sÞ

¼ Cj�cuspð�sÞ ¼ �@�j
c

@Lj

: (9)

Hence, the sum of all contributions is indeed independent
of the IR regulators. Note that this requirement fixes the
relative strength of the terms proportional to Ti � Tj and

TI � Tj in (8). From (4) we then obtain

�ðfpg;fmg;�Þj2-parton
¼X

ði;jÞ

Ti �Tj

2
�cuspð�sÞ ln �2

�sij
þX

i

�ið�sÞ

�X
ðI;JÞ

TI �TJ

2
�cuspð�IJ;�sÞþ

X
I

�Ið�sÞ

þX
I;j

TI �Tj�cuspð�sÞ lnmI�

�sIj
; (10)

where �i � �i
s þ �i

c.
The anomalous-dimension coefficients �cuspð�sÞ and

�ið�sÞ (for i ¼ q, g) have been determined to three-loop
order in [12] by considering the case of the massless quark
and gluon form factors. For example, the one- and two-
loop coefficients in the perturbative series �cuspð�sÞ ¼P

n�
cusp
n ð�s

4�Þnþ1 are

�
cusp
0 ¼ 4; �

cusp
1 ¼

�
268

9
� 4�2

3

�
CA � 80

9
TFnf:

(11)

1Strictly speaking, in the effective theory only the large light-
cone components of the collinear momenta appear in the scalar
products pi � pj and vI � pj; see [12].
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In QCD only quarks can be massive, and the first two
coefficients in the expansion of �Q can be extracted by
matching our result with the known form of the anomalous
dimension of heavy-light currents Jhl in SCET [9,32]. We
obtain

�Jhlðp; v;�Þ ¼ �CF�cuspð�sÞ ln �

2v � pþ �0ð�sÞ; (12)

where we assume that the heavy quark with velocity v is
incoming, and the light quark with momentum p is out-
going. The sum �0 ¼ �q þ �Q was first obtained at two-
loop order in [33]. Using this result leads to the one- and
two-loop coefficients

�Q
0 ¼ �2CF;

�Q
1 ¼ CFCA

�
2�2

3
� 98

9
� 4�3

�
þ 40

9
CFTFnf:

(13)

Since this anomalous dimension is connected with the soft
Wilson-line operator in (3), its color structures are con-
strained by the non-Abelian exponentiation theorem
[13,14]. This explains the absence of a C2

F term, and it
implies that up to Oð�3

sÞ the corresponding anomalous
dimension for a massive color-octet particle is given by
CA=CF times the coefficients given above.

It remains to determine the velocity-dependent function
�cuspð�;�sÞ in (10). This can be accomplished by applying

our general result to the special case of just two heavy
quarks, where it should reproduce the velocity-dependent
anomalous dimension of heavy-quark currents in HQET
[28,34]. It follows that

�Jhhðv; v0; �sÞ ¼ CF�cuspð�;�sÞ þ 2�Qð�sÞ (14)

with cosh� ¼ v � v0, where v is the incoming and v0 the
outgoing quark’s velocity. This anomalous dimension was
calculated at two-loop order in [35,36], and it has recently
been recomputed in [37]. Using the result (13) for �Q, we
then obtain

�cuspð�;�sÞ ¼ �cuspð�sÞ� coth�þ CA

�
�s

�

�
2
�
�3
2
þ �2

24

� ð� coth�� 1Þ � coth�
Z �

0
dc c cothc

� sinh2�

2

Z �

0
dc

c cothc � 1

sinh2�� sinh2c

� ln
sinh�

sinhc
þ coth2�

Z �

0
dc c ð�� c Þ

� cothc

�
þ � � � : (15)

It is possible to express the integrals in terms of polylogar-
ithms, but we prefer to keep the result in the compact form
derived in the original papers. For small cusp angle the
result can be expanded in even powers of �,

�cuspð�;�sÞ ¼ �cuspð�sÞ
�
1þ�2

3
þ �� �

�

þCA

�
�s

�

�
2
�
�3 � 1

2
þ

�
1

4
��2

36

�
�2 þ �� �

�
:

(16)

