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BPS and non-BPS Kkinks in a massive nonlinear S*-sigma model
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The stability of the topological kinks of the nonlinear S$2-sigma model discovered by Alonso Izquierdo
et al. is discussed by means of a direct estimation of the spectra of the second-order fluctuation operators
around topological kinks. The one-loop mass shifts caused by quantum fluctuations around these kinks are
computed using the Cahill-Comtet-Glauber formula. The (lack of) stability of the nontopological kinks is
unveiled by application of the Morse index theorem. These kinks are identified as non-BPS states. There
are two types of topological kinks coming from the twofold embedding of the sine-Gordon model in the
massive nonlinear sigma model. It is shown that sine-Gordon kinks of only one type satisfy first-order
equations and are accordingly BPS classical solutions. Finally, the interplay between instability and

supersymmetry is explored.
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I. INTRODUCTION

The main theme in this paper is the analysis of the
structure of the manifold of kink solitary waves discovered
in [1]. In particular, we shall offer a full description of the
stability of the different type of kinks. As a bonus, we shall
gain information about the semiclassical behavior of such
kinks from the stability analysis, providing us with enough
data to compute the one-loop mass shifts for the topologi-
cal kinks.

Prior to our work [1], kinks in massive nonlinear sigma
models have been known for some time and profusely
studied in different supersymmetric (SUSY) models under
the circumstance that all the masses of the pseudo-Nambu-
Goldstone particles are equal. The study started with two
papers by Abraham and Townsend [2,3], in which the
authors discovered a family of Q kinks in a (1 +
1)-dimensional N = (4,4) supersymmetric nonlinear
sigma model with a hyper-Kahler Gibbons-Hawking in-
stanton as the target space and mass terms obtained from
dimensional reduction. In [4], however, these kinks were
reconsidered by constructing the dimensionally reduced
supersymmetric model by means of the mathematically
elegant technique of hyper-Kahler quotients. By doing
this, the authors deal with massive CPY or HPY models,
a playground closer to our simpler massive S?-sigma
model. Similar /N° =2 BPS walls in the CP' model
with twisted mass were described in [5]. In a parallel
development in the (2 + 1)-dimensional version of these
models, two-dimensional Q lumps were discovered in
[6,7]. Throughout this field, the most interesting result is
the demonstration in [8,9] that composite solitons in d =
3+ 1 of Q strings and domain walls are exact BPS solu-
tions that preserve é—{ of the supersymmetries. (See also the
review [10], where a summary of these supersymmetric
topological solitons is offered.)

1550-7998/2009/79(12)/125003(16)

125003-1

PACS numbers: 11.10.Lm, 11.27.4+d

Our investigation differs from previous work in the area
of topological defects in nonlinear sigma models in two
important aspects: (1) We remain in a purely bosonic
framework; in fact, we consider the simplest massive non-
linear sigma model. (2) We study the case when the masses
of the pseudo-Nambu-Goldstone bosons are different. The
search for kinks in the (1 + 1)-dimensional model (domain
walls in d = 3 + 1) is tantamount to the search for finite
action trajectories in the repulsive Neumann system, a
particle moving in an S?-sphere under the action of non-
isotropic repulsive elastic forces. It is well known that this
dynamical system is completely integrable [11,12]. We
show, however, that the problem is Hamilton-Jacobi (HJ)
separable by using elliptic coordinates in the sphere. Use of
this allows us to find four families of homoclinic trajecto-
ries starting and ending at one of the poles which are
unstable points of the mechanical system. In the field-
theoretical model the poles become ground states, whereas
the homoclinic trajectories correspond to four families of
nontopological kinks. Each member in a family is formed
by a nonlinear combination of two basic topological kinks
(of different type) with their centers located at any relative
distance with respect each other.

It is remarkable that the static field equations of this
massive nonlinear sigma model are (almost) the static
Landau-Lifshitz equations governing the high-spin and
long wavelength limit of 1D ferromagnetic materials.
From this perspective, topological kinks can be interpreted,
respectively, as Bloch and Ising walls that form interfaces
between ferromagnetic domains, similar to those discov-
ered in the XY model dealt with in [13]. The variety of our
nontopological kinks, understood as solitary spin waves, is
thus formed by nonlinear superpositions of one basic Bloch
wall and one basic Ising wall at different distances. Far
from this nonrelativistic context, degenerate Bloch/Ising
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branes have been studied in two-scalar field theories
coupled to gravity in [14-16].

II. THE (1 + 1)-DIMENSIONAL MASSIVE
NONLINEAR S2-SIGMA MODEL

We shall focus on the nonlinear S?-sigma model studied
in Ref. [1]. The action governing the dynamics is

ba 094

ax* ax¥

S, . ) = [[arafs g i -v}

with V = V(¢ (¢, x), d2(t, x), (2, x)). The scalar fields
are constrained to satisfy ¢7 + ¢3 + ¢3 = R?, and thus
¢,(t, x) € Maps(R"!, S?) are maps from the (1 +
1)-dimensional Minkowski space-time to a S’-sphere of
radius R, which is the target manifold of the model.

Our conventions for R"! are as follows: x* € R, u =
0,1x*-x, =gl'x,x,, g =diag(l, —1);x° =1, x' =
X, xtx, = 2 — x% a,0" = g“”afw == 8% — 8%.

The infrared asymptotics of (1 + 1)-dimensional scalar
field theories forbids massless particles; see [17]. We thus
choose the simplest potential energy density that would be
generated by quantum fluctuations giving mass to the
fundamental quanta:

V1, b b) = 3 (@dd? + a3} + addd, @)

Which we set with no loss of generality such that a? =
a3 >al=0.

(1) Solving ¢ in favor of ¢ and ¢,, P35

JR> — % — @3, we find

1
S == fdtdx{alu(bla'“(bl + Gﬂd)zé“qﬁz

(¢>1a b+ ¢2a D) (D10 Py + P04 b,)
—¢1 — &3

= sg(¢3) X

— Wy, ¢2>},
Ver(dy, )

((a? — a?)¢p? + (a3 — a3) 3 + const)

1
2
A2

—¢Uﬂ+—%0ﬂ 3)
with A2 =

(al - a3) 'y (a’z - az) A2 = 7’
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(2) Thus, the interactions come from the geometry

(10,1 + ¢23M¢2)(¢13”¢1 + $20%¢,)
o

= (1 @+ B+ g+ 9+ )

'(¢13u¢1 + $20,02)(D 107 by + 0" o),

and % is a nondimensional coupling constant,
whereas the masses of the pseudo-Nambu-
Goldstone bosons are, respectively, A and .
Taking into account that in the natural system of units
h = c = 1 the dimensions of fields, masses, and coupling
constants are [¢,] =1 =[R], [y] = M = [A], we define
the nondimensional space-time coordinates and masses

2 2 2
xH a5 — «
M — g2 =22 3_Y 0<o?=<1
y y y
A a%—a% A2

to write the energy in terms of them:

E= % dx{(at¢1)2 +(9,02)* + (0,61 + (0:¢2)°

((]516 b1+ $o0, ¢2)2 + (410,01 + $0,$,)?
— ¢1 — &3

+M@ﬂ+&-ﬁ@m} @)

In the time-independent homogeneous minima of the ac-
tion or vacua of our model, ¢}/i o q’)zt =0, ¢3i = *R
(north and south poles), the Z, X Z, X Z,, ¢,—
(—1)%we,, b=1, 2, 3 symmetry of the action (1) is
spontaneously broken to Z, X Z,, ¢, — (—1)%4¢ g Q,
B = 1, 2. Finite energy configurations require

do,

li =0,
x—1>rtn°° dx

xhrglwd)a = 0. (5)
Therefore, the configuration space C = {Maps(R, S?)/E <
+o00} is the union of four disconnected sectors C =
Can U Css U Cns U Csn labeled by the vacua reached by
each configuration at the two disconnected components of
the boundary of the real line.