Note that the leading terms in the expansion of �cuspð�;�sÞ
around small cusp angle are equal to�2�Q, so that the full

anomalous dimension �Jhhðv; v0; �sÞ vanishes in the limit

v � v0 ¼ 1. In the limit of large cusp angle one finds

�cuspð�;�sÞ ¼ �cuspð�sÞ�þ � � � ; (17)

where the dots represent terms that vanish for � ! 1.
Note that no constant terms remain in this limit.
The Z factor associated with a renormalization-group

equation such as (1), in which the anomalous dimension is
linear in ln�, was derived in [7]. To two-loop order it reads

lnZ ¼ �s

4�

�
�0
0

4�2
þ �0

2�

�
þ

�
�s

4�

�
2
�
� 3�0�

0
0

16�3

þ �0
1 � 4�0�0

16�2
þ �1

4�

�
þ � � � ; (18)

where

�0ð�sÞ ¼ @

@ ln�
�ðfpg; fmg; �Þ ¼ ��cuspð�sÞ

X
i

Ci; (19)

and we have expanded � ¼ �0
�s

4� þ �1ð�s

4�Þ2 þ � � � .
Exponentiating the result (18) yields the two-loop expres-
sion for Z, which encodes the IR singularities of the
massive QCD scattering amplitudes. More precisely, we
have

Z�1ð�sÞjMnð�; fpg; fmgÞij�QCD
s !	�s

¼ finite (20)

for � ! 0. The quantity �s denotes the strong coupling
constant in the effective theory, which is obtained after
integrating out the heavy-quark flavors. It is obtained from

the coupling constant �QCD
s of full QCD via the decoupling

relation �QCD
s ¼ 	�s. To first order in �s, the matching

factor appropriate for nh heavy-quark flavors reads [38]

	 ¼ 1þ �s

3�
TF

Xnh
i¼1

�
e��E�ð�Þ

�
�2

m2
i

�
� � 1

�

�
: (21)

We have checked that at one-loop order our results (10) and
(18) reproduce the IR pole terms obtained in [20]. We have
also confirmed that they correctly describe the IR singu-
larities of the two-loop massive quark form factor calcu-
lated in [39–41].
Our result (10) has been derived under the assumption of

hard parton masses, in which case the appropriate low-
energy effective theory is well known. However, being an
exact result in perturbative QCD, this formula can also be
applied in cases where some or all of the parton masses are
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much smaller than the momentum transfers between the
partons, mImJ � jsIJj. This limit is relevant to many
processes, such as Bhabha scattering or heavy-quark pro-
duction at the LHC. It is the limit in which all cusp angles,
also those involving massive partons, become large, and
�IJ ¼ lnð�sIJ=mImJÞ up to power-suppressed terms. In
this case our general result (10) implies that

� ðfpg; fm ! 0g; �Þj2-parton � �ðfpg; f0g; �Þ

¼ X
I

�
CI�cuspð�sÞ ln�mI

þ �Ið�sÞ � �ið�sÞ
�
;

(22)

where �ðfpg; f0g; �Þ is the anomalous-dimension matrix in

the massless case, whose conjectured all-order form is
given by the terms shown in the second line in (10)
[7,12]. In the equation above, �i is the massless single-
parton anomalous dimension belonging to parton I. In
QCD only quarks can be massive, and this result can be
rewritten as a sum over heavy-quark anomalous dimen-
sions,

�QðmQ;�Þ ¼ CF�cuspð�sÞ ln �

mQ

þ �Qð�sÞ � �qð�sÞ;
(23)

where the one- and two-loop coefficients of the constant
terms are

�Q
0 � �q

0 ¼ CF;

�Q
1 � �q

1 ¼ C2
F

�
3

2
� 2�2 þ 24�3

�

þ CFCA

�
373

54
þ 5�2

2
� 30�3

�

� CFTFnf

�
10

27
þ 2�2

3

�
: (24)

The factor ZQ associated with (23), which is obtained after

substituting the anomalous dimension �Q into the general

relation (18), is compatible with the results of [22,23].

Specifically, we find that the product Z�2
Q Zfmj0g is finite,

where the quantity Zfmj0g was defined in [22] as the ratio of
the massive to the massless quark form factor in the limit
where the quark mass tends to zero, and without including
heavy fermion loops. Note that our derivation assumed that
the massive partons are heavy enough to be integrated out
in the low-energy theory using (21). If this is not the case,
then the treatment of the heavy-flavor contribution is more
complicated [23].

IV. THREE-PARTON CORRELATIONS

It was observed in [27] that in the case with massive
partons, the anomalous-dimension matrix (4) has a more
complicated structure than in the massless case, and that at
two-loop order non-Abelian diagrams connecting three

partons give rise to nonvanishing contributions. The addi-
tional terms were found to vanish if two of the three partons
are massless,2 or if any pair of the three kinematic invar-
iants formed out of the parton momenta are equal. We will
now show that these observations have a simple
explanation.
Adapting the diagrammatic analysis of our paper [12] to

the case with nonzero parton masses, we find that addi-
tional structures arise from two-loop order on, the reason
being that the four-velocities of the massive partons are
known to both the full and the effective theories. In HQET
the velocities appear as labels on the effective heavy-quark
fields [28,42]. In the full theory, they are simply given by
vi ¼ pi=mi. While for massless partons the rewriting from
hard to soft variables always introduces collinear loga-
rithms, this is not true for massive partons, as shown in
(6). At two-loop order, the non-Abelian exponentiation
theorem then allows additional structures involving three
partons. They are absent in the massless case, because it is
impossible to form a totally antisymmetric function of
three cusp angles �ij, �jk, �ki that is independent of col-

linear logarithms upon the substitution shown in the first
line in (6) [12]. This would violate soft-collinear factoriza-
tion. However, with massive partons this argument no
longer applies. In fact, in principle the soft anomalous-
dimension matrix can contain the structures

� sðf�g;�Þj3-parton¼ifabc
X

ðI;J;KÞ
Ta
IT

b
JT

c
KF1ð�IJ;�JK;�KIÞ

þifabc
X
ðI;JÞ

X
k

Ta
IT

b
JT

c
kF2ð�IJ;�Jk;�IkÞ

þifabc
X
I

X
ðj;kÞ

Ta
IT

b
jT

c
kF3ð�Ij;�Ik;�jkÞ:

(25)

The function F1 must be totally antisymmetric in its argu-
ments, while F2 (F3) must be antisymmetric in the last
(first) two arguments. Soft-collinear factorization enforces
that after elimination of the cusp angles using (6), the result
(25) must be independent of collinear logarithms. This in
turn requires that

F2ð�IJ; �Jk; �IkÞ ¼ f2ð�IJ; �Jk � �IkÞ;
F3ð�Ij; �Ik; �jkÞ ¼ 0;

(26)

where f2ðx; yÞ must be an odd function of y. Note that for
F3 to be independent of collinear logarithms it should be a
function of the combination ð�Ij þ �Ik � �jkÞ, but this is
symmetric in j, k and so vanishes when contracted with the
antisymmetric color structure. Hence only the two possi-
bilities illustrated in Fig. 1 remain, and we are led to the
following additional structures in the complete anomalous-

2It is noted in [27] that this observation has been made
independently by Gardi.
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dimension matrix in (4):

�ðfpg; fmg; �Þj3-parton
¼ ifabc

X
ðI;J;KÞ

Ta
IT

b
JT

c
KF1ð�IJ; �JK; �KIÞ

þ ifabc
X
ðI;JÞ

X
k

Ta
IT

b
JT

c
kf2

�
�IJ; ln

��JkvJ � pk

��IkvI � pk

�
: (27)

This is the most general form possible at two-loop order,
and hence the sum of (10) and (27) gives the complete
answer for the anomalous-dimension matrix at Oð�2

sÞ. We
note that the color factor in (27) is nonzero only if there are
at least four partons involved in the scattering process. For
three partons, charge conservation, i.e. the fact that T1 þ
T2 þ T3 ¼ 0, implies that

fabcTa
1T

b
2T

c
3 ¼ �fabcTa

1T
b
2ðTc

1 þ Tc
2Þ ¼ 0: (28)

Since the color matrices entering the two-particle and
three-particle terms do not commute, the path ordering in
(2) becomes important in the massive case. However, since
the three-parton color structures first enter at two-loop
order, this complication arises only at Oð�3

sÞ.
It is interesting to observe that the two structures in (27)

are consistent with the constraints following from the
behavior of scattering amplitudes in the limit where two
(or more) massless partons become collinear. To see this,
consider the case where the first two light partons become
collinear, such that p1 ¼ zP and p2 ¼ ð1� zÞPwith P2 !
0. As shown in [12], the anomalous dimension of the
matrix of splitting amplitudes Spðfp1; p2g; �Þ is given by
the difference of �ðfp1; p2; p3; . . .g; fmg; �Þ and
�ðfP; p3; . . .g;
fmg; �ÞjTP¼T1þT2