We now solve the constraint by using spherical coordi-
nates: 0 € [0, 7], ¢ € [0, 27)

¢ (1, x) = Rsinf(t, x) cose(t, x),
b, (1, x) = Rsinb(t, x) sing(z, x),
¢5(t, x) = Rcos(t, x).

In spherical coordinates the mass terms (we shall denote in
the sequel: & = V1 — o?) are

2

R
V(6, @) = ?sinzﬂ(o-2 + G2cos ), 6)

the action becomes
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R2
S = [dtdx{7[8#08“0 +8in?09 , @0* @]

R2
- Tsinztﬁ?(a'2 + 6'2coszgo)},
and the field equations read

1
e — 5 sin26(3* @a, @ — cos’p — o?sin*e) = 0, (7)

1
9#(sin?09 , @) — 3 &2sin6 sin2¢ = 0. (8)

Finite energy solutions for which the space-time depen-

dence is of the form
X — vt
o(t, x) = ¢(_)

006 = o =) N

for some velocity v, are called solitary waves. Lorentz

invariance allows us to obtain all the solitary waves in
our model from solutions of the static field equations

1 1
9" — 5 sin26(¢’)? = §(C052¢ + o%sin’ ) sin260,  (9)

1
a (sinf¢’) = = ¢%sin*A sin2¢, (10)
dx 2
where the notation is: §/ = 4, ¢/ = ‘fl—ﬁ. The energy of the

static configurations is

E[6, 6] = A f dxE0' (1), ¢'(x), 0(x), @ (1)),
. AR?
=

+ sin?0(0? + d2cos?)).

& ((6")? + sin’6(¢’)?

III. TOPOLOGICAL KINKS

Equation (8) is satisfied for constant values of ¢ if and
only if ¢ =0, 7, m, %7’ Depending on which pair of
¢@-constant solutions we choose, (7) becomes one or an-
other sine-Gordon (sG) equation:

2

1
06 + % sin26 = 0; 06+ sin26 = 0.

Thus, sine-Gordon models are embedded in our system on
these two orthogonal meridians.

(1) K,/K7 kinks. We denote K,/K7 the kink/antikink
solutions of the sG model embedded inside the S?
model in the ¢, (x) = F or ¢x:(x) = 3 two halves
of the single meridian intersecting the ¢,:¢3 plane,

Ok, (x) = Ok: (x) = 2 arctane * (%), (11)

see Fig. 1. The energy of these kinks, which belong
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FIG. 1 (color online). (a) V(6, ¢) deformation of SZ.
(b) Embedding of the sine-Gordon model at ¢ =0, ¢ = 7 as
seen in —V(6, ¢).

to Cys (kinks) or Cgy (antikinks), is Ef = Eg. =
1
2AR%0.
(2) K,/K; kinks. Taking ¢, (x) = Oor ¢ K (x) = 7, we
find the sG kinks:

O, (x) = GK-;(x) = 2 arctane™ ¥~ %), (12)

The energy of the K,/K; kinks, which also belong
to the Cng, Csy sectors, is greater than the energy of
the K,/Kj kinks: E§ = E1C<;‘ = 2AR.

(3) Degenerate families of Q,, kinks. When o> = 1, the
system enjoys SO(2) internal symmetry and the
masses of the two pseudo-Nambu-Goldstone bosons
are equal, there are degenerate families of time-
dependent Q kinks of finite energy. If o = 1:
0%(f) = wt + @, where w and « are real con-
stants, solves (8) for any time-independent 6(x).
Moreover, by plugging ¢%=«(1) into (7) one obtains

6%« (x) = 2arctane™V1~ &%)V o (13)

Therefore, if 0 < w? < 1, the (0% (x), ¢2=(¢)) con-
figurations form a degenerate circle of periodic in
time Q-kink solutions of energy:

C —

2AR*  2AR?
Qa /1 _ w2 d) ’
In fact, these Q kinks can be viewed as the sG kinks
rotating around the main axis of S? with constant
angular velocity w. In another reference frame mov-
ing with respect to the Q ,-kink center of mass (CM)

with velocity v, the interplay between x and ¢ de-
pendence is more complicated:

t— vx
©%(x, 1) = w<7) + a,

V1 —v?

6%«(x, 1) = 2 arctane=@((x—vi/V1=v*)—xo)

V a.

At the w = 0 limit we find a circle of static topo-
logical kinks that form a degenerate family of soli-

tary waves of the system.
Of course, all the multisoliton, soliton-antisoliton, and
breather solutions of the sG model are also solitons of our

125003-3



ALONSO-IZQUIERDO, LEON, AND GUILARTE

system in the meridians intersecting either the ¢,: ¢ or
the ¢: ¢5 planes. We shall not discuss these solutions in
this work and postpone their study to a future research.

IV. TOPOLOGICAL KINK STABILITY

A. Small fluctuations on topological kinks

The analysis of small fluctuations around topological
kinks requires us to consider both the geodesic deviation
operator and the Hessian of the potential energy density.
We will denote 6 =6'€[0, 7], ¢ =6>€]02m),
and thus the arclength reads ds> = R?d0'df' +
R?sin’60'd#?d6?. We also denote the kink trajectories and
small deformations around them as Og(x) = (6%(x) =
0, 0x(x) = ), 0(x) = Ox(x) + nx), n(x) =
(' (x), 9*(x)).

Let us consider the following contra-variant vector fields
along the kink trajectory, n, 0% € I(TS?| K) n(x) =
n'(x) 55 + n*(x) 55 and O (x) = 6" -0 + @' .

The covariant derivative of 1(x) and the action of the
curvature tensor on 7(x) are

Vo 1 = (n"(x) + Tin/6")

Hi’

R(O )0 = 0"/ ()0 Rij 5.

The geodesic deviation operator is
D’n i I / i
dx

To obtain the differential operator that governs the second-
order fluctuations around the kink g, the remaining in-
gredient is the Hessian of the potential

V. aV) 9
0007 U agr)8 aal
evaluated at O (x). In sum, second-order kink fluctuations
are determined by the operator

= (Vg Vg n + R0k, )0y + V, gradV). (14)

v, gradV = ni(

Agm =

B. The spectrum of small fluctuations around K,/K;
kinks

Plugging the K solutions into (14), we obtain the dif-
ferential operator acting on the second-order fluctuation
operator around the K, /K7 kinks:

AK1 n= AKTW

2.1 2
dx cosh“ox a6
2.2
n dn’ | _, 2] 9
+| - + 20 tanh + :
[ A I A P

5)
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The vector fields v(x) = v'(x) 5 + v*(x) ;% parallel

907

along the K kink orbits satisfy 4= + T, §'7v* = 0, or,
[i}; =0, vix) =1
2 ox N
dde + c—"tangosﬁf‘rﬂe )y?2 =0, v*(x) = coshox
Therefore, v, = a_al’ v,(x) = coshox -2, 5 02 is a frame

{v1, vo} in I(TS?|, ) parallel to the K kink orbit in which
(15) reads

d2,)7’1 20.2
Agn=Apny=|-L" 4 2——)-1]
K1 KM [ dx? (U cosh2ox) T |V

272 202 ,
" [ dx? " (1 coshzmc)77 :Ivz, (16)
where n = #'v, + #%v,, ' = ', and n> = coshoxH?.
The second-order fluctuation operator (16) is a diagonal
matrix of transparent Posch-Teller Schrodinger operators
with very well-known spectra. As expected, despite the
geometric nature of Ag , we find in the v; = > 01 direction
the Schrodinger operator governing sG kink fluctuations.
Finding another Posch-Teller potential of the same type in
the v, = 5 02 direction comes out as a surprise because
there is no a priori reason for such a behavior in the
orthogonal direction.
In the v, direction there is a bound state of zero eigen-
value and a continuous family of positive eigenfunctions:

8(()1) =0,
eW(k) = o2(k* + 1).

M5(x) = sechox,

71 (x) = e***(tanhox — ik),
In the v, = coshox-%; g7 direction the spectrum is similar
but the bound state corresponds to a positive eigenvalue:
e? L =1-02>0,

77_ . (x) = secho, &
e?(k) = o?k> + 1.

77(x) = e*"*(tanhox — ik),

Because there are no fluctuations of negative eigenvalue,
the K /K7 kinks are stable.

C. One-loop shift to classical K;/K; kink masses

The reflection coefficient of the scattering waves in the
potential wells of the Schrodinger operators in (16) being
zero, it is possible to use the Cahill-Comtet-Glauber for-
mula [18] (see also [19] for a more detailed derivation) to
compute the quantum correction to the K; classical kink
mass up to one-loop order:

1
Ex,(0) = ES (0) + AEg (o) + @(F)
A 1
= 2AR%0 — —U[sinvl + — sinv, — v, cosv,
aa (oa

1 1
e cosvz] + (9(1?) (17)
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In (17), v = arccosO = Z, v, = arccosd, are determined
from the eigenvalues of the bound states and the thresholds
of the continuous spectra. This simple structure of the one-
loop kink mass shift occurs only for transparent potentials.
In our model, we find the formula

Ex (0) = 2AR*0 — AU[Z _g arccos(a-)] + @(%)
T o R
(18)
1

For instance, for o = 5 we obtain a result similar to the

2
mass shift of the A¢3 kink:
1 , 3A T 1
OREUE = 6\/5) +0(3)

As in the A¢3-kink case, a zero mode and a bound eigen-
§2/)4 =3
the bound state eigenvalues and the thresholds £(0) =
o2, €@(0) =1 of the two branches of the continuous
spectrum are the same in our model. The gaps, however,
are different from the gaps in the A3 model between the
eigenvalues of the two bound states and the threshold of the
only branch of the continuous spectrum. Both features
contribute to the slightly different result. The o = 1 sym-
metric case is more interesting. We find exactly twice the
spectrum of the sG kink: two zero modes and two gaps
with respect to the thresholds of the continuous spectrum
equal to one. No wonder that the one-loop mass shifts of
the degenerate kinks is twice the one-loop correction of the
sG kink:

1 1
Ee (1) = 2A<R2 - ;) + @<F)’ Y al.

state of eigenvalue & contribute. The gaps between

Moreover, the quantum fluctuations do not break the
SO(2) symmetry and our result fits in perfectly well with
the one-loop shift to the mass of the N = (2,2) SUSY
CP! kink computed in [20] where the authors find twice
the mass of the N' = 1 SUSY sine-Gordon kink. A differ-
ent derivation of formula (18) following the procedure of
[21] (see also [22,23]) will be published elsewhere.

D. The spectrum of small fluctuations around K,/K;
kinks

By inserting the K, solutions in (14) the second-order
fluctuation operator around the K,/K; kinks is found:

AK277 = AK;”I

d’n' 2 ad
= = +(1 - 1 ] _
[ dx? ( coshzx)77 90!

d’n? dn*> ad
+[—W+2tanhxg—0'2n2]aez. (19)

Solving again the parallel transport equations, now along
the K, solutions, it is obtained the parallel frame:

{uy, uy} € T(TSIx,), uy = 57, ur(x) = coshx =%, to the

PHYSICAL REVIEW D 79, 125003 (2009)
K, /K5 orbits. (19) becomes

AKZTI:AK;n
>yt 2
-1 4 (1- i
[ dx? ( cosh?x )77 :I
d’>? 2
+ |- + (o2 - ~2] 20
[ dx? (U coshzx)?7 Uy (20)

with n = flu; + #2u,, n' = 7', n?> = coshxi?.

Again, the second-order fluctuation operator (19) is a
diagonal matrix of transparent Posch-Teller operators. In
this case, there is a bound state of zero eigenvalue and a
continuous family of positive eigenfunctions starting at the
threshold ¢V(0) = 1 in the u; = -2 direction:

1
sechy, s(() ) = ,

eW(k) = (k* + 1),

#ih(x) =
A1 (x) = e (tanhx — ik),

as corresponds to the sG kink. In the u,(x) = coshxm

direction, the spectrum is similar but the eigenvalue of the
bound state is negative, whereas the threshold of this

branch of the continuous spectrum is £?(0) = o

8(22) 1—0'2—1<0,

eD(k) = k* + o2

72, (x) = sechy,

72(x) = e (tanhx — ik),

Therefore, K,/Kj; kinks are unstable and a Jacobi field for
k = io arises: H3(x) = e¢“*(tanhx — o), 8(12) = 0.

E. One-loop shift to classical K,/K; kink masses

Once again we use the Cahill-Comtet-Glauber formula
to compute the quantum correction to the K, classical kink
mass up to one-loop order. As before, the angles v, =
arccos(0) = %, v, = arccos(id), are determined from the
eigenvalues of the bound states and the thresholds of the
continuous spectra. The novelty is that since the bound
state eigenvalue is negative v, is purely imaginary.
Therefore, we find

w
9 — 2 —
ag 1—20'

+ G logV2 — o2 — 5’]] + @(%). Q1)

AoT1
Ex,(0) = 2AR? — ‘7[

The key point is that the one-loop mass shift is a complex
quantity, the imaginary part telling us about the lifetime of
this resonant state. In the o = 1 symmetric case, however,
we find the expected purely real answer: Eg (1) =

2AR* = 1) + O(h).
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F. BPS O, kinks as d = 1 + 1 dyons

In the o> = 1 case there is symmetry with respect to the

0O -1 0
exp|:af(1 0 O)] € S0(2)
0O 0 O

subgroup of the O(3) group. The associated Noether
charge distinguishes between different Q, kinks:

1 .
0= [x(@10:8: - 420,00 = R [axsin’ta,g.
0[0.]=R*w /dxsinzeQ« —R2 Y,
w

For configurations such that 6 is time independent and ¢ is
space independent, the energy can be written as
AR 200 2 I+ = ang?
E= EN dx{sin’6[¢ — w]* + [0’ = @ sinf]*}
+ AR? f dx{wsin’0¢ * @6’ sinb}, (22)
(¢ = ’Z—f(t)), in such a way that the solutions of the first-
order equations,
¢ =w= 9% = ot + a,
0' = ¥ @ sinf = 0% (x) = 2 arctane 2%,

the Q,, kinks, saturate the Bogomolny bound and are BPS:

2AR?
EBPS = — = /\{Q)Q + C?)T} (23)
@
Here, the topological charge T = |W[6(+o00,1)]—

W[6(—oo, t)]| coming from the superpotential W =
R*(1 = cosf) valued at the Q, kinks gives: T[Q,] =
2R?, V «. This explains why “one cannot dent a dyon”
(even a one-dimensional cousin); see [24]. Conservation of
the Noether charge forbids the decay of Q, kinks, all of
them living in the same topological sector, to others with
less energy.

G. Bohr-Sommerfeld rule: Q-kink energy and charge
quantization

The Bohr-Sommerfeld quantization rule applied to pe-
riodic in time-classical solutions in our model reads

T agp
,[0 dtfdxmp(t, X)E(t, X)

T Jdep 0
= sz dtfdxsinzﬂ(x, t)—qp 2% — 2mn.
0 Jat ot

In [25], it is explained how derivation of this formula with
respect to the period 7 = 27” leads to the ordinary differ-
ential equation (ODE) A 4% = &~ '(E), or

n E, EdE
Af dn = = E, = \Wn?> + 4R*
0 E, VE? — 4\’R*

PHYSICAL REVIEW D 79, 125003 (2009)

starting from E, = 2AR? and assuming n to be a positive
integer. The Q-kink energy is thus quantized and the
frequencies and charges allowed by the Bohr-
Sommerfeld rule form also a numerable infinite set:

V. THE MASSIVE NONLINEAR S2-SIGMA MODEL
IN SPHERICAL ELLIPTIC COORDINATES

The secret of this nonlinear (1 + 1)-dimensional mas-
sive S%-sigma model is that its analogous mechanical
system is Hamilton-Jacobi separable in spherical elliptic
coordinates. This fact will allow us to know explicitly not
only the kink solutions inherited from the embedded sG
models, but the complete set of solitary waves of the
system.

A. The spherical elliptic system of orthogonal
coordinates

The definition of elliptic coordinates in a sphere is as
follows: one fixes two arbitrary points (and the pair of
antipodal points) in S%. We choose these points with no
loss of generality in the form: Fy = (6, m), F, = (0, 0),
Fi=(m—0.0),F,=(m—0,m),0,€(07%).

The distance between the two fixed points is d = 2f =
2R0f < 7R; see Fig. 2(a). Given a point P € S2, let us
consider the distances r; € [0, #R] and r, € [0, wR] from
Pto F| and F,.

1
r; = 2R arcsin 5(1 — cosfl; cosf + sinf; sinf cosp),

1
ry = 2R arcsin E(l — cosfy cosf — sinf; sinf cosQ);

see Fig. 2(b). The spherical elliptic coordinates of P

FIG. 2 (color online).

(a) Foci and antipodal foci of the elliptic
system of coordinates on S?. (b) Distances from a point to the
foci.
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are half the sum and half the difference of r| and r,: 2u =
rtr, 2v=r—r. u€(RO,R(m—0)), vE
(—R0, RO ;). We remark that this version of elliptic coor-
dinates in a sphere is equivalent to using conical coordi-
nates constrained to S?, as defined e.g. in Ref. [26]. We
shall use the abbreviated notation

Cu(t, x) Cul(t, x)
su = sin , sV = sin ,
R R
) Coult x
sf = sind, su? = sng,
R
. vlt, x .
sv2 = sng, sf? = sin?6,

and analogously for cu, cv, and cf. To pass from elliptical to
Cartesian coordinates, or viceversa, one uses

11, x) = 5(t, x) =

su SV, = — CllCV

bo(t,x) = + —\/(su — sf2)(sf? — sv?),
whereas the differential arc-length reads

2 2
su? — sv2 su® — sv
ds2 =05 - du? + " dv2.
su? — sf sfs — sv

The spherical elliptic coordinates of the north and south
poles, and the foci are, respectively, (uy, vy) = (R6,0),

(us, vg) = (R(7m — Hf): 0), (”Fl, UFI) = (Raf: _Raf),
(MFZ: UFZ) = (Rgf: Ref)’ (MF]’ UF|) = (R(7T - 0}‘)’ Ref)a
(up,, vp,) = (R(m — 60;), —RO;).

B. Static field equations and Hamilton-Jacobi
separability

We choose a system of spherical elliptic coordinates
with the foci determined by 6, = arccoso, i.e., o=
cos’dy, > = sin’0;. We stress that the foci (and their
antipodal points) are the branching points mentioned in
the previous section. In this coordinate system the action
for the massive nonlinear S?-sigma model reads

su? — sv?
S—fdtdx{ [su _sz(?Mm? u

su? - sv? 50 v&“v] — V(u(t, x), v(s, x))},

sf2 — sv2
2

V(u,v) = G =)

[su?(su? — sf?) + sv2(sf2 — sv3)].

The static energy reads

PHYSICAL REVIEW D 79, 125003 (2009)

Elu,vl]= A fdxé’(u’(x), v'(x), u(x), v(x)),

2 2
£ [ T+ ¥
2L su? — sf
Let us think of E[u, v] as the action for a particle: £ as the
Lagrangian, x as the time, U(u, v) = —V(u, v) as the
mechanical potential energy, and the target manifold S?
as the configuration space. The canonical momenta are
Pu= %> Pv = ;—f,, and the static field equations can be

thought of as the Newtonian ODE’s:
d (su2 —sv? ,) %
. cul) =

S::j (v’)z] + V(u, v).

dx \su? — sf2 Su’
d_(suz—svz_ ,)_SV
dx 2 -2 ' Sv’

Because the mechanical energy is

Ul ) = =V 0) = = 1 (1) + g(0)

_ R2[su’(su® — sf?) + sv*(sf> — sv?)]
2(su? — sv?) ’

this mechanical system is a Liouville type I integrable
system (see [12]). The Hamiltonian and the Hamilton-
Jacobi equation of spherical type I Liouville models have
the form

h, + h,

su? — sv2’

b = 5 = SP)pE = fla),

1

E(sf2-— sv2)p? — g(v),
J
95 H(EG_‘S, " v) _0,
ox Ju ov

which guarantees HJ separability in this system of coor-
dinates. The separation ansatz S(x,u,v) = —ijx +
S,(u) + S, (v) reduces the HJ equation to the two sepa-
rated ODE’s, in the usual HJ procedure, leading to the
complete solution S = S(x, u, v, iy, i):

PR
S = —iyx + se(p,) f du\/z(Rz it )

su? — sf?
+ sg(p,) f dv\/

in terms of the mechanical energy /; = i; and a second
constant of motion, the separation constant [, = -%

= 11 sv? + g(v))
o2

(24)

VI. NONTOPOLOGICAL KINKS

We now identify the families of trajectories correspond-
ing to the values i; = i, = 0 of the two invariants in the
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mechanical system. These orbits are separatrices between
bounded and unbounded motion in phase space and be-
come solitary wave solutions in the field-theoretical model
because the i; = i, = 0 conditions force the boundary
behavior (5). (See [27,28] for application of this idea to
the search for solitary waves in other two-scalar field
models with analogous mechanical systems which are HJ
separable in elliptic coordinates.)