, and it must be independent of the mo-

menta and colors of the remaining partons. Indeed, the
three-parton term (27) does not contribute to this differ-
ence, because it is at most linear in the color generators of
massless partons and invariant under rescalings of their
momenta. It would be interesting to explore whether addi-
tional constraints on the anomalous dimension arise from

considering quasicollinear limits [20,43], a generalization
of the usual collinear limit to the case where some of the
partons involved in the splitting are massive.
Our result (27) explains the observation made in [27],

that the three-parton correlations do not arise when two or
three of the involved partons are massless (i.e., the fact that
F3 ¼ 0). Moreover, when any pair of kinematic invariants
are equal, these terms vanish as well. For F1 this follows
from the fact that it is an antisymmetric function in all of its
arguments. For f2 it follows since for vI ¼ vJ both argu-
ments of the function vanish, but f2 must be odd in its
second argument. We can thus reproduce and understand
all of the observations made in [27] based on symmetry
properties and without an explicit two-loop calculation.
This also demonstrates that these observations will con-
tinue to hold in higher orders of perturbation theory. On the
other hand, due to reasons similar to the ones outlined
above, it is clear that when massive particles are present,
more and more complicated color and momentum struc-
tures will arise in higher orders of perturbation theory. The
arguments of [12] show that all of these structures are of
non-Abelian origin and involve three or more partons.
An integral representation for the function F1 can, in

principle, be extracted from expressions derived in [27].
These authors have shown by numerical evaluation that
F1 � 0 for generic values of its arguments. It is an open
question, however, how the functions F1 and f2 behave in
the limit of large cusp angles, corresponding to the case
where mImJ � jsIJj. If either one of the two functions
does not vanish in this limit, then the factorization theorem
for massive amplitudes proposed in [22,23] would have to
be modified to account for the nonfactorizable three-
particle terms derived from (27). For example, in heavy-
quark production processes such as q �q ! t�t or gg ! t�t
only the second term in (27) contributes. If the asymptotic
behavior of the coefficient function were f2ðx; yÞ � xy,
then in the limit s 	 m2

t the three-parton term would
contribute a 1=� IR pole at two-loop order proportional
to lnðt=uÞ lnð�s=m2

t Þ, which would be incompatible with a
simple factorization formula. The agreement of the nu-
merical results presented in [44] for the q �q ! t�t scattering
amplitude with the predictions obtained in [25] using the
factorization theorem for massive partons provides some
evidence that the three-parton contributions do indeed
vanish in the limit of large cusp angles, but one should
check this with an explicit calculation of F1 and f2.

V. SUMMARYAND OUTLOOK

We have derived the general form of infrared singular-
ities of two-loop QCD amplitudes involving arbitrary num-
bers of massive and massless partons. These singularities
can be absorbed into a multiplicative Z factor, which
fulfills a renormalization-group equation. In the purely
massless case, the associated anomalous dimension in-
volves only color-dipole correlations. This was first ob-

FIG. 1. Graphical representation of the two three-particle
terms in the anomalous-dimension matrix (27). Double lines
represent massive partons, single lines show massless ones.
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served by explicit calculation at the two-loop level in [4,5].
In a recent paper, we have argued that factorization con-
straints suggest that this property persists to all orders and
have analyzed the three-loop case in detail [12]. More
recently, Mitov et al. [27] have shown that the
anomalous-dimension matrix for massive partons involves
color correlations among three partons, in contrast to the
massless case. They have evaluated these contributions
numerically in Euclidean space and pointed out that they
vanish for certain kinematical configurations.

In the present paper, we have derived the structure of the
two-loop anomalous-dimension matrix relevant for the
general case involving both massive and massless partons.
The factorization constraints can be studied using a com-
bination of soft-collinear effective theory for the massless
partons and heavy-quark effective theory for the massive
ones. We have first derived the form of the two-parton
correlations and extracted the necessary anomalous dimen-
sions from known results for heavy-to-heavy and heavy-to-
light currents in the effective theory. The factorization
constraints are weaker for terms involving massive legs,
since both the full and the effective theories know about the
four-velocities of the massive partons. In particular, the
constraints do not exclude three-parton correlations if at
least two of the partons involved are massive. We have

shown that two such structures appear and that their sym-
metry properties imply that they vanish when two four-
velocities of the involved massive partons become equal,
which explains the findings of [27]. Starting from their
results, one should derive explicit representations for these
two functions in Minkowski space, preferably in analytic
form.
We have briefly discussed the limit in which the particle

masses are small compared to the momentum transfers. In
this case, the two-parton contribution factors into a hard
part, depending on the large momentum transfers, and a
sum over collinear contributions, depending on the parton
masses. It would be interesting and important to study this
case in more detail. In particular, one should check whether
the three-parton correlations vanish in this limit, since their
presence would violate the factorization theorem proposed
in [22,23].
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