(1) In a first step we find the Hamilton characteristic
function for zero particle energy (i; = 0 = i,) by
performing the integrations in (24): W(u, v) =
Su(l/l, i] = O, i2 = 0) + SU(U, i] = O, i2 = O),

WBLE) (y, v) = FBI(y) + GB)(v)
with (—1)#1 = —sgp,,, (—1)P2 = —sgp,, - sgv, and

FBI(y) =
GB)(v) =

R%(—1)Picu,
R%(—1)P2cv.

(2) The HJ procedure provides the kink orbits by inte-
p p y
: d _ dv —
grating SEPu f(suzfsbf“z)lsul S€Pv f(sfzfsvz)lsvl -
R3 Vo
Royast® [Itan f tan“+f|(1/2°f)]sgpu
| tand

| tans, sgpy 55
| tan”s; ftan”f|l/2Cf @

In Fig. 3(a) a MATHEMATICA plot is offered showing
several orbits complying with (25) for several values
of the integration constant y,. Note that all the orbits
start and end at the north pole and pass through the
foci F, such that we have shown a one-parametric
family of nontopological kink orbits. In fact, there
are four families of nontopological kinks among the
solutions of (25): the orbits of a second family also
start and end at the north pole but pass through F,.
The orbits in the second pair of nontopological kink
(NTK) families start and end at the south pole and
pass through either F| or F;.

(3) The HJ procedure requires similar integrations in
|suldu

sepu [ il — sgp, [ = R(x + 1) to
|

PHYSICAL REVIEW D 79, 125003 (2009)

A
@ b) o i by
nIR-f O
A
KAA
£
P A KA FA g,
v
-f 0 £

A

FIG. 3 (color online). (a) Several NTK kink orbits. (b) The
same NTK kink orbits in the elliptic rectangle.

-10 -5 t 5 10

FIG. 4 (color online).
values of y,: (1) y, =
(2) y, =0, symmetrical peaks (green), (3) y, =
peak on the right (red).

NTK energy densities for three different
—3, highest peak on the left (blue),
10 highest

find the kink profiles (or particle “time ‘“ sched-

ules):

M(X) f u(x)+f u
eyl _ | tan5L tan®S -t [sep

|tanv(x) S tanv(-x)+f|§gp (26)

In Fig. 4, the NTK energy densities for three values
of vy, are plotted.

(4) Reshuffling Egs. (25) and (26), it is possible to find
the NTK families analytically, (27), based on

(uy, vy) = (RHf, 0). The other families, based on
(us, vg) = (R(m — 6/),0) are given by a similar
formula.

27)

tar‘uK(x’ Y Y2) =2 T+ eleztg
© 2R ’
‘/el +e3 +th+eedtl - \/(el +e3 +th+eedtd)? — 401 + e))2e3(t)?
24 . f 200 _ PR 212 _ 2 2 )4
v v y2) i‘/e, + 3+ th+ee3th — fler + €3+ i+ e1e3t)? — 41 + e))?e3(t)
tan = ,
2R \/E 1+ eltg
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where we have used the new abbreviations e¢; =
—_R2 2
62(X+71)Cf, e, = ex+'}’l R*yysf s t% = tan%.

VII. NONTOPOLOGICAL KINK INSTABILITY:
MORSE INDEX THEOREM

To study the (lack of) stability of NTK kinks, it is
convenient to use the following notation for the elliptic
variables: u! = u, u? = v. The static field equations read

D du' _ l.jd( duk)_ iV
dx dx & ax\®* ax 8 i

(28)
Let us consider a one-parametric family of solutions of
(28): ul(x; ). The derivation of
D duk . av ouk
— . TK 4 i) 1’2+), _K=O
( dx  dx g (ug, ug) ol 8ik 9y

with respect to the parameter y implies

D* ouk  oul oul oul
dx* 9y ax dy oax M
o OV IV du
+ gt — — T (ubk, u% —)—K=O
§ <8u/6uk jk( K K)aul ay

In the last three formulas, the metric tensor, the covariant
derivatives, the connection, the curvature tensor, and the
gradient and Hessian of the potential are valued on

(uk, u%); see [29]. Thus, ?—;

second-order fluctuation operator of zero eigenvalue. The

is an eigenvector of the

FIG. 5 (color online).

FIG. 6 (color online).
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derivatives of the NTK solutions (27) with respect to the
parameter vy, are accordingly eigenvectors of the second-
order fluctuation operator of zero eigenvalues orthogonal
to the NTK orbit, i.e., Jacobi fields that move from one
NTK kink to another with no cost in energy.

Better than direct derivation of (27) the Jabobi fields can
be obtained from (25) and (26) by using implicit derivation
with respect to the parameter y, and solving the subse-
quent linear system. We skip the (deep) subtleties of this
calculation and merely provide the explicit analytical ex-
pressions:

R3(su? — sf?)(sf? — sv?)
JNTK(X; yZ) = B b}
su? — sv

0 0
: (sg(pu)sua—u — sg(p)sv a—v). 29)

In Figs. 5(a), 5(b), 6(a), and 6(b), two Jacobi fields for two
values of 7y,, as well as the corresponding NTK field
profiles, are plotted for the three ¢, ¢,, ¢5 original field
components.

The zeroes of the Jacobi fields along a given y,-NTK
orbit (in the four disconnected sectors) are as f
ollows: either A = (ug(—00;7y,) = f, vi(—00;7y,) =0

~—

’

Fy=(ug(¥1:72) = 7R — fovg(Fisv2) = —f), F,=
(ug(¥1:72) = 7R — f,vg(¥1572) = /), or A=
(ug(—00;y,) = TR — f, v (=005 ,) = 0), F =

(ug(¥i5v2) = Fvk(P1572) = = 1), Fo = (ug(y1372) =
frvk(¥1: v2) = f). Thus, the conjugate points with re-

(a) Profiles of the field components for NTK vy, = 1 kink. (b) Plot of the Jacobi field JNTK(x; 1).
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spect to either the north or the south poles along the NTK
orbits are listed below:

Starting point

North pole: A
South pole: A

Conjugate point Conjugate point

Antipodal focus: F,
Focus: F,

Antipodal focus: F,
Focus: F,

In this two-dimensional setting, the Morse index theorem
states that the number of negative eigenvalues of the
second-order fluctuation operator around a given orbit is
equal to the number of conjugate points crossed by the
orbit [30]. The reason is that the spectrum of the
Schrédinger operator has in this case an eigenfunction
with as many nodes as the Morse index, the Jacobi field,
whereas the ground state has no nodes. The Jacobi fields of
the NTK orbits cross one conjugate point, their Morse
index is one, and the NTK kinks are unstable.

VIL. NON-BPS NONTOPOLOGICAL KINKS

The availability of the Hamilton characteristic function
as a sum of one function of u and another function of v
allows us to write the energy of static configurations d la
Bogomolny:

Eu o] =2 dx{su2 — sv? (ﬂ _su? — sf? dF(Bl))2
2 su? — sf2\dx su®> —su® du
N su? — sv (dv sf2 — sv? dG(52)>2}

sf2 —sv? \dx su®> —su?> dv

du dF<ﬁl> P dG'#)
+ /\/dx .
Yax dv
Solutions of the first-order equations
2 — sf2 dFA) 2 — sf?
du _w — S = —R(—1)P 25— su, (30)
dx su”—sv- du — sV
f2 _ 2 dG(BZ) f2 _ 2
dv =% — _R(_l)ﬁz% sv (31)
dx su” —sv- dv su® — sv

are absolute minima of the energy and therefore are stable.
Note that the energy of the solutions of (30) and (31) is

— <o dF®D I —
positive or zero because sgu’ = sg®;— and sgv’ =
dGB1)
dv

Even though the NTK trajectories are solutions of
the analogous mechanical system provided by the HJ
procedure that is closely related to the ODE system (30)
and (31), they do not strictly solve (30) and (31). Taking the
quotient of the two equations in (30) and (31) we find the
equation

du su? — sf? su

L =(-1h 32

dv -1 sf2 — sv? sv (32)
which determines the kink orbit flow. Note that this equa-
tion is identical to the equation in the HJ procedure that one
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must integrate to find (25). The subtle point, however, is
that this flow is undefined, 9 o at the four foci: Fy, F5, F,,
F,, and all the NTK orbits pass through one of these
dangerous points; see Figs. 3(a) and 3(b). The nontopolog-
ical kink orbits solve (30) and (31) for a given sign combi-
nation before meeting at a focus and are solutions of (30)
and (31) with another choice of signs after leaving these
orbit intersections. Thus, nontopological kinks are classi-
fied as non-BPS in the terminology of “presupersymmet-
ric” systems. We remark that in elliptic coordinates the
pathology is not in the Hamilton characteristic function but
in the factors induced by the change to elliptic coordinates.
The conclusion is that the energy of the NTK kinks must
be computed piecewise along the orbit. E¢

K(y,) -
2M GBI (0) — GB) (v)] + 2AFBD (uf) — FB) (ug ), ie.,

EC

) = = 2AR?|1 — | + 2AR?|20| = 2AR%(1 + o)

(33)

gives the kink energy as the action of the corresponding
trajectory.

Singular K; and K, kinks: kink mass sum rule

Analysis of the BPS/non-BPS nature of the topological
kinks in elliptic coordinates is illuminating. The K;/K}
kink orbits lie in the v = 0 line, splitting the two halves of
the elliptic rectangle: vg, = vg- = 0; see Fig. 3(b). The
first-order equations (30) and (31) on the K| /K kink orbits
(B; = 0 gives kinks and B; = 1| gives antikinks) and the
K, /K kink profiles in elliptic coordinates are

2 o2
@: _(_1)31Ru’
dx su

ug, (x) = ug:(x) = Rarccos[o tanh((—1)P1ox)].

The K, /K7 kink energy saturates the BPS bound:

= AF®) (g, (+00)) = FE) (g, (—00))| = 2AR%0

The K,/K; kink orbits are the four edges of the elliptic
rectangle: ug, = ug; = ROy, vk, = ROy, vk, = —ROy,
ug, = ug: = R(m — 0;); see again Fig. 3(b). The K,/K3
kinks are accordingly three-step trajectories in the elliptic
rectangle.

(I) —o0 < x<log tan% and uj = ugz = R(7 — 0;),
the first-order ODE, and the solutions are

By =1, v/ = R|sv],
v§(2 (x) = —vh.(x) = 2R arctane”.
2
) log tan <x<log tan—a, vy = —v” = R6,,

the ﬁrst—order ODE and the solutions are
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B, =0, u' = —Rsu,

ug (x) = u% (x) = 2R arctane ™.

(1) log tan%ef <x < +oo, ufl! = uill, the first-order
2

equation and the solutions are |

0.
EIC<2 = I GY(v(—o00)) — G<1)(v<log tan?f)) | +A

PHYSICAL REVIEW D 79, 125003 (2009)
By =0, v/ = —R|sv|,
vl (x) = —vil! (x) = 2R arctane .
Antikinks are obtained by changing the choices of

B and B,. In any case, the K,/K; kink energy is
not of the BPS form:

0 0
F (0)( (log tan{)) - F (0)( (log cotan {)) |

0
+ A | G(U)( (logcotan?)) GO (v(+00)) | = AR?|1 — cf| + AR?| — 2cf| + AR?|1 — cf + 1| = 2AR2.

It is remarkable that these energies satisfy the
following ‘“‘kink mass sum rule”:

ES = 20RX1 +0) = E{ +ES.  (34)

In fact, the |y,| — oo limit of the family of K,
(NTK) kinks is compatible with Eq. (25) only at the
edges of the elliptic rectangle (forming the K,/K;
orbits) and the K, /K orbit. Therefore, the K| and
K, form the boundary of the moduli space of K, in
such a way that (34) shows this combination as one
of the NTK kinks.

IX. SOLITARY SPIN WAVES

Field configurations that satisfy the Euler-Lagrange
equations,

A, . 2. (54, _ 04, Iy,
> “’”‘Z(scﬁa“’” 5, ¥ )) S &)

’;
Z ach [CI)([ )C)] (t x)

Il
i Mw

are extremals of the “Wess-Zumino’’ action:

Ibq

Sy [®] = R? [ didx iAa[cb(z, 012 (1)
a=1

In particular a “magnetic monopole * field B,[®(z, x)] =

% in the R? internal space where the S?-sphere is

embedded is obtained by the choice of singular
potentials™:

“vector

AT[D(1,x)] = — ,
G+ 3 + 3 (Ps £ [P + P+ B3)

¢
VR

AZ[D(1, x)] = 0.

AS[D(r,x)] =

BBt )

AT[D(, 0)]]is singular on the negative ¢; axis but a gauge

f
transformation to A [®(#, x)]] moves the Dirac string—
henceforth a gauge artifact—to the positive ¢ axis. The
scalar fields are constrained to live in the ¢3(z x) +
¢3(t, x) + ¢3(t, x) = R? sphere, a surface where this mag-
netic flux is constant. Therefore, Stoke’s theorem tells us
that Swz = R? [dx §33_ dp,(x)A,[P(x)] is the area
bounded by a closed curve in S?.

The important point is that the Euler-Lagrange equations
for the sum of the two actions Sy + S, where S is the
action of our model, are

I & < 3¢b @
E Z Z abcd)c + Dd’a 2 d)a =0. (35)
b=1c=1

At the long wavelength limit, the ODE system (35) be-
comes the Landau-Lifshitz system of equations of ferro-
magnetism. The connection between the semiclassical
(high-spin) limit of the Heisenberg model and the quantum
nonlinear S-sigma model is well established [31].

A. Spin waves

Plugging the constraint into (35), we find the system of
two ODE’s:

_ Zsaﬂ Sgl(ff%( ’ Zd) d)y ad)a

+ (/)a Z’Y ¢78t¢7 )+ D¢ﬁ + m'23¢ﬁ

VR =%, ¢,0,

¢ﬂ I:Z)/ ¢ya#¢y + ZB ¢6a,u,¢5
- Z«/ d)y(l)y - Zy ¢7¢7

=D pyd, e, + ¢ym¢y)] =0. (36)
Y

@, B,y =1,2, m? =1, mj = o> The ground states are
the homogeneous solutions of this system: ¢! = ¢9 =0,
d)o = *R. In order to visualize these configurations in,
e.g., Fig. 7 we draw the spin chain in such a way that the
&,:¢p5 plane is perpendicular to the x spatial line whereas
¢, is aligned with the x axis. We stress that this choice of
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Mttt Gl
) ﬁﬁfﬁm - M@lm@ " !f

FIG. 7 (color online). (a) Ground state d)g = R. All the spins
are aligned pointing to the north pole. (b) Ground state d)g =
—R. All the spins are aligned pointing to the south pole.

basis is arbitrary but it is easy to figure out the formulas
and the graphics in another rotated basis for the magneti-
zation vector: ¢(x) = ¢,(x)8, + br(x)8, + d3(x)&; =
Pl (x)e) + ph(x)é + ¢p4(x)és. The main features of our
preferred basis é;, é,, é5 are: (1) The é; vector points in the
direction of weaker —V(6, ¢) potential, see Fig. 1(b).
(2) ¢, é,, é5 is the basis used in the continuous XY (in
fact YZ) model of easy-axis ferromagnets near the Curie
point; see [13,32] and references quoted therein.

The spin fluctuations ¢ (¢, x) = 8¢ (1, x), P,(t,x) =
S8 &,(t, x) around the ground state ¢;(z, x) = R satisfy the
linearized equations:

_ 08¢, " 8P 9°8¢,

0 + 6,
at FYE ax> ¢
a6p, 8¢, 08¢,
0=~— + - + o?5P3.
ot Y2 oz T

Therefore, the spin waves

etwt—zkx

1 1
Sé(t, x) = \/T_Lg—?;(—kj(a“(k)

+ aZ(k)a(k)eiinikx) (37)

satisfying periodic boundary conditions &8¢, (f, x) =
8¢,(t, x + AL) are solutions of (37) for the frequencies
complying with the homogeneous system of algebraic
equations:

(720 e i) - (0)
(38)

At the long wavelength limit w, < w, (38) is tanta-
mount to the nonrelativistic dispersion law

w*(k?) = (K2 + 1)(K* + o?)

characteristic of ferromagnetic materials, although the
quadratic terms in the free energy prevent the standard
w(k) = k* form.

B. Bloch and Ising walls

One may check that the K;/K7 kinks (11) solve the
static Landau-Lifshitz equations (36) on the ¢»; = 0 orbit:

PHYSICAL REVIEW D 79, 125003 (2009)

—¢, [(6:2%2?  1ae, ¢,
[R2—¢%+(dx dx2:|

¢y _

dx? R? — ¢3
+ 02¢2.

)2+¢2

The K,/K] kinks of the nonlinear sigma model are con-
sequently solitary spin waves of this nonrelativistic system;
see Fig. 8.

Simili modo, the K,/K; kinks (12) solve (36) along the
¢, = 0 kink orbit,

d*¢, _ —¢
dx> R —¢?

+ d)l’

and are also spin solitary waves in this system (Fig. 9).

Because the system of ODE’s giving static solutions of
the (35) PDE system is the same as the static field equa-
tions of the nonlinear S?-sigma model, the NTK kinks are
also solitary spin waves; see Fig. 10.

In sum, understood as solitary spin waves K /K7 kinks
are Bloch walls whereas K,/K; kinks are Ising walls
describing interfaces between ferromagnetic domains;
see [13,32]. In this model we have thus found a moduli
space of solitary waves with an structure very similar to the
structure of the space of solitary waves of the XY model
described in Refs. [13,33]. There are Bloch and Ising walls
and a one-parametric family of NTK kinks that are non-
linear superpositions of one Bloch and one Ising wall with
arbitrary separation between their centers. The novelties

(55 () -0 58]

FIG. 8 (color online). Graphic arrow representation of the K
kinks: (a) K; spin chain. (b) Perspective from one component of
the boundary of $* X R showing how the spin flip happens by

means of a 7 rotation around the ¢, axis.

FIG. 9 (color online). Graphic arrow representation of the K,
kink: (a) K, spin chain. (b) Perspective from one component of
the boundary of S? X R showing a forward spin flip.
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FIG. 10 (color online).
kinks: (a) K,

Graphic arrow representation of K.,
spin chain. (b) Perspective from the boundary of
S? X R showing the 27 rotation around the ¢, axis of the spin
to come back to the initial ground state.

here are (a) there is no need in the free energy of fourth-
order terms in the magnetization in the nonlinear sigma
model for finding these mixtures of Bloch and Ising walls.
(b) The analytical expressions (27) differ from their ana-
logues in the XY model.

From the stability analysis performed in previous sec-
tions, it is clear that only the Bloch walls are stable and
saturate the Bogomolny bound. Things are different at the
o =1 limit where all the kinks are topological, Bloch
walls, and saturate the Bogomolny bound. In this latter
case the structure of the kink space is akin to the kink space
structure of the Bazeia-Nascimento-Ribeiro-Toledo
(BNRT) model [34]; see [16,35,36]. There is a one-
parametric family of degenerate Bloch walls saturating
the Bogomolny bound.

X. FURTHER COMMENTS: SUPERSYMMETRY
AND STABILITY

Finally, we briefly explore the possibility of embedding
our bosonic model with its moduli space of kinks in a
broader supersymmetric framework. It turns out that the
simpler N =1,d = 1 + 1 SUSY version of the massive
nonlinear S?-sigma model only exists if the masses of the
pseudo-Nambu-Goldstone bosons are equal (o = 1). It
also seems difficult to build more exotic possibilities com-
ing from dimensional reduction of models of Kahler or
hyper-Kahler nature because the potential energy density is
not compatible with complex structures when o # 1.

A. Isothermal coordinates

It is convenient to introduce isothermal coordinates in
the chart S? — {(0, 0, —R)}, which are obtained via stereo-
graphic projection from the south pole:

Xl _ ¢1 —
1+% R + sg(¢3)4/R> —
(39)
2 _ ¢2
X )

1+ R + sg(¢3)4/R> —

The metric and the action in this coordinate system read

PHYSICAL REVIEW D 79, 125003 (2009)

AR*
2 1 1 2 2
ds - (R2 + /\/1)(1 + X2X2)2 (d/\/ d/\/ + d)( d)( )r

S[Xl,Xz] = [dXQ > 12]1e4 2. 2\2
R+ x'xX' +x°x°)

. [ay,XlaMXl + aM/\/Zay,XZ

—('x' + 2]

whereas the K kinks are given by
Xk, () =0, x} ()= =Rexp[*a(x — x))l (40)

and we rewrite the second-order fluctuation operator
around the K, kink [with % (x) = Re™7*)] in the form

d27]l dT]l
Ag,m = —( e +20(1 — tanha'x)ﬁ
d
- (1—20%+ 207 tanha'x)nl)—1
Ix
poe: 7
( 02 +20(1 — tanho-x)—x
2 2\_9
+ 0*(1 — 2tanhox)n” | =
ax

In a parallel frame u = ,ul(x)aixl + ,ugz()c)(,)i)(2 e

F(TSlel), du' 4 Flk(XK)XK,LL = (), along the K, kink,

d

: + o(1 —tanh)u'(x) = 0= u'(x) = 1 + e 29%,
d,u _ 2(4) — 2(4) — ~20x
i + o(l —tanh)u*(x) = 0= u’*(x) =1+e

X

we recover the Posch-Teller operators

d*n' 207 d
A = — +(1 - — 1) 1+ —20x)__~
Sy ( dx? ( cosh? (rx)n (1+e757) ax!

d27]2 202
+ (- +|0? — —5— 2)
( dx? (U coshza'x)77
—Z0X a

Note that now the K; orbits are the positive and negative
ordinate half-axes, the stereographic projections of the

=Zand ¢ = 37” half-meridians, such that fluctuations
orthogonal to the orbit run in the direction of the abscissa
axis.

B. The N = 1 massive SUSY sigma model

In Ref. [37], we analyzed the relationship of the com-
plete solution of the Hamilton-Jacobi equation for zero
energy and the superpotential of a supersymetric associ-
ated classical mechanical system. Thus, we are tempted to
use the Hamilton characteristic function
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(1R
R2 + X Xl + XZ 2

W(Bl»ﬁz)(/\/)

o-(B,) = 1= (—1)P20, to build the N = 1 SUSY ex-
tension of our massive nonlinear S?>-sigma model. On one
hand we have that

lgij GW(BljBZ) . (')W(,Bliﬁz) _ 2R2(x'x' + o2 x*x?) ’

20 oy ' RA XXX
Y Bi, B». On the other hand (42) is free of branch points
only for o = 1. Supersymmetry does not allow superpo-
tentials with branch points and it seems that Hamilton-
Jacobi characteristic functions are compatible with a
weaker form called pseudosupersymmetry in [38]. We
close our eyes to this fact for a moment and proceed to
formally build the N = 1 SUSY extension of our model
using (42).

There are also two Majorana spinor fields:

! W ‘i(xp“))
i(yH) = 1 )
) = (Gl
We choose the Majorana representation y* = o2, y!' =
io', y> = o of the Clifford algebra {y*, y"} = 2g**
and define the Majorana adjoints as ' = (')'y°. The

action of the supersymmetric model is

(PL) = o, a=12

s= [ g0uximy + idiyi(a, pi
= Tgij(,u/\/ X iy, ¢

8W aw
+ r;ka/fv/\/ d/l)) - _lelk¢1 ‘1[/]‘7[/ *!fk a/\/i a—/\/j
-. Dow
— w ll/j}
axox
where ;2 Y W 7 X‘?z 7 Ff‘] gW The spinor supercharge

- o aw
0= /dxgij(v“volﬂ’%x’ + iyotﬂ’g”‘a—)(,() (43)

acts on the configuration space and leaves the action in-
variant. Time-independent finite energy configurations
complying with

dy' — oij oW

dx ax'’
annihilates the supercharge combination Q; + Q, and
these solutions might be interpreted as % BPS states in
this supersymmetric framework. In particular, the SUSY

K kinks
v =(7)

1//%(1 (x) = ia’Rei‘”‘( _11 )

Pi(x) = =) (44)

)(}(] x) =0, X%ﬁ = +Re™7*,

satisfy (44) (with appropriate choices of 31, 3,). Note that

V@ (BIR + o (B X' + ¥2xD) — 402 R2x X, (42)

|
%, (x) is the SUSY partner of x (x) under the action of

the broken SUSY supercharge Q; — Q,. We also remark
that

% 1
dXKl — io.ReiO'x — i(TR(l + eth-x) . )
dx coshox

i.e., the fermionic partner in the SUSY kink is the zero
mode of the second-order fluctuation operator back from
the parallel frame to the K orbit.

C. Fermionic fluctuations

The Dirac equation ruling the small fermionic fluctua-
tions on the K; kink reads:

D&Y (1, x) = i(yPag — ¥'91)8 (1, x)
—iy'T" k(XK])alXjK (x)84k(1, x)

+ 8% (xk) =< (Xkl)(s%l/k(f x).  (45)

Do
ax’ox*
Acting on (45) with the adjoint Dirac operator, the search
for solutions of DYD&(t, x) = 0 of the stationary form
Si(t, x) = €' 80'(x, w) requires us to deal with the fol-
lowing ODE system:

Dow

DowW
6 kl So™
o'(x) + aX]an & oy e"(x)

d ;d oW
j k I(v) _ ial
R;‘kld_XKld_XKIBQ (x) — iy gl]a—xj
D?oW
anaXla m

- gM 50" (x) = w?80'(x)
valued at y = yg,.

On eigenspinors of —iy! = !, §0i(x) = £50i(x) =
80 (x), the above spectral ODE system reduce to the
(symbolically written) pair of equations:

2
A,%légi = [—% +WeeW' +R=W® W’”]ég

(46)
AI+<1 is exactly equal to the second-order differential opera-

tor ruling the bosonic fluctuations. Therefore, in the paral-
lel frame to the K orbit we write A,ng in matrix form:

o2
c0§h2(rx R 0 R
_ % + 0.2 _ 20"

cosh?ox

L+l -
s - (7
! 0

In the same frame A,} is the intertwined partner (see [20]):

d2
Ao [ 0
g 0 -Lio2)
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If o # 1, there is a bound state in A,tl of energy 1 — ¢

unpaired with an eigenstate of the same energy in A,}], a

fact incompatible with supersymmetry as we expected
from the use of the complete solution of the Hamilton-
Jacobi equation as superpotential, closing our eyes to the
fact that, related to the instability of NTK and K, kinks, the
Hamilton characteristic function has branching points at
the foci defining the elliptic coordinate system. A similar
problem arose in [39,40], where meromorphic Hamilton
characteristic functions have been found. It is an open
problem to explore whether or not these milder singular-
ities allow the use of these Hamilton characteristic func-
tions as superpotentials to extend the bosonic models dealt
with in [39,40], to the supersymmetric framework.

If the masses are equal (o = 1), however, the Hamilton
characteristic function is free of branching points and the
unpaired states are zero modes. The N = 1 SUSY model
is correct and we can apply the SUSY version of the Cahill-
Comtet-Glauber formula proposed in [41] to find the same
one-loop correction to the SUSY S? kink as given in [20]:

PHYSICAL REVIEW D 79, 125003 (2009)

A& A
AERSY (0 =1) = 5 (sinv} — v/ cosy) = ——.

e T
Here v = v; = arccos(0) = 7 are the angles obtained

from the bound states of Ag . There are no bound states
in the spectrum of Ag .
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